[etherlab-users] Distributed Clocks

Matthieu Bec mbec at gmto.org
Sat Feb 20 02:25:37 CET 2016


Hello Thomas,

Just a wild guess, are you adjusting for EtherCAT time EPOCH? I have something like:

static inline uint64_t TIMESPEC2NSEPOCH2000(struct timespec ts)
{
  return (ts.tv_sec - 946684800ULL) * 1000000000ULL + ts.tv_nsec;
}

Regards,
Matthieu








On 2/19/16, 4:08 PM, "etherlab-users on behalf of Thomas Bitsky Jr" <etherlab-users-bounces at etherlab.org on behalf of tbj at automateddesign.com> wrote:

Hello.


I’ve been using the EtherCAT master for years to great success, but I’m stuck on a problem I can’t figure out that I think several people here are doing successfully. I can’t implement distributed clocks in my application.


I am having the same problem on two systems I have up and running:






SYSTEM ONE:


EtherLAB Master 1.52, E1000E Driver, Scan Rate 4Khz, Ubuntu Server 14.04LTS, RT-PREEMPT 3.12.50-rt68


alias=0, position=0, device=EK1100 
alias=0, position=1, device=EL1104 
alias=0, position=2, device=EL2004
alias=0, position=3, device=EL9510
alias=0, position=4, device=EL3356
alias=0, position=5, device=Kollmorgen AKD
alias=0, position=6, device=MTS LVDT





SYSTEM TWO:


EtherLAB Master 1.52, E1000E Driver, Scan Rate 8Khz, Ubuntu Server 14.04LTS, RT-PREEMPT 3.12.50-rt68


alias=0, position=0, device=EK1100
alias=0, position=1, device=EL3001
alias=0, position=2, device=EL1104
alias=0, position=3, device=EL1104
alias=0, position=4, device=EL1104
alias=0, position=5, device=EL2004
alias=0, position=6, device=EL2004
alias=0, position=7, device=EL9505
alias=0, position=8, device=EL7041
alias=0, position=9, device=EL7041
alias=0, position=10, device=EL7041
alias=0, position=11, device=EL7041
alias=0, position=12, device=EL7041
alias=0, position=13, device=EL7041
alias=0, position=14, device=EK1110
alias=1, position=0, device=SIGMA5-05
alias=2, position=0, device=Yaskawa SIGMA5-05
alias=3, position=0, device=Yaskawa SIGMA5-05





Both of the system are fully operational. However, for various reasons, I need to implement distributed clocks on these systems. I’ve never been able to get this to work.




What follows is the code I used for both systems to try this. I read through examples on the mailing list, plus the examples, but I’m not seeing what I’m doing wrong. The result is always the same: all the fieldbus cards go into operation, but the servo
 drives won’t because of “bad configuration.” Take out the distributed clock code, and they work fine. I’m getting away with it for now, but I do need better clock resolution.


The systems have an LRW domain, then a separate read domain and write domain for the servo drive(s) for a total of three domains (LRW, read, write). The yaskawa drives necessitate this. The scan rate is usually 4Khz, but I have tried it at both 1Khz and
 8Khz and gotten the same results. Everything about the implementation is fairly straight-forward. There’s just something fundamental about the DC configuration that I’m not understanding.


Almost all the code below is taken right from the examples or the message boards (thanks, everybody!). If anyone could tell me what I’m going wrong or offer any insights, it’s greatly appreciated. For brevity, I tried to narrow it down to relevant parts,
 but please let me know any additional information or code I can provide.


Thank you in advance,
Tom




**********************************************************


// EtherCAT distributed clock variables


#define DC_FILTER_CNT          1024
#define SYNC_MASTER_TO_REF        1


static uint64_t dc_start_time_ns = 0LL;
static uint64_t dc_time_ns = 0;
static uint8_t  dc_started = 0;
static int32_t  dc_diff_ns = 0;
static int32_t  prev_dc_diff_ns = 0;
static int64_t  dc_diff_total_ns = 0LL;
static int64_t  dc_delta_total_ns = 0LL;
static int      dc_filter_idx = 0;
static int64_t  dc_adjust_ns;
static int64_t  system_time_base = 0LL;
static uint64_t wakeup_time = 0LL;
static uint64_t overruns = 0LL;






/** Get the time in ns for the current cpu, adjusted by system_time_base.
 *
 * \attention Rather than calling rt_get_time_ns() directly, all application
 * time calls should use this method instead.
 *
 * \ret The time in ns.
 */
uint64_t system_time_ns(void)
{
struct timespec ts;
clock_gettime(GLOBAL_CLOCK_TO_USE, &ts);
return TIMESPEC2NS(ts);
}






static
void sync_distributed_clocks(void)
{
    uint32_t ref_time = 0;
    uint64_t prev_app_time = dc_time_ns;


    dc_time_ns = system_time_ns();


    // set master time in nano-seconds
    ecrt_master_application_time(master_, dc_time_ns);


    // get reference clock time to synchronize master cycle
    ecrt_master_reference_clock_time(master_, &ref_time);
    dc_diff_ns = (uint32_t) prev_app_time - ref_time;


    // call to sync slaves to ref slave
    ecrt_master_sync_slave_clocks(master_);
}




/** Return the sign of a number
 *
 * ie -1 for -ve value, 0 for 0, +1 for +ve value
 *
 * \retval the sign of the value
 */
#define sign(val) \
    ({ typeof (val) _val = (val); \
    ((_val > 0) - (_val < 0)); })




/*****************************************************************************/


/** Update the master time based on ref slaves time diff
 *
 * called after the ethercat frame is sent to avoid time jitter in
 * sync_distributed_clocks()
 */
 
static unsigned int cycle_ns = 1000000;  // 1 millisecond 


void update_master_clock(void)
{


    // calc drift (via un-normalised time diff)
    int32_t delta = dc_diff_ns - prev_dc_diff_ns;
    prev_dc_diff_ns = dc_diff_ns;


    // normalise the time diff
    dc_diff_ns =
        ((dc_diff_ns + (cycle_ns / 2)) % cycle_ns) - (cycle_ns / 2);


    // only update if primary master
    if (dc_started) {


        // add to totals
        dc_diff_total_ns += dc_diff_ns;
        dc_delta_total_ns += delta;
        dc_filter_idx++;


        if (dc_filter_idx >= DC_FILTER_CNT) {
            // add rounded delta average
            dc_adjust_ns +=
                ((dc_delta_total_ns + (DC_FILTER_CNT / 2)) / DC_FILTER_CNT);


            // and add adjustment for general diff (to pull in drift)
            dc_adjust_ns += sign(dc_diff_total_ns / DC_FILTER_CNT);


            // limit crazy numbers (0.1% of std cycle time)
            if (dc_adjust_ns < -1000) {
                dc_adjust_ns = -1000;
            }
            if (dc_adjust_ns > 1000) {
                dc_adjust_ns =  1000;
            }


            // reset
            dc_diff_total_ns = 0LL;
            dc_delta_total_ns = 0LL;
            dc_filter_idx = 0;
        }


        // add cycles adjustment to time base (including a spot adjustment)
        system_time_base += dc_adjust_ns + sign(dc_diff_ns);
    }
    else {
        dc_started = (dc_diff_ns != 0);


        if (dc_started) 
{
            // record the time of this initial cycle
            dc_start_time_ns = dc_time_ns;
        }
    }


}






struct timespec dcTime_;





int
ecatMain_process(void* lp)
{

ecrt_master_receive(master_);

clock_gettime(CLOCK_REALTIME, &dcTime_);
ecrt_master_application_time(master_, TIMESPEC2NS(dcTime_));


ecrt_master_sync_reference_clock(master_);
ecrt_master_sync_slave_clocks(master_);




ecrt_domain_process(lrwDomainMgr_.domain);
ecrt_domain_process(noLrwWriteDomainMgr_.domain);
ecrt_domain_process(noLrwReadDomainMgr_.domain);


… // handle my business


// write application time to master
clock_gettime(CLOCK_REALTIME, &dcTime_);
ecrt_master_application_time(master_, TIMESPEC2NS(dcTime_));




if (sync_ref_counter_) 
{
sync_ref_counter_--;
} 
else 
{
sync_ref_counter_ = 1; // sync every cycle
ecrt_master_sync_reference_clock(master_);
}


// send process data
ecrt_domain_queue(lrwDomainMgr_.domain);

ecrt_domain_queue(noLrwWriteDomainMgr_.domain);
ecrt_domain_queue(noLrwReadDomainMgr_.domain);


 
// sync distributed clock just before master_send to set
// most accurate master clock time
sync_distributed_clocks();


// send EtherCAT data
ecrt_master_send(master_);


// update the master clock
// Note: called after ecrt_master_send() to reduce time
// jitter in the sync_distributed_clocks() call
update_master_clock();

return 1;
}







int
ecatMain_start(void* lp)
{

//
// domain regs must end in a null entry
//

lrwDomainMgr_.domainRegs = realloc(
lrwDomainMgr_.domainRegs, 
sizeof(ec_pdo_entry_reg_t) * (lrwDomainMgr_.size + 1)  );

memset(
&(lrwDomainMgr_.domainRegs[lrwDomainMgr_.size]),
0, 
sizeof(ec_pdo_entry_reg_t) );


noLrwReadDomainMgr_.domainRegs = realloc(
noLrwReadDomainMgr_.domainRegs, 
sizeof(ec_pdo_entry_reg_t) * (noLrwReadDomainMgr_.size + 1)  );

memset(
&(noLrwReadDomainMgr_.domainRegs[noLrwReadDomainMgr_.size]),
0, 
sizeof(ec_pdo_entry_reg_t) );




noLrwWriteDomainMgr_.domainRegs = realloc(
noLrwWriteDomainMgr_.domainRegs, 
sizeof(ec_pdo_entry_reg_t) * (noLrwWriteDomainMgr_.size + 1)  );

memset(
&(noLrwWriteDomainMgr_.domainRegs[noLrwWriteDomainMgr_.size]),
0, 
sizeof(ec_pdo_entry_reg_t) );








//
// NOTE: the Output Domain must be registered with
// ecrt_domain_reg_pdo_entry_list before the Input Domain otherwise you 
// will not have any data exchanged even though the drive goes into OP
// mode.
//


PRINT("\nAttempting to register PDOs on WRITE ONLY domain...\n");
if (ecrt_domain_reg_pdo_entry_list(
noLrwWriteDomainMgr_.domain, noLrwWriteDomainMgr_.domainRegs)) 
{
PRINT("WRITE ONLY PDO entry registration failed!\n");
return FALSE;
    }

PRINT("\nAttempting to register PDOs on READ ONLY domain...\n");
if (ecrt_domain_reg_pdo_entry_list(
noLrwReadDomainMgr_.domain, noLrwReadDomainMgr_.domainRegs)) 
{
PRINT("READ ONLY PDO entry registration failed!\n");
return FALSE;
  }




//
// And now we register the bi-directional domain.
//
PRINT("\nAttempting to register PDOs on LRW domain...\n");
if (ecrt_domain_reg_pdo_entry_list(
lrwDomainMgr_.domain, lrwDomainMgr_.domainRegs)) 
{
PRINT("LRW PDO entry registration failed!\n");
return FALSE;
    }



/*
* Finishes the configuration phase and prepares for cyclic operation.
* This function tells the master that the configuration phase 
* is finished and the realtime operation will begin.
* The function allocates internal memory for the domains and calculates 
* the logical FMMU addresses for domain members. 
* It tells the master state machine that the bus configuration is 
* now to be applied
*/
PRINT("\nAttempting to activate ECAT master...\n"); 
if (ecrt_master_activate(master_))
{
PRINT(
"%s Failed to activate master!\n",
__FUNCTION__ );
return FALSE;
}

/*
* Returns the domain's process data. 
*/
PRINT( "%s getting LRW process data from master.\n", __FUNCTION__ ); 
if (!(lrwDomainMgr_.processData 
= ecrt_domain_data(lrwDomainMgr_.domain))) 
{
PRINT(
"%s set ecProcessData -- domain data is NULL!\n",
__FUNCTION__ );

return FALSE;
  }


if (!(noLrwReadDomainMgr_.processData 
= ecrt_domain_data(noLrwReadDomainMgr_.domain))) 
{
PRINT(
"%s set read ProcessData -- domain data is NULL!\n",
__FUNCTION__ );

return FALSE;
    } 

if (!(noLrwWriteDomainMgr_.processData 
= ecrt_domain_data(noLrwWriteDomainMgr_.domain))) 
{
PRINT(
"%s set write ProcessData -- domain data is NULL!\n",
__FUNCTION__ );

return FALSE;
    }



… // blah blah blah



doScan_ = TRUE;



PRINT( "%s completed successfully.\n", __FUNCTION__ );
return TRUE;
}








More information about the Etherlab-users mailing list