[etherlab-users] Distributed Clocks

Thomas Bitsky Jr tbj at automateddesign.com
Wed Mar 2 15:47:16 CET 2016


Thanks for the response, Richard.

CyclicTest on the hardware:
user at core:~$ sudo cyclictest --smp -p95 -m
# /dev/cpu_dma_latency set to 0us
policy: fifo: loadavg: 0.01 0.04 0.04 1/162 1547

T: 0 ( 1543) P:95 I:1000 C:  26093 Min:      6 Act:   30 Avg:   25 Max:      56
T: 1 ( 1544) P:95 I:1500 C:  17386 Min:      6 Act:   14 Avg:   23 Max:      66
T: 2 ( 1545) P:95 I:2000 C:  13036 Min:      5 Act:   28 Avg:   29 Max:      57
T: 3 ( 1546) P:95 I:2500 C:  10424 Min:      6 Act:   30 Avg:   29 Max:      58



So, the max latency is definitely in the ballpark of what I was saying last night.

Setting cylictest with a break value fails almost instantly.

root at core:/sys/kernel/debug/tracing# cyclictest --smp -p95 -f -b 200
# /dev/cpu_dma_latency set to 0us
INFO: debugfs mountpoint: /sys/kernel/debug/tracing/
policy: fifo: loadavg: 0.00 0.01 0.05 3/165 1703

T: 0 ( 1700) P:95 I:1000 C:      0 Min:1000000 Act:    0 Avg:    0 Max:       0
T: 1 ( 1701) P:95 I:1500 C:      0 Min:1000000 Act:    0 Avg:    0 Max:       0
T: 2 (    0) P:95 I:2000 C:      0 Min:1000000 Act:    0 Avg:    0 Max:       0
T: 3 ( 1703) P:95 I:2500 C:      0 Min:1000000 Act:    0 Avg:    0 Max:       0
# Thread Ids: 01700 01701 01702 01703
# Break thread: 1702
# Break value: 217



[snip]
First things first: when you are running RT proggies, you need a stable 
clock source and a preemptable kernel!
[/snip]


I am using RT Preempt:
# uname -a
Linux core 3.12.50-rt68 #1 SMP PREEMPT RT Mon Nov 23 18:17:14 CST 2015 i686 i686 i686 GNU/Linux


Thanks!
Thomas C. Bitsky Jr. | Lead Developer
ADC | automateddesign.com <http://automateddesign.com/>
P: 630-783-1150 F: 630-783-1159 M: 630-632-6679

Follow ADC news and media:
Facebook <https://facebook.com/automateddesigncorp> | Twitter <https://twitter.com/ADCSportsLogic> | YouTube <https://www.youtube.com/user/ADCSportsLogic>








On 3/2/16, 5:30 AM, "etherlab-users on behalf of Richard Hacker" <etherlab-users-bounces at etherlab.org on behalf of ha at igh.de> wrote:

>Hi John,
>
>Skipped frames are either a timing or a hardware problem (faulty 
>EtherCAT slaves, cabling, noise). Some slaves don't care, DC slaves puke!
>
>First things first: when you are running RT proggies, you need a stable 
>clock source and a preemptable kernel! Even more so when you're running 
>at 250us cycle time. Your jitter of 50us is roughly 20% of your cycle 
>time, definitely not a neglegible fraction! So tackle that first.
>
>Download cyclictest and test that first:
>https://rt.wiki.kernel.org/index.php/Cyclictest
>
>Once your cyclic test is stable (~10us max jitter), you may start 
>looking for delays in your code.
>
>Instrumate your loop and find out what is causing delays. Comment out 
>large sections of code to start from a known good state (maybe doing 
>EtherCAT IO exclusively and NOTHING else, no GUI, signal processing, 
>etc) and reinsert code slowly to find the error.
>
>Do you have ANY system calls in your RT cycle, like sockets(), read() or 
>write()? Do remember that system calls (including those to the master) 
>may cause page faults that introduce delays. Only a very small subset of 
>known and documented system calls can be used for RT. Notably read() and 
>write() to pipes, shared memory (once set up of coarse), semaphores are OK.
>
>BTW: Needless to say that we have paid particular attention that the 
>master does not cause any page faults or other delays once started in 
>cyclic mode ;)
>
>Good luck!
>Richard
>
>On 02.03.2016 05:51, Thomas Bitsky Jr wrote:
>>
>> I’ve been continuing to work on this, but have had limited success.
>> While a distributed clock is technically running, it’s caused a few
>> other problems that I’ve been unable to correct. I think my main problem
>> all stems from this:
>>
>> [36524.681778] EtherCAT 0: Domain 0: Working counter changed to 10/10.
>> [36524.681787] EtherCAT 0: Domain 2: Working counter changed to 1/1.
>> [36524.681792] EtherCAT 0: Domain 1: Working counter changed to 1/1.
>> [36525.858760] EtherCAT 0: Domain 0: Working counter changed to 0/10.
>> [36525.858810] EtherCAT 0: Domain 2: Working counter changed to 0/1.
>> [36525.858827] EtherCAT 0: Domain 1: Working counter changed to 0/1.
>> [36526.203067] EtherCAT WARNING: Datagram f185d88c (domain0-0-main) was
>> SKIPPED 2 times.
>> [36526.203099] EtherCAT WARNING: Datagram f185d90c (domain2-28-main) was
>> SKIPPED 2 times.
>> [36526.203104] EtherCAT WARNING: Datagram f185d28c (domain1-22-main) was
>> SKIPPED 2 times.
>> [36526.743379] EtherCAT WARNING 0: 12 datagrams UNMATCHED!
>> [36526.863556] EtherCAT 0: Domain 0: 5 working counter changes - now 10/10.
>> [36526.863566] EtherCAT 0: Domain 2: 5 working counter changes - now 1/1.
>> [36526.863572] EtherCAT 0: Domain 1: 5 working counter changes - now 1/1.
>>
>> … and on and on and on…
>>
>> The AKD servo drive I’m using will run fine, no warnings, then suddenly
>> drop to an F125 fault and shut off. The is a frame synchronization
>> error. Basically, it’s saying that the sync0 frame isn’t received at a
>> consistent enough rate, so it faults out.
>>
>> My scan rate is 250 microseconds, and I admit there is jitter. It varies
>> from as little as +/- 50 microseconds, though I’m not sure why. The
>> "ethercat master" command reports a steady 4000 frames/sec, but the
>> scoping part of my project records a timestamp, and I am seeing the +/-
>> 50 microseconds.
>>
>> My timing function is straight out of the EtherCAT master examples and
>> is also similar to methods I’ve seen in other cyclic task projects. The
>> whole cyclic task is below. Can anyone see what idiotic thing I must be
>> doing to get unmatched datagrams?
>>
>> #define TIMESPEC_ADD_NS(TS, NS)\
>> (TS).tv_nsec += (NS);\
>> while ( (TS).tv_nsec >= NANOS_PER_SEC ){\
>> (TS).tv_nsec -= NANOS_PER_SEC;\
>> (TS).tv_sec++; }
>>
>> #define TIMESPEC2NSEPOCH2000(T) \
>> ((uint64_t) (((T).tv_sec - 946684800ULL) * 1000000000ULL) + (T).tv_nsec)
>>
>> #define TON struct timespec
>> #define TON_ENDTIME(MS)\
>> time_add_ns((MS) * NANOS_PER_MILLISEC)
>>
>>
>> static TON clockSyncTon_;
>>
>>
>> int
>> TON_ISDONE( struct timespec ts )
>> {
>> struct timespec now;
>> clock_gettime(CLOCK_MONOTONIC, &now);
>> if ( now.tv_sec > ts.tv_sec )
>> return 1;
>> else if ( now.tv_sec == ts.tv_sec
>> && now.tv_nsec >= ts.tv_nsec )
>> return 1;
>> else
>> return 0;
>> }
>>
>>
>> static bool
>> wait_period(RtaiMain* inst)
>> {
>>
>> int rc;
>> bool done = false;
>> while ( !done && inst->doScan && runAll_ )
>> {
>> rc = clock_nanosleep(CLOCK_MONOTONIC,
>> TIMER_ABSTIME,
>> &inst->wakeupTime,
>> NULL );
>>
>>
>> if ( rc == EFAULT )
>> {
>> return false;
>> }
>> else if ( rc == EINTR )
>> {
>> continue;
>> }
>> else if ( rc == EINVAL )
>> {
>> return false;
>> }
>> else
>> {
>> done = 1;
>> }
>> }
>> TIMESPEC_ADD_NS(inst->wakeupTime, inst->cycleNs);
>> return true;
>>
>> }
>>
>>
>> static void
>> cyclic_task(RtaiMain* inst)
>> {
>>
>> clock_gettime(CLOCK_MONOTONIC ,&(inst->wakeupTime));
>> /* start after one second */
>> inst->wakeupTime.tv_sec++;
>> wait_period(inst);
>>         while (runAll_ && inst->doScan)
>> {
>> //
>> // Trigger Fieldbus RX here.
>> //
>> //
>> ecrt_master_receive(master_);
>>
>>   // record the time we received the data so other parts of the program
>>   // have an accurate time reading
>>   globalTickTimeNs = ton_get_ns();
>>
>>   ecrt_domain_process(lrwDomainMgr_.domain);
>>   ecrt_domain_process(noLrwWriteDomainMgr_.domain);
>>   ecrt_domain_process(noLrwReadDomainMgr_.domain);
>>
>> if (counter_)
>> {
>>
>>     counter_—;
>>         }
>>        else
>>        {
>>     counter_ = 4000;
>>
>>     // check for master state
>>     check_master_state();
>>        }
>>
>>
>> … tick sub systems
>>
>>
>> //
>> // Trigger Fieldbus TX. This should be the last step
>> //
>> //
>> ecrt_domain_queue(lrwDomainMgr_.domain);
>> ecrt_domain_queue(noLrwWriteDomainMgr_.domain);
>> ecrt_domain_queue(noLrwReadDomainMgr_.domain);
>> clock_gettime(CLOCK_REALTIME, &dcTime_ );
>> ecrt_master_application_time(
>> master_,
>> TIMESPEC2NSEPOCH2000(dcTime_) );
>>
>>
>> if ( TON_ISDONE(clockSyncTon_) )
>> {
>> ecrt_master_sync_reference_clock(master_);
>> clockSyncTon_ = TON_ENDTIME(10);// milliseconds
>> }
>> ecrt_master_sync_slave_clocks(master_);
>>
>> // send EtherCAT data
>> ecrt_master_send(master_);
>>
>>
>> if ( !wait_period(inst) )
>> {
>> PRINT( "%s Error with waiting! Stopping cyclic_task.\n",
>> __FUNCTION__ );
>> inst->doScan = false;
>> }
>>      }
>>
>> }
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>> From: Graeme Foot <Graeme.Foot at touchcut.com
>> <mailto:Graeme.Foot at touchcut.com>>
>> Date: Sunday, February 21, 2016 at 4:07 PM
>> To: Thomas Bitsky <tbj at automateddesign.com <mailto:tbj at automateddesign.com>>
>> Cc: "etherlab-users at etherlab.org <mailto:etherlab-users at etherlab.org>"
>> <etherlab-users at etherlab.org <mailto:etherlab-users at etherlab.org>>
>> Subject: RE: Distributed Clocks
>>
>> Hi,
>>
>> I build and patch against revision 2526, so don’t know what patches /
>> fixes have made it through to the latest release.  However for my
>> revision I need fixes for reference clock selections and dc
>> synchronization issues.
>>
>> I’ve attached the dc related patches I use, but these are applied after
>> some other patches so you may get some conflicts or offsetting.
>>
>> *01 - Distributed Clock fixes and helpers.patch*
>>
>> This sorts out some ref slave issues, allowing a user selected ref
>> slave.  It also adds some helper functions:
>>
>> - ecrt_master_setup_domain_memory() : this allows me to set up the
>> domain memory and do stuff with it before calling ecrt_master_activate()
>> (for user space apps)
>>
>> - ecrt_master_deactivate_slaves() : this lets me deactivate the slaves
>> while still in realtime to avoid the slaves getting some shutdown sync
>> errors
>>
>> *02 - Distributed Clock fixes from Jun Yuan - dc sync issues.patch*
>>
>> This sorts out some timing issues to do with slave dc syncing.  Without
>> it they can start syncing from one cycle out causing a large syncing
>> time overhead, one slave at a time.
>>
>> Regards,
>>
>> Graeme.
>>
>> *From:*Thomas Bitsky Jr [mailto:tbj at automateddesign.com]
>> *Sent:* Sunday, 21 February 2016 10:27 a.m.
>> *To:* Graeme Foot
>> *Cc:* etherlab-users at etherlab.org <mailto:etherlab-users at etherlab.org>
>> *Subject:* Re: Distributed Clocks
>>
>> Graeme,
>>
>> Thank you so much for the detailed response. I'm away from my computer
>> right now, so I can't try out your advice, but I noticed you asked about
>> patches. I am not running any patches; which should I get?
>>
>> Thanks!
>> Thomas Bitsky Jr
>>
>> On Feb 20, 2016, at 3:04 PM, Graeme Foot <Graeme.Foot at touchcut.com
>> <mailto:Graeme.Foot at touchcut.com>> wrote:
>>
>>     Hi,
>>
>>     The slave clocks get synced via the distributed clock system using
>>     the master methods: ecrt_master_reference_clock_time(),
>>     ecrt_master_sync_slave_clocks(), ecrt_master_application_time(),
>>     ecrt_master_sync_reference_clock().
>>
>>     However each individual slave can choose (if it is capable of it)
>>     whether to synchronize its reading and writing of data to a
>>     particular point in time within the dc cycle.  If that slave does
>>     not choose to do so then the reading and writing of the data occurs
>>     at the time the EtherCAT frame goes past, resulting in a progressive
>>     update and application of data as the frame progresses through all
>>     of the slaves.
>>
>>     If a slave is registered to use the dc clock then it caches the
>>     frame data until the sync0 interrupt so in theory all dc slaves
>>     apply the data at the same time.  It also means you don’t have to
>>     worry about jitter as to the time the frame is sent over the wire.
>>     The only thing is to choose a good sync0 time to ensure your frames
>>     are always sent out and have reached all of the slaves before the
>>     sync0 time occurs, and that the next frame is not sent out before
>>     the previous sync0 time occurs.
>>
>>     In my application my cycle time is 1000us.  I choose a sync0 time of
>>     500us.  I also send my frame as close as possible to the beginning
>>     of the cycle. This gives the frame up to half the cycle time to
>>     reach all of the slaves and then the other half of the cycle for the
>>     frame to return in time for the master receive call.  I could choose
>>     a sync0 time later than 500us but I want it processed as soon as
>>     possible after the frame is received while still allowing for a bus
>>     with a large number of terminals.
>>
>>     So below where you are calculating loop_shift based on the current
>>     time is wrong.  Just choose a time within the dc cycle and use that
>>     value for all slaves.  Note: the beginning of the dc cycle is in
>>     phase with the first call to ecrt_master_application_time(), so all
>>     of your realtime looping should also be in phase with that initial time.
>>
>>     Note, when selecting a slave to be the DC reference slave you should
>>     generally choose the first slave on your bus, regardless of whether
>>     it will be (or can be) registered to use the dc synchronization.  At
>>     the very least it must be before, or be the, first slave that will
>>     be registered as a dc slave.
>>
>>     Also note that some slaves clocks are not very stable and shouldn’t
>>     be used as the DC reference slave.  My original testing was on a
>>     Beckhoff CX1020 with a CX1100-0004, this could not be used as a
>>     reference slave as its clock was not stable.
>>
>>     I see you are configuring the slaves via ecrt_slave_config_*()then
>>     calling ecrt_slave_config_pdos()at the end.  If you call
>>     ecrt_slave_config_pdos() at the beginning you don’t need all the
>>     other config calls. However I hear AKD drives and some other slaves
>>     prefer explicit slave config calls but most slaves are happy with
>>     just the ecrt_slave_config_reg_pdo_entry()methods.
>>
>>     This also leads to another issue.  One of the configured PDO items
>>     is the “mode of operation” value (0x6060 0x00).  You are also
>>     configuring this with: ecrt_slave_config_sdo8( sc, 0x6060, 0, 8 ).
>>     This value should be instead be set via the PDO value.  Use
>>     ecrt_slave_config_reg_pdo_entry()to get the offset to the value and
>>     set the value there.
>>
>>     Sorry if that was a bit long but DC’s is not an easy topic to get
>>     your head around.  Here’s a bit of a summary:
>>
>>     - You can choose which slaves get registered with
>>     ecrt_slave_config_dc(). But each slave you want synced must get its
>>     own call to ecrt_slave_config_dc().
>>
>>     - If your yaskawa drives get to OP without
>>     ecrt_slave_config_dc()then they should get to OP with
>>     ecrt_slave_config_dc().
>>
>>     - The yaskawa drives require a very stable reference slave time,
>>     which is why we sync the EtherCAT master to the reference slave
>>     rather than the other way around.
>>
>>     And some other comments:
>>
>>     - Never use anEL9010 endcap module.  These break the distributed
>>     clock calculations.  I don’t think they are available anymore though.
>>
>>     - There are some patches out there that fix various DC clock issues,
>>     are you using any of these?
>>
>>     Regards,
>>
>>     Graeme.
>>
>>     *From:*Thomas Bitsky Jr [mailto:tbj at automateddesign.com]
>>     *Sent:* Sunday, 21 February 2016 7:15 a.m.
>>     *To:* Graeme Foot; etherlab-users at etherlab.org
>>     <mailto:etherlab-users at etherlab.org>
>>     *Subject:* Re: Distributed Clocks
>>
>>     [snip]
>>
>>     I’ve never been able to get the EL7041 stepper modules to work in dc
>>     mode.
>>
>>     [/snip]
>>
>>     Is it all or nothing? I need the servo drives, the LVDT and the
>>     EL3356 tied to a distributed clock. The EL7041 is optional for me.
>>
>>     [snip]
>>
>>     I don’t see in your code calls to ecrt_slave_config_dc().
>>
>>     For the yaskawa drive, during the config stage, I use the following
>>     calls…
>>
>>     [/snip]
>>
>>     Forgot to put that part; my bad. This is what I had for the
>>     Yaskawa/AKD, although I was only doing it to one of the drives. I
>>     thought I was supposed to set up one distributed clock, and it
>>     became the master and handled the rest. Am I supposed to do this for
>>     all the cards, or do I select?
>>
>>     Yaskawa(AKD drive code is pretty much the same):
>>
>>        if (!(sc = ecrt_master_slave_config(
>>
>>                          master,
>>
>>     slavePosDomain,
>>
>>     slavePosIndex,
>>
>>     vendorId, productCode)))
>>
>>     {
>>
>>     return FALSE;
>>
>>          }
>>
>>     ecrt_slave_config_sdo8( sc, 0x1C12, 0, 0 ); /* clear sm pdo 0x1c12 */
>>
>>     ecrt_slave_config_sdo8( sc, 0x1C13, 0, 0 ); /* clear sm pdo 0x1c12 */
>>
>>     ecrt_slave_config_sdo8( sc, 0x1A00, 0, 0 ); /* clear TxPDO0 */
>>
>>     ecrt_slave_config_sdo8( sc, 0x1A01, 0, 0 ); /* clear TxPDO1 */
>>
>>     ecrt_slave_config_sdo8( sc, 0x1A02, 0, 0 ); /* clear TxPDO2 */
>>
>>     ecrt_slave_config_sdo8( sc, 0x1A03, 0, 0 ); /* clear TxPDO3 */
>>
>>     ecrt_slave_config_sdo8( sc, 0x1600, 0, 0 ); /* number of var in this
>>     PDO */
>>
>>     ecrt_slave_config_sdo8( sc, 0x1601, 0, 0 ); /* clear RxPdo 0x1601 */
>>
>>          ecrt_slave_config_sdo8( sc, 0x1602, 0, 0 ); /* clear RxPdo
>>     0x1602 */
>>
>>          ecrt_slave_config_sdo8( sc, 0x1603, 0, 0 ); /* clear RxPdo
>>     0x1603 */
>>
>>     ecrt_slave_config_sdo8( sc, 0x1A00, 0, 0 ); /* clear TxPDO0 */
>>
>>     ecrt_slave_config_sdo32( sc, 0x1A00, 1, 0x60410010 ); // Status word
>>
>>     ecrt_slave_config_sdo32( sc, 0x1A00, 2,0x60640020 );// Position
>>     actual value, per encoder
>>
>>     ecrt_slave_config_sdo32( sc, 0x1A00, 3,0x60770010 );// Torque,
>>     actual value
>>
>>     ecrt_slave_config_sdo32( sc, 0x1A00, 4,0x60F40020 );// Following
>>     error, actual value
>>
>>     ecrt_slave_config_sdo32( sc, 0x1A00, 5,0x60610008 );// Modes of
>>     operation display
>>
>>     ecrt_slave_config_sdo32( sc, 0x1A00, 6,0x00000008 );// GAP
>>
>>     ecrt_slave_config_sdo32( sc, 0x1A00, 7,0x60B90010 );// Touch probe
>>     status
>>
>>     ecrt_slave_config_sdo32( sc, 0x1A00, 8, 0x60BA0020 ); // Touch probe
>>     1 position
>>
>>     ecrt_slave_config_sdo8( sc, 0x1A00, 0, 8 ); /* pdo entries */
>>
>>     ecrt_slave_config_sdo8( sc, 0x1A01, 0, 0 ); /* clear TxPDO1 */
>>
>>     ecrt_slave_config_sdo32( sc, 0x1A01,1,0x60410010 ); // Status word
>>
>>     ecrt_slave_config_sdo32( sc, 0x1A01,2,0x60640020 );// Position
>>     actual value, per encoder
>>
>>     ecrt_slave_config_sdo8( sc, 0x1A01, 0, 2 ); /* pdo entries */
>>
>>     ecrt_slave_config_sdo8( sc, 0x1A02, 0, 0 ); /* clear TxPDO2 */
>>
>>     ecrt_slave_config_sdo32( sc, 0x1A02,1,0x60410010 ); // Status word
>>
>>     ecrt_slave_config_sdo32( sc, 0x1A02,2,0x60640020 );// Position
>>     actual value, per encoder
>>
>>     ecrt_slave_config_sdo8( sc, 0x1A02, 0, 2 ); /* pdo entries */
>>
>>     ecrt_slave_config_sdo8( sc, 0x1A03, 0, 0 ); /* clear TxPDO2 */
>>
>>     ecrt_slave_config_sdo32( sc, 0x1A03,1,0x60410010 ); // Status word
>>
>>     ecrt_slave_config_sdo32( sc, 0x1A03,2,0x60640020 );// Position
>>     actual value, per encoder
>>
>>     ecrt_slave_config_sdo32( sc, 0x1A03,3,0x60770010 );// Torque, actual
>>     value
>>
>>     ecrt_slave_config_sdo8( sc, 0x1A03, 0, 3 ); /* pdo entries */
>>
>>     ecrt_slave_config_sdo8( sc, 0x1600, 0, 0 ); /* clear entries */
>>
>>     ecrt_slave_config_sdo32( sc, 0x1600, 1, 0x60400010  ); /* control
>>     word */
>>
>>     ecrt_slave_config_sdo32( sc, 0x1600, 2, 0x607A0020  ); /* target
>>     position */
>>
>>     ecrt_slave_config_sdo32( sc, 0x1600, 3, 0x60FF0020  ); /* target
>>     velocity */
>>
>>     ecrt_slave_config_sdo32( sc, 0x1600, 4, 0x60710010  ); /* target
>>     torque */
>>
>>     ecrt_slave_config_sdo32( sc, 0x1600, 5, 0x60720010  ); /* max torque */
>>
>>     ecrt_slave_config_sdo32( sc, 0x1600, 6, 0x60600008  ); /* modes of
>>     operation */
>>
>>     ecrt_slave_config_sdo32( sc, 0x1600, 7, 0x00000008  ); /* gap */
>>
>>     ecrt_slave_config_sdo32( sc, 0x1600, 8, 0x60B80010  ); /* touch
>>     probe function */
>>
>>     ecrt_slave_config_sdo8(sc, 0x1600, 0, 8 ); /* pdo entries */
>>
>>     ecrt_slave_config_sdo8( sc, 0x1601, 0, 0 ); /* clear entries */
>>
>>     ecrt_slave_config_sdo32( sc, 0x1601, 1, 0x60400010  ); /* control
>>     word */
>>
>>     ecrt_slave_config_sdo32( sc, 0x1601, 2, 0x607A0020  ); /* target
>>     position */
>>
>>     ecrt_slave_config_sdo8( sc, 0x1601, 0, 2 ); /* pdo entries */
>>
>>     ecrt_slave_config_sdo8( sc, 0x1602, 0, 0 ); /* clear entries */
>>
>>     ecrt_slave_config_sdo32( sc, 0x1602, 1, 0x60400010  ); /* control
>>     word */
>>
>>     ecrt_slave_config_sdo32( sc, 0x1602, 2, 0x60FF0020  ); /* target
>>     position */
>>
>>     ecrt_slave_config_sdo8( sc, 0x1602, 0, 2 ); /* pdo entries */
>>
>>     ecrt_slave_config_sdo8( sc, 0x1603, 0, 0 ); /* clear entries */
>>
>>     ecrt_slave_config_sdo32( sc, 0x1603, 1, 0x60400010  ); /* control
>>     word */
>>
>>     ecrt_slave_config_sdo32( sc, 0x1603, 2, 0x60710020  ); /* target
>>     position */
>>
>>     ecrt_slave_config_sdo8( sc, 0x1603, 0, 2 ); /* pdo entries */
>>
>>     ecrt_slave_config_sdo16( sc, 0x1C12, 1, 0x1601 ); /* download pdo
>>     1C12 index */
>>
>>     ecrt_slave_config_sdo8( sc, 0x1C12, 0, 1 ); /* set number of RxPDO */
>>
>>     ecrt_slave_config_sdo16( sc, 0x1C13, 1, 0x1A01 ); /* download pdo
>>     1C13 index */
>>
>>     ecrt_slave_config_sdo8( sc, 0x1C13, 0, 1 ); /* set number of TxPDO */
>>
>>     // OPMODE
>>
>>     // Yaskawa recommends 8
>>
>>     ecrt_slave_config_sdo8( sc, 0x6060, 0, 8 );
>>
>>     unsigned char interpolationTime = 0xFF;
>>
>>     // 250
>>
>>     unsigned char cycleExponent = 0xFA;
>>
>>     // microseconds
>>
>>     // globalSCanRate_us equals either 250 or 125.
>>
>>     unsigned int us = globalScanRate_us;
>>
>>     size_t i;
>>
>>     for ( i=0;i<6, us > 0xFF;++i )
>>
>>     {
>>
>>     us /= 10;
>>
>>     cycleExponent += 1;
>>
>>     }
>>
>>     interpolationTime = us;
>>
>>     ecrt_slave_config_sdo8( akd->sc_akd, 0x60C2, 1, interpolationTime );
>>     /* Interpolation time */
>>
>>     ecrt_slave_config_sdo8( akd->sc_akd, 0x60C2, 2, cycleExponent ); /*
>>     Cycle exponent */
>>
>>          PRINT("Configuring PDOs...\n");
>>
>>          if (ecrt_slave_config_pdos(sc, EC_END, slave_syncs))
>>
>>     {
>>
>>     PRINT("Failed to configure Yaskawa Sigma PDOs.\n");
>>
>>              return FALSE;
>>
>>          }
>>
>>     *struct timespec cur_time;*
>>
>>     *clock_gettime(CLOCK_REALTIME, &cur_time);*
>>
>>     *size_t loop_period = globalScanRate_us * 1000;*
>>
>>     *if ( loop_period == 0 ) loop_period = 1;*
>>
>>     *size_t loop_shift *
>>
>>     *= loop_period - (cur_time.tv_nsec % loop_period);*
>>
>>     *ecrt_slave_config_dc(*
>>
>>     *sc, *
>>
>>     *0x0300, *
>>
>>     *loop_period, *
>>
>>     *loop_shift, *
>>
>>     *0, *
>>
>>     *0);*
>>
>>     For the EL3356, would I then?
>>
>>     KL3356StrainGauge* sg = (KL3356StrainGauge*)slave->instance;
>>
>>     printf( "Begin kl3356_ecConfigure...\n");
>>
>>     //
>>
>>     // Create the slave configuration
>>
>>     //
>>
>>     if (!(sg->sc = ecrt_master_slave_config(
>>
>>     master,
>>
>>     slavePosDomain, slavePosIndex, // Bus position
>>
>>     vendorId, productCode
>>
>>     // Slave type
>>
>>     )))
>>
>>     {
>>
>>     printf(
>>
>>     "kl3356_ecConfigure -- Failed to get slave configuration.\n");
>>
>>         return FALSE;
>>
>>     }
>>
>>     //
>>
>>     // Register startup configuration for the hardware
>>
>>     //
>>
>>     ecrt_slave_config_sdo8( sg->sc, 0x1C12, 0, 0 ); /* clear sm pdo
>>     0x1c12 */
>>
>>     ecrt_slave_config_sdo8( sg->sc, 0x1C13, 0, 0 ); /* clear sm pdo
>>     0x1c12 */
>>
>>     ecrt_slave_config_sdo16( sg->sc, 0x1C12, 1, 0x1600 ); /* download
>>     pdo 1C12 index */
>>
>>     ecrt_slave_config_sdo8( sg->sc, 0x1C12, 0, 1 ); /* set number of
>>     RxPDO */
>>
>>     ecrt_slave_config_sdo16( sg->sc, 0x1C13, 1, 0x1A00 ); /* download
>>     pdo 1C13 index */
>>
>>     ecrt_slave_config_sdo16( sg->sc, 0x1C13, 2, 0x1A02 ); /* download
>>     pdo 1C13 index */
>>
>>     ecrt_slave_config_sdo8( sg->sc, 0x1C13, 0, 2 ); /* set number of
>>     TxPDO */
>>
>>     //
>>
>>     // Configure the hardware's PDOs
>>
>>     //
>>
>>     if (ecrt_slave_config_pdos(sg->sc, EC_END, kl3356_syncs))
>>
>>     {
>>
>>         printf(
>>
>>     "kl3356_ecConfigure -- Failed to configure PDOs.\n");
>>
>>         return FALSE;
>>
>>          }
>>
>>     *struct timespec cur_time;*
>>
>>     *clock_gettime(CLOCK_REALTIME, &cur_time);*
>>
>>     *size_t loop_period = globalScanRate_us * 1000;*
>>
>>     *if ( loop_period == 0 ) loop_period = 1;*
>>
>>     *size_t loop_shift *
>>
>>     *= loop_period - (cur_time.tv_nsec % loop_period);*
>>
>>     *ecrt_slave_config_dc(*
>>
>>     *s**g->sc, *
>>
>>     *0x0300, *
>>
>>     *loop_period, *
>>
>>     *loop_shift, *
>>
>>     *0, *
>>
>>     *0);*
>>
>>     Thanks!
>>
>>     Thomas C. Bitsky Jr. | Lead Developer
>>
>>     ADC | automateddesign.com <http://automateddesign.com/>
>>
>>     P: 630-783-1150 F: 630-783-1159 M: 630-632-6679
>>
>>     Follow ADC news and media:
>>
>>     Facebook <https://facebook.com/automateddesigncorp> | Twitter
>>     <https://twitter.com/ADCSportsLogic> | YouTube
>>     <https://www.youtube.com/user/ADCSportsLogic>
>>
>>     *From: *Graeme Foot <Graeme.Foot at touchcut.com
>>     <mailto:Graeme.Foot at touchcut.com>>
>>     *Date: *Friday, February 19, 2016 at 7:24 PM
>>     *To: *Thomas Bitsky <tbj at automateddesign.com
>>     <mailto:tbj at automateddesign.com>>, "etherlab-users at etherlab.org
>>     <mailto:etherlab-users at etherlab.org>" <etherlab-users at etherlab.org
>>     <mailto:etherlab-users at etherlab.org>>
>>     *Subject: *RE: Distributed Clocks
>>
>>     Hi,
>>
>>     I don’t see in your code calls to ecrt_slave_config_dc().
>>
>>     For the yaskawa drive, during the config stage, I use the following
>>     calls:
>>
>>          // set interpolation time period (free run mode)
>>
>>          // where 0x60C2 is time in seconds = (0x60C2, 0x01) x
>>     10^(0x60C2, 0x02)
>>
>>          // eg period of 1ms:
>>
>>          //   (0x60C2, 0x01) = 1
>>
>>          //   (0x60C2, 0x02) = -3
>>
>>          // => 1 x 10^(-3) = 0.001s
>>
>>          ecrt_slave_config_sdo8(dev->slaveConfig, 0x60C2, 0x01,
>>     (uint8_t)g_app.scanTimeMS);
>>
>>          ecrt_slave_config_sdo8(dev->slaveConfig, 0x60C2, 0x02,
>>     (int8_t)(-3));
>>
>>          // set up the distributed clock
>>
>>          // 0x0000 = free run, 0x0300 = dc
>>
>>          // (Supported DC cycle: 125us to 4ms (every 125us cycle))
>>
>>          ecrt_slave_config_dc(dev->slaveConfig, 0x0300,
>>     g_app.scanTimeNS, 500000, 0, 0);
>>
>>     0x60C2 shouldn’t be necessary for dc mode, but I used it before I
>>     had dc mode working and have never tried it without and it doesn’t
>>     harm anything having it in.
>>
>>     The second value that is being passed to the
>>     ecrt_slave_config_dcmethod is a value that is written to the ESC
>>     register 0x980. The Yaskawa SGDV doco says this value should be
>>     0x0000 for free run mode and 0x0300 for dc mode.  Other ESC’s may
>>     required different values.
>>
>>     I’ve never been able to get the EL7041 stepper modules to work in dc
>>     mode.
>>
>>     Graeme.
>>
>>     *From:*etherlab-users [mailto:etherlab-users-bounces at etherlab.org]
>>     *On Behalf Of *Thomas Bitsky Jr
>>     *Sent:* Saturday, 20 February 2016 1:09 p.m.
>>     *To:* etherlab-users at etherlab.org <mailto:etherlab-users at etherlab.org>
>>     *Subject:* [etherlab-users] Distributed Clocks
>>
>>     Hello.
>>
>>     I’ve been using the EtherCAT master for years to great success, but
>>     I’m stuck on a problem I can’t figure out that I think several
>>     people here are doing successfully. I can’t implement distributed
>>     clocks in my application.
>>
>>     I am having the same problem on two systems I have up and running:
>>
>>     SYSTEM ONE:
>>
>>     EtherLAB Master 1.52, E1000E Driver, Scan Rate 4Khz, Ubuntu Server
>>     14.04LTS, RT-PREEMPT 3.12.50-rt68
>>
>>     alias=0, position=0, device=EK1100
>>
>>     alias=0, position=1, device=EL1104
>>
>>     alias=0, position=2, device=EL2004
>>
>>     alias=0, position=3, device=EL9510
>>
>>     alias=0, position=4, device=EL3356
>>
>>     alias=0, position=5, device=Kollmorgen AKD
>>
>>     alias=0, position=6, device=MTS LVDT
>>
>>     SYSTEM TWO:
>>
>>     EtherLAB Master 1.52, E1000E Driver, Scan Rate 8Khz, Ubuntu Server
>>     14.04LTS, RT-PREEMPT 3.12.50-rt68
>>
>>     alias=0, position=0, device=EK1100
>>
>>     alias=0, position=1, device=EL3001
>>
>>     alias=0, position=2, device=EL1104
>>
>>     alias=0, position=3, device=EL1104
>>
>>     alias=0, position=4, device=EL1104
>>
>>     alias=0, position=5, device=EL2004
>>
>>     alias=0, position=6, device=EL2004
>>
>>     alias=0, position=7, device=EL9505
>>
>>     alias=0, position=8, device=EL7041
>>
>>     alias=0, position=9, device=EL7041
>>
>>     alias=0, position=10, device=EL7041
>>
>>     alias=0, position=11, device=EL7041
>>
>>     alias=0, position=12, device=EL7041
>>
>>     alias=0, position=13, device=EL7041
>>
>>     alias=0, position=14, device=EK1110
>>
>>     alias=1, position=0, device=SIGMA5-05
>>
>>     alias=2, position=0, device=Yaskawa SIGMA5-05
>>
>>     alias=3, position=0, device=Yaskawa SIGMA5-05
>>
>>     Both of the system are fully operational. However, for various
>>     reasons, I need to implement distributed clocks on these systems.
>>     I’ve never been able to get this to work.
>>
>>     What follows is the code I used for both systems to try this. I read
>>     through examples on the mailing list, plus the examples, but I’m not
>>     seeing what I’m doing wrong. The result is always the same: all the
>>     fieldbus cards go into operation, but the servo drives won’t because
>>     of “bad configuration.” Take out the distributed clock code, and
>>     they work fine. I’m getting away with it for now, but I do need
>>     better clock resolution.
>>
>>     The systems have an LRW domain, then a separate read domain and
>>     write domain for the servo drive(s) for a total of three domains
>>     (LRW, read, write). The yaskawa drives necessitate this. The scan
>>     rate is usually 4Khz, but I have tried it at both 1Khz and 8Khz and
>>     gotten the same results. Everything about the implementation is
>>     fairly straight-forward. There’s just something fundamental about
>>     the DC configuration that I’m not understanding.
>>
>>     Almost all the code below is taken right from the examples or the
>>     message boards (thanks, everybody!). If anyone could tell me what
>>     I’m going wrong or offer any insights, it’s greatly appreciated. For
>>     brevity, I tried to narrow it down to relevant parts, but please let
>>     me know any additional information or code I can provide.
>>
>>     Thank you in advance,
>>
>>     Tom
>>
>>     **********************************************************
>>
>>     // EtherCAT distributed clock variables
>>
>>     #define DC_FILTER_CNT          1024
>>
>>     #define SYNC_MASTER_TO_REF        1
>>
>>     static uint64_t dc_start_time_ns = 0LL;
>>
>>     static uint64_t dc_time_ns = 0;
>>
>>     static uint8_t  dc_started = 0;
>>
>>     static int32_t  dc_diff_ns = 0;
>>
>>     static int32_t  prev_dc_diff_ns = 0;
>>
>>     static int64_t  dc_diff_total_ns = 0LL;
>>
>>     static int64_t  dc_delta_total_ns = 0LL;
>>
>>     static int      dc_filter_idx = 0;
>>
>>     static int64_t  dc_adjust_ns;
>>
>>     static int64_t  system_time_base = 0LL;
>>
>>     static uint64_t wakeup_time = 0LL;
>>
>>     static uint64_t overruns = 0LL;
>>
>>     /** Get the time in ns for the current cpu, adjusted by
>>     system_time_base.
>>
>>       *
>>
>>       * \attention Rather than calling rt_get_time_ns() directly, all
>>     application
>>
>>       * time calls should use this method instead.
>>
>>       *
>>
>>       * \ret The time in ns.
>>
>>       */
>>
>>     uint64_t system_time_ns(void)
>>
>>     {
>>
>>     struct timespec ts;
>>
>>     clock_gettime(GLOBAL_CLOCK_TO_USE, &ts);
>>
>>     return TIMESPEC2NS(ts);
>>
>>     }
>>
>>     static
>>
>>     void sync_distributed_clocks(void)
>>
>>     {
>>
>>          uint32_t ref_time = 0;
>>
>>          uint64_t prev_app_time = dc_time_ns;
>>
>>          dc_time_ns = system_time_ns();
>>
>>          // set master time in nano-seconds
>>
>>          ecrt_master_application_time(master_, dc_time_ns);
>>
>>          // get reference clock time to synchronize master cycle
>>
>>          ecrt_master_reference_clock_time(master_, &ref_time);
>>
>>          dc_diff_ns = (uint32_t) prev_app_time - ref_time;
>>
>>          // call to sync slaves to ref slave
>>
>>          ecrt_master_sync_slave_clocks(master_);
>>
>>     }
>>
>>     /** Return the sign of a number
>>
>>       *
>>
>>       * ie -1 for -ve value, 0 for 0, +1 for +ve value
>>
>>       *
>>
>>       * \retval the sign of the value
>>
>>       */
>>
>>     #define sign(val) \
>>
>>          ({ typeof (val) _val = (val); \
>>
>>          ((_val > 0) - (_val < 0)); })
>>
>>     /*****************************************************************************/
>>
>>     /** Update the master time based on ref slaves time diff
>>
>>       *
>>
>>       * called after the ethercat frame is sent to avoid time jitter in
>>
>>       * sync_distributed_clocks()
>>
>>       */
>>
>>     static unsigned int cycle_ns = 1000000;  // 1 millisecond
>>
>>     void update_master_clock(void)
>>
>>     {
>>
>>          // calc drift (via un-normalised time diff)
>>
>>          int32_t delta = dc_diff_ns - prev_dc_diff_ns;
>>
>>          prev_dc_diff_ns = dc_diff_ns;
>>
>>          // normalise the time diff
>>
>>          dc_diff_ns =
>>
>>              ((dc_diff_ns + (cycle_ns / 2)) % cycle_ns) - (cycle_ns / 2);
>>
>>          // only update if primary master
>>
>>          if (dc_started) {
>>
>>              // add to totals
>>
>>              dc_diff_total_ns += dc_diff_ns;
>>
>>              dc_delta_total_ns += delta;
>>
>>              dc_filter_idx++;
>>
>>              if (dc_filter_idx >= DC_FILTER_CNT) {
>>
>>                  // add rounded delta average
>>
>>                  dc_adjust_ns +=
>>
>>                      ((dc_delta_total_ns + (DC_FILTER_CNT / 2)) /
>>     DC_FILTER_CNT);
>>
>>                  // and add adjustment for general diff (to pull in drift)
>>
>>                  dc_adjust_ns += sign(dc_diff_total_ns / DC_FILTER_CNT);
>>
>>                  // limit crazy numbers (0.1% of std cycle time)
>>
>>                  if (dc_adjust_ns < -1000) {
>>
>>                      dc_adjust_ns = -1000;
>>
>>                  }
>>
>>                  if (dc_adjust_ns > 1000) {
>>
>>                      dc_adjust_ns =  1000;
>>
>>                  }
>>
>>                  // reset
>>
>>                  dc_diff_total_ns = 0LL;
>>
>>                  dc_delta_total_ns = 0LL;
>>
>>                  dc_filter_idx = 0;
>>
>>              }
>>
>>              // add cycles adjustment to time base (including a spot
>>     adjustment)
>>
>>              system_time_base += dc_adjust_ns + sign(dc_diff_ns);
>>
>>          }
>>
>>          else {
>>
>>              dc_started = (dc_diff_ns != 0);
>>
>>              if (dc_started)
>>
>>     {
>>
>>                  // record the time of this initial cycle
>>
>>                  dc_start_time_ns = dc_time_ns;
>>
>>              }
>>
>>          }
>>
>>     }
>>
>>     struct timespec dcTime_;
>>
>>     int
>>
>>     ecatMain_process(void* lp)
>>
>>     {
>>
>>     ecrt_master_receive(master_);
>>
>>     clock_gettime(CLOCK_REALTIME, &dcTime_);
>>
>>     ecrt_master_application_time(master_, TIMESPEC2NS(dcTime_));
>>
>>     ecrt_master_sync_reference_clock(master_);
>>
>>     ecrt_master_sync_slave_clocks(master_);
>>
>>     ecrt_domain_process(lrwDomainMgr_.domain);
>>
>>     ecrt_domain_process(noLrwWriteDomainMgr_.domain);
>>
>>     ecrt_domain_process(noLrwReadDomainMgr_.domain);
>>
>>     … // handle my business
>>
>>     // write application time to master
>>
>>     clock_gettime(CLOCK_REALTIME, &dcTime_);
>>
>>     ecrt_master_application_time(master_, TIMESPEC2NS(dcTime_));
>>
>>     if (sync_ref_counter_)
>>
>>     {
>>
>>     sync_ref_counter_--;
>>
>>     }
>>
>>     else
>>
>>     {
>>
>>     sync_ref_counter_ = 1; // sync every cycle
>>
>>     ecrt_master_sync_reference_clock(master_);
>>
>>     }
>>
>>     // send process data
>>
>>     ecrt_domain_queue(lrwDomainMgr_.domain);
>>
>>     ecrt_domain_queue(noLrwWriteDomainMgr_.domain);
>>
>>     ecrt_domain_queue(noLrwReadDomainMgr_.domain);
>>
>>     // sync distributed clock just before master_send to set
>>
>>     // most accurate master clock time
>>
>>     sync_distributed_clocks();
>>
>>     // send EtherCAT data
>>
>>     ecrt_master_send(master_);
>>
>>     // update the master clock
>>
>>     // Note: called after ecrt_master_send() to reduce time
>>
>>     // jitter in the sync_distributed_clocks() call
>>
>>     update_master_clock();
>>
>>     return 1;
>>
>>     }
>>
>>     int
>>
>>     ecatMain_start(void* lp)
>>
>>     {
>>
>>     //
>>
>>     // domain regs must end in a null entry
>>
>>     //
>>
>>     lrwDomainMgr_.domainRegs = realloc(
>>
>>     lrwDomainMgr_.domainRegs,
>>
>>     sizeof(ec_pdo_entry_reg_t) * (lrwDomainMgr_.size + 1)  );
>>
>>     memset(
>>
>>     &(lrwDomainMgr_.domainRegs[lrwDomainMgr_.size]),
>>
>>     0,
>>
>>     sizeof(ec_pdo_entry_reg_t) );
>>
>>     noLrwReadDomainMgr_.domainRegs = realloc(
>>
>>     noLrwReadDomainMgr_.domainRegs,
>>
>>     sizeof(ec_pdo_entry_reg_t) * (noLrwReadDomainMgr_.size + 1)  );
>>
>>     memset(
>>
>>     &(noLrwReadDomainMgr_.domainRegs[noLrwReadDomainMgr_.size]),
>>
>>     0,
>>
>>     sizeof(ec_pdo_entry_reg_t) );
>>
>>     noLrwWriteDomainMgr_.domainRegs = realloc(
>>
>>     noLrwWriteDomainMgr_.domainRegs,
>>
>>     sizeof(ec_pdo_entry_reg_t) * (noLrwWriteDomainMgr_.size + 1)  );
>>
>>     memset(
>>
>>     &(noLrwWriteDomainMgr_.domainRegs[noLrwWriteDomainMgr_.size]),
>>
>>     0,
>>
>>     sizeof(ec_pdo_entry_reg_t) );
>>
>>     //
>>
>>     // NOTE: the Output Domain must be registered with
>>
>>     // ecrt_domain_reg_pdo_entry_list before the Input Domain otherwise you
>>
>>     // will not have any data exchanged even though the drive goes into OP
>>
>>     // mode.
>>
>>     //
>>
>>     PRINT("\nAttempting to register PDOs on WRITE ONLY domain...\n");
>>
>>     if (ecrt_domain_reg_pdo_entry_list(
>>
>>     noLrwWriteDomainMgr_.domain, noLrwWriteDomainMgr_.domainRegs))
>>
>>     {
>>
>>     PRINT("WRITE ONLY PDO entry registration failed!\n");
>>
>>     return FALSE;
>>
>>          }
>>
>>     PRINT("\nAttempting to register PDOs on READ ONLY domain...\n");
>>
>>     if (ecrt_domain_reg_pdo_entry_list(
>>
>>     noLrwReadDomainMgr_.domain, noLrwReadDomainMgr_.domainRegs))
>>
>>     {
>>
>>     PRINT("READ ONLY PDO entry registration failed!\n");
>>
>>     return FALSE;
>>
>>       }
>>
>>     //
>>
>>     // And now we register the bi-directional domain.
>>
>>     //
>>
>>     PRINT("\nAttempting to register PDOs on LRW domain...\n");
>>
>>     if (ecrt_domain_reg_pdo_entry_list(
>>
>>     lrwDomainMgr_.domain, lrwDomainMgr_.domainRegs))
>>
>>     {
>>
>>     PRINT("LRW PDO entry registration failed!\n");
>>
>>     return FALSE;
>>
>>          }
>>
>>     /*
>>
>>     * Finishes the configuration phase and prepares for cyclic operation.
>>
>>     * This function tells the master that the configuration phase
>>
>>     * is finished and the realtime operation will begin.
>>
>>     * The function allocates internal memory for the domains and calculates
>>
>>     * the logical FMMU addresses for domain members.
>>
>>     * It tells the master state machine that the bus configuration is
>>
>>     * now to be applied
>>
>>     */
>>
>>     PRINT("\nAttempting to activate ECAT master...\n");
>>
>>     if (ecrt_master_activate(master_))
>>
>>     {
>>
>>     PRINT(
>>
>>     "%s Failed to activate master!\n",
>>
>>     __FUNCTION__ );
>>
>>     return FALSE;
>>
>>     }
>>
>>     /*
>>
>>     * Returns the domain's process data.
>>
>>     */
>>
>>     PRINT( "%s getting LRW process data from master.\n", __FUNCTION__ );
>>
>>     if (!(lrwDomainMgr_.processData
>>
>>     = ecrt_domain_data(lrwDomainMgr_.domain)))
>>
>>     {
>>
>>     PRINT(
>>
>>     "%s set ecProcessData -- domain data is NULL!\n",
>>
>>     __FUNCTION__ );
>>
>>     return FALSE;
>>
>>       }
>>
>>     if (!(noLrwReadDomainMgr_.processData
>>
>>     = ecrt_domain_data(noLrwReadDomainMgr_.domain)))
>>
>>     {
>>
>>     PRINT(
>>
>>     "%s set read ProcessData -- domain data is NULL!\n",
>>
>>     __FUNCTION__ );
>>
>>     return FALSE;
>>
>>          }
>>
>>     if (!(noLrwWriteDomainMgr_.processData
>>
>>     = ecrt_domain_data(noLrwWriteDomainMgr_.domain)))
>>
>>     {
>>
>>     PRINT(
>>
>>     "%s set write ProcessData -- domain data is NULL!\n",
>>
>>     __FUNCTION__ );
>>
>>     return FALSE;
>>
>>          }
>>
>>     … // blah blah blah
>>
>>     doScan_ = TRUE;
>>
>>     PRINT( "%s completed successfully.\n", __FUNCTION__ );
>>
>>     return TRUE;
>>
>>     }
>>
>>
>>
>> _______________________________________________
>> etherlab-users mailing list
>> etherlab-users at etherlab.org
>> http://lists.etherlab.org/mailman/listinfo/etherlab-users
>>
>_______________________________________________
>etherlab-users mailing list
>etherlab-users at etherlab.org
>http://lists.etherlab.org/mailman/listinfo/etherlab-users


More information about the Etherlab-users mailing list