[etherlab-dev] e1000e driver for 3.2.x kernel
Jürgen Kunz
kunz at sim.tu-darmstadt.de
Thu May 24 13:57:21 CEST 2012
Hello.
Attached you'll find the e1000e driver for 3.2.x kernel versions. I've
tested it on a 64-bit Debian Squeeze with 3.2.0-rt backports kernel (=
RT-Preempt). To use it with the backports kernel, you'll need to call
configure with "--enable-e1000e --with-e1000e-kernel=3.2.0".
Best regards,
Jürgen Kunz
--
Dipl.-Inform. Jürgen Kunz
Technische Universität Darmstadt <http://www.tu-darmstadt.de>
FG Simulation, Systemoptimierung und Robotik
<http://www.sim.tu-darmstadt.de>
Hochschulstr. 10
64289 Darmstadt
Tel.: ++49 (0) 6151-16-70383
Fax: ++49 (0) 6151-16-6648
E-Mail: kunz(at)sim.tu-darmstadt.de
Homepage: http://www.sim.tu-darmstadt.de
-------------- n?chster Teil --------------
Ein Dateianhang mit HTML-Daten wurde abgetrennt...
URL: <http://lists.etherlab.org/pipermail/etherlab-dev/attachments/20120524/16ee87ff/attachment-0001.htm>
-------------- n?chster Teil --------------
/*******************************************************************************
Intel PRO/1000 Linux driver
Copyright(c) 1999 - 2011 Intel Corporation.
This program is free software; you can redistribute it and/or modify it
under the terms and conditions of the GNU General Public License,
version 2, as published by the Free Software Foundation.
This program is distributed in the hope it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
The full GNU General Public License is included in this distribution in
the file called "COPYING".
Contact Information:
Linux NICS <linux.nics at intel.com>
e1000-devel Mailing List <e1000-devel at lists.sourceforge.net>
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*******************************************************************************/
#ifndef _E1000_HW_H_
#define _E1000_HW_H_
#include <linux/types.h>
struct e1000_hw;
struct e1000_adapter;
#include "defines-3.2.0-ethercat.h"
#define er32(reg) __er32(hw, E1000_##reg)
#define ew32(reg,val) __ew32(hw, E1000_##reg, (val))
#define e1e_flush() er32(STATUS)
#define E1000_WRITE_REG_ARRAY(a, reg, offset, value) \
(writel((value), ((a)->hw_addr + reg + ((offset) << 2))))
#define E1000_READ_REG_ARRAY(a, reg, offset) \
(readl((a)->hw_addr + reg + ((offset) << 2)))
enum e1e_registers {
E1000_CTRL = 0x00000, /* Device Control - RW */
E1000_STATUS = 0x00008, /* Device Status - RO */
E1000_EECD = 0x00010, /* EEPROM/Flash Control - RW */
E1000_EERD = 0x00014, /* EEPROM Read - RW */
E1000_CTRL_EXT = 0x00018, /* Extended Device Control - RW */
E1000_FLA = 0x0001C, /* Flash Access - RW */
E1000_MDIC = 0x00020, /* MDI Control - RW */
E1000_SCTL = 0x00024, /* SerDes Control - RW */
E1000_FCAL = 0x00028, /* Flow Control Address Low - RW */
E1000_FCAH = 0x0002C, /* Flow Control Address High -RW */
E1000_FEXTNVM4 = 0x00024, /* Future Extended NVM 4 - RW */
E1000_FEXTNVM = 0x00028, /* Future Extended NVM - RW */
E1000_FCT = 0x00030, /* Flow Control Type - RW */
E1000_VET = 0x00038, /* VLAN Ether Type - RW */
E1000_ICR = 0x000C0, /* Interrupt Cause Read - R/clr */
E1000_ITR = 0x000C4, /* Interrupt Throttling Rate - RW */
E1000_ICS = 0x000C8, /* Interrupt Cause Set - WO */
E1000_IMS = 0x000D0, /* Interrupt Mask Set - RW */
E1000_IMC = 0x000D8, /* Interrupt Mask Clear - WO */
E1000_EIAC_82574 = 0x000DC, /* Ext. Interrupt Auto Clear - RW */
E1000_IAM = 0x000E0, /* Interrupt Acknowledge Auto Mask */
E1000_IVAR = 0x000E4, /* Interrupt Vector Allocation - RW */
E1000_EITR_82574_BASE = 0x000E8, /* Interrupt Throttling - RW */
#define E1000_EITR_82574(_n) (E1000_EITR_82574_BASE + (_n << 2))
E1000_RCTL = 0x00100, /* Rx Control - RW */
E1000_FCTTV = 0x00170, /* Flow Control Transmit Timer Value - RW */
E1000_TXCW = 0x00178, /* Tx Configuration Word - RW */
E1000_RXCW = 0x00180, /* Rx Configuration Word - RO */
E1000_TCTL = 0x00400, /* Tx Control - RW */
E1000_TCTL_EXT = 0x00404, /* Extended Tx Control - RW */
E1000_TIPG = 0x00410, /* Tx Inter-packet gap -RW */
E1000_AIT = 0x00458, /* Adaptive Interframe Spacing Throttle -RW */
E1000_LEDCTL = 0x00E00, /* LED Control - RW */
E1000_EXTCNF_CTRL = 0x00F00, /* Extended Configuration Control */
E1000_EXTCNF_SIZE = 0x00F08, /* Extended Configuration Size */
E1000_PHY_CTRL = 0x00F10, /* PHY Control Register in CSR */
#define E1000_POEMB E1000_PHY_CTRL /* PHY OEM Bits */
E1000_PBA = 0x01000, /* Packet Buffer Allocation - RW */
E1000_PBS = 0x01008, /* Packet Buffer Size */
E1000_EEMNGCTL = 0x01010, /* MNG EEprom Control */
E1000_EEWR = 0x0102C, /* EEPROM Write Register - RW */
E1000_FLOP = 0x0103C, /* FLASH Opcode Register */
E1000_PBA_ECC = 0x01100, /* PBA ECC Register */
E1000_ERT = 0x02008, /* Early Rx Threshold - RW */
E1000_FCRTL = 0x02160, /* Flow Control Receive Threshold Low - RW */
E1000_FCRTH = 0x02168, /* Flow Control Receive Threshold High - RW */
E1000_PSRCTL = 0x02170, /* Packet Split Receive Control - RW */
E1000_RDBAL = 0x02800, /* Rx Descriptor Base Address Low - RW */
E1000_RDBAH = 0x02804, /* Rx Descriptor Base Address High - RW */
E1000_RDLEN = 0x02808, /* Rx Descriptor Length - RW */
E1000_RDH = 0x02810, /* Rx Descriptor Head - RW */
E1000_RDT = 0x02818, /* Rx Descriptor Tail - RW */
E1000_RDTR = 0x02820, /* Rx Delay Timer - RW */
E1000_RXDCTL_BASE = 0x02828, /* Rx Descriptor Control - RW */
#define E1000_RXDCTL(_n) (E1000_RXDCTL_BASE + (_n << 8))
E1000_RADV = 0x0282C, /* Rx Interrupt Absolute Delay Timer - RW */
/* Convenience macros
*
* Note: "_n" is the queue number of the register to be written to.
*
* Example usage:
* E1000_RDBAL_REG(current_rx_queue)
*
*/
#define E1000_RDBAL_REG(_n) (E1000_RDBAL + (_n << 8))
E1000_KABGTXD = 0x03004, /* AFE Band Gap Transmit Ref Data */
E1000_TDBAL = 0x03800, /* Tx Descriptor Base Address Low - RW */
E1000_TDBAH = 0x03804, /* Tx Descriptor Base Address High - RW */
E1000_TDLEN = 0x03808, /* Tx Descriptor Length - RW */
E1000_TDH = 0x03810, /* Tx Descriptor Head - RW */
E1000_TDT = 0x03818, /* Tx Descriptor Tail - RW */
E1000_TIDV = 0x03820, /* Tx Interrupt Delay Value - RW */
E1000_TXDCTL_BASE = 0x03828, /* Tx Descriptor Control - RW */
#define E1000_TXDCTL(_n) (E1000_TXDCTL_BASE + (_n << 8))
E1000_TADV = 0x0382C, /* Tx Interrupt Absolute Delay Val - RW */
E1000_TARC_BASE = 0x03840, /* Tx Arbitration Count (0) */
#define E1000_TARC(_n) (E1000_TARC_BASE + (_n << 8))
E1000_CRCERRS = 0x04000, /* CRC Error Count - R/clr */
E1000_ALGNERRC = 0x04004, /* Alignment Error Count - R/clr */
E1000_SYMERRS = 0x04008, /* Symbol Error Count - R/clr */
E1000_RXERRC = 0x0400C, /* Receive Error Count - R/clr */
E1000_MPC = 0x04010, /* Missed Packet Count - R/clr */
E1000_SCC = 0x04014, /* Single Collision Count - R/clr */
E1000_ECOL = 0x04018, /* Excessive Collision Count - R/clr */
E1000_MCC = 0x0401C, /* Multiple Collision Count - R/clr */
E1000_LATECOL = 0x04020, /* Late Collision Count - R/clr */
E1000_COLC = 0x04028, /* Collision Count - R/clr */
E1000_DC = 0x04030, /* Defer Count - R/clr */
E1000_TNCRS = 0x04034, /* Tx-No CRS - R/clr */
E1000_SEC = 0x04038, /* Sequence Error Count - R/clr */
E1000_CEXTERR = 0x0403C, /* Carrier Extension Error Count - R/clr */
E1000_RLEC = 0x04040, /* Receive Length Error Count - R/clr */
E1000_XONRXC = 0x04048, /* XON Rx Count - R/clr */
E1000_XONTXC = 0x0404C, /* XON Tx Count - R/clr */
E1000_XOFFRXC = 0x04050, /* XOFF Rx Count - R/clr */
E1000_XOFFTXC = 0x04054, /* XOFF Tx Count - R/clr */
E1000_FCRUC = 0x04058, /* Flow Control Rx Unsupported Count- R/clr */
E1000_PRC64 = 0x0405C, /* Packets Rx (64 bytes) - R/clr */
E1000_PRC127 = 0x04060, /* Packets Rx (65-127 bytes) - R/clr */
E1000_PRC255 = 0x04064, /* Packets Rx (128-255 bytes) - R/clr */
E1000_PRC511 = 0x04068, /* Packets Rx (255-511 bytes) - R/clr */
E1000_PRC1023 = 0x0406C, /* Packets Rx (512-1023 bytes) - R/clr */
E1000_PRC1522 = 0x04070, /* Packets Rx (1024-1522 bytes) - R/clr */
E1000_GPRC = 0x04074, /* Good Packets Rx Count - R/clr */
E1000_BPRC = 0x04078, /* Broadcast Packets Rx Count - R/clr */
E1000_MPRC = 0x0407C, /* Multicast Packets Rx Count - R/clr */
E1000_GPTC = 0x04080, /* Good Packets Tx Count - R/clr */
E1000_GORCL = 0x04088, /* Good Octets Rx Count Low - R/clr */
E1000_GORCH = 0x0408C, /* Good Octets Rx Count High - R/clr */
E1000_GOTCL = 0x04090, /* Good Octets Tx Count Low - R/clr */
E1000_GOTCH = 0x04094, /* Good Octets Tx Count High - R/clr */
E1000_RNBC = 0x040A0, /* Rx No Buffers Count - R/clr */
E1000_RUC = 0x040A4, /* Rx Undersize Count - R/clr */
E1000_RFC = 0x040A8, /* Rx Fragment Count - R/clr */
E1000_ROC = 0x040AC, /* Rx Oversize Count - R/clr */
E1000_RJC = 0x040B0, /* Rx Jabber Count - R/clr */
E1000_MGTPRC = 0x040B4, /* Management Packets Rx Count - R/clr */
E1000_MGTPDC = 0x040B8, /* Management Packets Dropped Count - R/clr */
E1000_MGTPTC = 0x040BC, /* Management Packets Tx Count - R/clr */
E1000_TORL = 0x040C0, /* Total Octets Rx Low - R/clr */
E1000_TORH = 0x040C4, /* Total Octets Rx High - R/clr */
E1000_TOTL = 0x040C8, /* Total Octets Tx Low - R/clr */
E1000_TOTH = 0x040CC, /* Total Octets Tx High - R/clr */
E1000_TPR = 0x040D0, /* Total Packets Rx - R/clr */
E1000_TPT = 0x040D4, /* Total Packets Tx - R/clr */
E1000_PTC64 = 0x040D8, /* Packets Tx (64 bytes) - R/clr */
E1000_PTC127 = 0x040DC, /* Packets Tx (65-127 bytes) - R/clr */
E1000_PTC255 = 0x040E0, /* Packets Tx (128-255 bytes) - R/clr */
E1000_PTC511 = 0x040E4, /* Packets Tx (256-511 bytes) - R/clr */
E1000_PTC1023 = 0x040E8, /* Packets Tx (512-1023 bytes) - R/clr */
E1000_PTC1522 = 0x040EC, /* Packets Tx (1024-1522 Bytes) - R/clr */
E1000_MPTC = 0x040F0, /* Multicast Packets Tx Count - R/clr */
E1000_BPTC = 0x040F4, /* Broadcast Packets Tx Count - R/clr */
E1000_TSCTC = 0x040F8, /* TCP Segmentation Context Tx - R/clr */
E1000_TSCTFC = 0x040FC, /* TCP Segmentation Context Tx Fail - R/clr */
E1000_IAC = 0x04100, /* Interrupt Assertion Count */
E1000_ICRXPTC = 0x04104, /* Irq Cause Rx Packet Timer Expire Count */
E1000_ICRXATC = 0x04108, /* Irq Cause Rx Abs Timer Expire Count */
E1000_ICTXPTC = 0x0410C, /* Irq Cause Tx Packet Timer Expire Count */
E1000_ICTXATC = 0x04110, /* Irq Cause Tx Abs Timer Expire Count */
E1000_ICTXQEC = 0x04118, /* Irq Cause Tx Queue Empty Count */
E1000_ICTXQMTC = 0x0411C, /* Irq Cause Tx Queue MinThreshold Count */
E1000_ICRXDMTC = 0x04120, /* Irq Cause Rx Desc MinThreshold Count */
E1000_ICRXOC = 0x04124, /* Irq Cause Receiver Overrun Count */
E1000_RXCSUM = 0x05000, /* Rx Checksum Control - RW */
E1000_RFCTL = 0x05008, /* Receive Filter Control */
E1000_MTA = 0x05200, /* Multicast Table Array - RW Array */
E1000_RAL_BASE = 0x05400, /* Receive Address Low - RW */
#define E1000_RAL(_n) (E1000_RAL_BASE + ((_n) * 8))
#define E1000_RA (E1000_RAL(0))
E1000_RAH_BASE = 0x05404, /* Receive Address High - RW */
#define E1000_RAH(_n) (E1000_RAH_BASE + ((_n) * 8))
E1000_VFTA = 0x05600, /* VLAN Filter Table Array - RW Array */
E1000_WUC = 0x05800, /* Wakeup Control - RW */
E1000_WUFC = 0x05808, /* Wakeup Filter Control - RW */
E1000_WUS = 0x05810, /* Wakeup Status - RO */
E1000_MANC = 0x05820, /* Management Control - RW */
E1000_FFLT = 0x05F00, /* Flexible Filter Length Table - RW Array */
E1000_HOST_IF = 0x08800, /* Host Interface */
E1000_KMRNCTRLSTA = 0x00034, /* MAC-PHY interface - RW */
E1000_MANC2H = 0x05860, /* Management Control To Host - RW */
E1000_MDEF_BASE = 0x05890, /* Management Decision Filters */
#define E1000_MDEF(_n) (E1000_MDEF_BASE + ((_n) * 4))
E1000_SW_FW_SYNC = 0x05B5C, /* Software-Firmware Synchronization - RW */
E1000_GCR = 0x05B00, /* PCI-Ex Control */
E1000_GCR2 = 0x05B64, /* PCI-Ex Control #2 */
E1000_FACTPS = 0x05B30, /* Function Active and Power State to MNG */
E1000_SWSM = 0x05B50, /* SW Semaphore */
E1000_FWSM = 0x05B54, /* FW Semaphore */
E1000_SWSM2 = 0x05B58, /* Driver-only SW semaphore */
E1000_FFLT_DBG = 0x05F04, /* Debug Register */
E1000_PCH_RAICC_BASE = 0x05F50, /* Receive Address Initial CRC */
#define E1000_PCH_RAICC(_n) (E1000_PCH_RAICC_BASE + ((_n) * 4))
#define E1000_CRC_OFFSET E1000_PCH_RAICC_BASE
E1000_HICR = 0x08F00, /* Host Interface Control */
};
#define E1000_MAX_PHY_ADDR 4
/* IGP01E1000 Specific Registers */
#define IGP01E1000_PHY_PORT_CONFIG 0x10 /* Port Config */
#define IGP01E1000_PHY_PORT_STATUS 0x11 /* Status */
#define IGP01E1000_PHY_PORT_CTRL 0x12 /* Control */
#define IGP01E1000_PHY_LINK_HEALTH 0x13 /* PHY Link Health */
#define IGP02E1000_PHY_POWER_MGMT 0x19 /* Power Management */
#define IGP01E1000_PHY_PAGE_SELECT 0x1F /* Page Select */
#define BM_PHY_PAGE_SELECT 22 /* Page Select for BM */
#define IGP_PAGE_SHIFT 5
#define PHY_REG_MASK 0x1F
#define BM_WUC_PAGE 800
#define BM_WUC_ADDRESS_OPCODE 0x11
#define BM_WUC_DATA_OPCODE 0x12
#define BM_WUC_ENABLE_PAGE 769
#define BM_WUC_ENABLE_REG 17
#define BM_WUC_ENABLE_BIT (1 << 2)
#define BM_WUC_HOST_WU_BIT (1 << 4)
#define BM_WUC_ME_WU_BIT (1 << 5)
#define BM_WUC PHY_REG(BM_WUC_PAGE, 1)
#define BM_WUFC PHY_REG(BM_WUC_PAGE, 2)
#define BM_WUS PHY_REG(BM_WUC_PAGE, 3)
#define IGP01E1000_PHY_PCS_INIT_REG 0x00B4
#define IGP01E1000_PHY_POLARITY_MASK 0x0078
#define IGP01E1000_PSCR_AUTO_MDIX 0x1000
#define IGP01E1000_PSCR_FORCE_MDI_MDIX 0x2000 /* 0=MDI, 1=MDIX */
#define IGP01E1000_PSCFR_SMART_SPEED 0x0080
#define IGP02E1000_PM_SPD 0x0001 /* Smart Power Down */
#define IGP02E1000_PM_D0_LPLU 0x0002 /* For D0a states */
#define IGP02E1000_PM_D3_LPLU 0x0004 /* For all other states */
#define IGP01E1000_PLHR_SS_DOWNGRADE 0x8000
#define IGP01E1000_PSSR_POLARITY_REVERSED 0x0002
#define IGP01E1000_PSSR_MDIX 0x0800
#define IGP01E1000_PSSR_SPEED_MASK 0xC000
#define IGP01E1000_PSSR_SPEED_1000MBPS 0xC000
#define IGP02E1000_PHY_CHANNEL_NUM 4
#define IGP02E1000_PHY_AGC_A 0x11B1
#define IGP02E1000_PHY_AGC_B 0x12B1
#define IGP02E1000_PHY_AGC_C 0x14B1
#define IGP02E1000_PHY_AGC_D 0x18B1
#define IGP02E1000_AGC_LENGTH_SHIFT 9 /* Course - 15:13, Fine - 12:9 */
#define IGP02E1000_AGC_LENGTH_MASK 0x7F
#define IGP02E1000_AGC_RANGE 15
/* manage.c */
#define E1000_VFTA_ENTRY_SHIFT 5
#define E1000_VFTA_ENTRY_MASK 0x7F
#define E1000_VFTA_ENTRY_BIT_SHIFT_MASK 0x1F
#define E1000_HICR_EN 0x01 /* Enable bit - RO */
/* Driver sets this bit when done to put command in RAM */
#define E1000_HICR_C 0x02
#define E1000_HICR_FW_RESET_ENABLE 0x40
#define E1000_HICR_FW_RESET 0x80
#define E1000_FWSM_MODE_MASK 0xE
#define E1000_FWSM_MODE_SHIFT 1
#define E1000_MNG_IAMT_MODE 0x3
#define E1000_MNG_DHCP_COOKIE_LENGTH 0x10
#define E1000_MNG_DHCP_COOKIE_OFFSET 0x6F0
#define E1000_MNG_DHCP_COMMAND_TIMEOUT 10
#define E1000_MNG_DHCP_TX_PAYLOAD_CMD 64
#define E1000_MNG_DHCP_COOKIE_STATUS_PARSING 0x1
#define E1000_MNG_DHCP_COOKIE_STATUS_VLAN 0x2
/* nvm.c */
#define E1000_STM_OPCODE 0xDB00
#define E1000_KMRNCTRLSTA_OFFSET 0x001F0000
#define E1000_KMRNCTRLSTA_OFFSET_SHIFT 16
#define E1000_KMRNCTRLSTA_REN 0x00200000
#define E1000_KMRNCTRLSTA_CTRL_OFFSET 0x1 /* Kumeran Control */
#define E1000_KMRNCTRLSTA_DIAG_OFFSET 0x3 /* Kumeran Diagnostic */
#define E1000_KMRNCTRLSTA_TIMEOUTS 0x4 /* Kumeran Timeouts */
#define E1000_KMRNCTRLSTA_INBAND_PARAM 0x9 /* Kumeran InBand Parameters */
#define E1000_KMRNCTRLSTA_IBIST_DISABLE 0x0200 /* Kumeran IBIST Disable */
#define E1000_KMRNCTRLSTA_DIAG_NELPBK 0x1000 /* Nearend Loopback mode */
#define E1000_KMRNCTRLSTA_K1_CONFIG 0x7
#define E1000_KMRNCTRLSTA_K1_ENABLE 0x0002
#define E1000_KMRNCTRLSTA_HD_CTRL 0x10 /* Kumeran HD Control */
#define IFE_PHY_EXTENDED_STATUS_CONTROL 0x10
#define IFE_PHY_SPECIAL_CONTROL 0x11 /* 100BaseTx PHY Special Control */
#define IFE_PHY_SPECIAL_CONTROL_LED 0x1B /* PHY Special and LED Control */
#define IFE_PHY_MDIX_CONTROL 0x1C /* MDI/MDI-X Control */
/* IFE PHY Extended Status Control */
#define IFE_PESC_POLARITY_REVERSED 0x0100
/* IFE PHY Special Control */
#define IFE_PSC_AUTO_POLARITY_DISABLE 0x0010
#define IFE_PSC_FORCE_POLARITY 0x0020
/* IFE PHY Special Control and LED Control */
#define IFE_PSCL_PROBE_MODE 0x0020
#define IFE_PSCL_PROBE_LEDS_OFF 0x0006 /* Force LEDs 0 and 2 off */
#define IFE_PSCL_PROBE_LEDS_ON 0x0007 /* Force LEDs 0 and 2 on */
/* IFE PHY MDIX Control */
#define IFE_PMC_MDIX_STATUS 0x0020 /* 1=MDI-X, 0=MDI */
#define IFE_PMC_FORCE_MDIX 0x0040 /* 1=force MDI-X, 0=force MDI */
#define IFE_PMC_AUTO_MDIX 0x0080 /* 1=enable auto MDI/MDI-X, 0=disable */
#define E1000_CABLE_LENGTH_UNDEFINED 0xFF
#define E1000_DEV_ID_82571EB_COPPER 0x105E
#define E1000_DEV_ID_82571EB_FIBER 0x105F
#define E1000_DEV_ID_82571EB_SERDES 0x1060
#define E1000_DEV_ID_82571EB_QUAD_COPPER 0x10A4
#define E1000_DEV_ID_82571PT_QUAD_COPPER 0x10D5
#define E1000_DEV_ID_82571EB_QUAD_FIBER 0x10A5
#define E1000_DEV_ID_82571EB_QUAD_COPPER_LP 0x10BC
#define E1000_DEV_ID_82571EB_SERDES_DUAL 0x10D9
#define E1000_DEV_ID_82571EB_SERDES_QUAD 0x10DA
#define E1000_DEV_ID_82572EI_COPPER 0x107D
#define E1000_DEV_ID_82572EI_FIBER 0x107E
#define E1000_DEV_ID_82572EI_SERDES 0x107F
#define E1000_DEV_ID_82572EI 0x10B9
#define E1000_DEV_ID_82573E 0x108B
#define E1000_DEV_ID_82573E_IAMT 0x108C
#define E1000_DEV_ID_82573L 0x109A
#define E1000_DEV_ID_82574L 0x10D3
#define E1000_DEV_ID_82574LA 0x10F6
#define E1000_DEV_ID_82583V 0x150C
#define E1000_DEV_ID_80003ES2LAN_COPPER_DPT 0x1096
#define E1000_DEV_ID_80003ES2LAN_SERDES_DPT 0x1098
#define E1000_DEV_ID_80003ES2LAN_COPPER_SPT 0x10BA
#define E1000_DEV_ID_80003ES2LAN_SERDES_SPT 0x10BB
#define E1000_DEV_ID_ICH8_82567V_3 0x1501
#define E1000_DEV_ID_ICH8_IGP_M_AMT 0x1049
#define E1000_DEV_ID_ICH8_IGP_AMT 0x104A
#define E1000_DEV_ID_ICH8_IGP_C 0x104B
#define E1000_DEV_ID_ICH8_IFE 0x104C
#define E1000_DEV_ID_ICH8_IFE_GT 0x10C4
#define E1000_DEV_ID_ICH8_IFE_G 0x10C5
#define E1000_DEV_ID_ICH8_IGP_M 0x104D
#define E1000_DEV_ID_ICH9_IGP_AMT 0x10BD
#define E1000_DEV_ID_ICH9_BM 0x10E5
#define E1000_DEV_ID_ICH9_IGP_M_AMT 0x10F5
#define E1000_DEV_ID_ICH9_IGP_M 0x10BF
#define E1000_DEV_ID_ICH9_IGP_M_V 0x10CB
#define E1000_DEV_ID_ICH9_IGP_C 0x294C
#define E1000_DEV_ID_ICH9_IFE 0x10C0
#define E1000_DEV_ID_ICH9_IFE_GT 0x10C3
#define E1000_DEV_ID_ICH9_IFE_G 0x10C2
#define E1000_DEV_ID_ICH10_R_BM_LM 0x10CC
#define E1000_DEV_ID_ICH10_R_BM_LF 0x10CD
#define E1000_DEV_ID_ICH10_R_BM_V 0x10CE
#define E1000_DEV_ID_ICH10_D_BM_LM 0x10DE
#define E1000_DEV_ID_ICH10_D_BM_LF 0x10DF
#define E1000_DEV_ID_ICH10_D_BM_V 0x1525
#define E1000_DEV_ID_PCH_M_HV_LM 0x10EA
#define E1000_DEV_ID_PCH_M_HV_LC 0x10EB
#define E1000_DEV_ID_PCH_D_HV_DM 0x10EF
#define E1000_DEV_ID_PCH_D_HV_DC 0x10F0
#define E1000_DEV_ID_PCH2_LV_LM 0x1502
#define E1000_DEV_ID_PCH2_LV_V 0x1503
#define E1000_REVISION_4 4
#define E1000_FUNC_1 1
#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN0 0
#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN1 3
enum e1000_mac_type {
e1000_82571,
e1000_82572,
e1000_82573,
e1000_82574,
e1000_82583,
e1000_80003es2lan,
e1000_ich8lan,
e1000_ich9lan,
e1000_ich10lan,
e1000_pchlan,
e1000_pch2lan,
};
enum e1000_media_type {
e1000_media_type_unknown = 0,
e1000_media_type_copper = 1,
e1000_media_type_fiber = 2,
e1000_media_type_internal_serdes = 3,
e1000_num_media_types
};
enum e1000_nvm_type {
e1000_nvm_unknown = 0,
e1000_nvm_none,
e1000_nvm_eeprom_spi,
e1000_nvm_flash_hw,
e1000_nvm_flash_sw
};
enum e1000_nvm_override {
e1000_nvm_override_none = 0,
e1000_nvm_override_spi_small,
e1000_nvm_override_spi_large
};
enum e1000_phy_type {
e1000_phy_unknown = 0,
e1000_phy_none,
e1000_phy_m88,
e1000_phy_igp,
e1000_phy_igp_2,
e1000_phy_gg82563,
e1000_phy_igp_3,
e1000_phy_ife,
e1000_phy_bm,
e1000_phy_82578,
e1000_phy_82577,
e1000_phy_82579,
};
enum e1000_bus_width {
e1000_bus_width_unknown = 0,
e1000_bus_width_pcie_x1,
e1000_bus_width_pcie_x2,
e1000_bus_width_pcie_x4 = 4,
e1000_bus_width_32,
e1000_bus_width_64,
e1000_bus_width_reserved
};
enum e1000_1000t_rx_status {
e1000_1000t_rx_status_not_ok = 0,
e1000_1000t_rx_status_ok,
e1000_1000t_rx_status_undefined = 0xFF
};
enum e1000_rev_polarity{
e1000_rev_polarity_normal = 0,
e1000_rev_polarity_reversed,
e1000_rev_polarity_undefined = 0xFF
};
enum e1000_fc_mode {
e1000_fc_none = 0,
e1000_fc_rx_pause,
e1000_fc_tx_pause,
e1000_fc_full,
e1000_fc_default = 0xFF
};
enum e1000_ms_type {
e1000_ms_hw_default = 0,
e1000_ms_force_master,
e1000_ms_force_slave,
e1000_ms_auto
};
enum e1000_smart_speed {
e1000_smart_speed_default = 0,
e1000_smart_speed_on,
e1000_smart_speed_off
};
enum e1000_serdes_link_state {
e1000_serdes_link_down = 0,
e1000_serdes_link_autoneg_progress,
e1000_serdes_link_autoneg_complete,
e1000_serdes_link_forced_up
};
/* Receive Descriptor */
struct e1000_rx_desc {
__le64 buffer_addr; /* Address of the descriptor's data buffer */
__le16 length; /* Length of data DMAed into data buffer */
__le16 csum; /* Packet checksum */
u8 status; /* Descriptor status */
u8 errors; /* Descriptor Errors */
__le16 special;
};
/* Receive Descriptor - Extended */
union e1000_rx_desc_extended {
struct {
__le64 buffer_addr;
__le64 reserved;
} read;
struct {
struct {
__le32 mrq; /* Multiple Rx Queues */
union {
__le32 rss; /* RSS Hash */
struct {
__le16 ip_id; /* IP id */
__le16 csum; /* Packet Checksum */
} csum_ip;
} hi_dword;
} lower;
struct {
__le32 status_error; /* ext status/error */
__le16 length;
__le16 vlan; /* VLAN tag */
} upper;
} wb; /* writeback */
};
#define MAX_PS_BUFFERS 4
/* Receive Descriptor - Packet Split */
union e1000_rx_desc_packet_split {
struct {
/* one buffer for protocol header(s), three data buffers */
__le64 buffer_addr[MAX_PS_BUFFERS];
} read;
struct {
struct {
__le32 mrq; /* Multiple Rx Queues */
union {
__le32 rss; /* RSS Hash */
struct {
__le16 ip_id; /* IP id */
__le16 csum; /* Packet Checksum */
} csum_ip;
} hi_dword;
} lower;
struct {
__le32 status_error; /* ext status/error */
__le16 length0; /* length of buffer 0 */
__le16 vlan; /* VLAN tag */
} middle;
struct {
__le16 header_status;
__le16 length[3]; /* length of buffers 1-3 */
} upper;
__le64 reserved;
} wb; /* writeback */
};
/* Transmit Descriptor */
struct e1000_tx_desc {
__le64 buffer_addr; /* Address of the descriptor's data buffer */
union {
__le32 data;
struct {
__le16 length; /* Data buffer length */
u8 cso; /* Checksum offset */
u8 cmd; /* Descriptor control */
} flags;
} lower;
union {
__le32 data;
struct {
u8 status; /* Descriptor status */
u8 css; /* Checksum start */
__le16 special;
} fields;
} upper;
};
/* Offload Context Descriptor */
struct e1000_context_desc {
union {
__le32 ip_config;
struct {
u8 ipcss; /* IP checksum start */
u8 ipcso; /* IP checksum offset */
__le16 ipcse; /* IP checksum end */
} ip_fields;
} lower_setup;
union {
__le32 tcp_config;
struct {
u8 tucss; /* TCP checksum start */
u8 tucso; /* TCP checksum offset */
__le16 tucse; /* TCP checksum end */
} tcp_fields;
} upper_setup;
__le32 cmd_and_length;
union {
__le32 data;
struct {
u8 status; /* Descriptor status */
u8 hdr_len; /* Header length */
__le16 mss; /* Maximum segment size */
} fields;
} tcp_seg_setup;
};
/* Offload data descriptor */
struct e1000_data_desc {
__le64 buffer_addr; /* Address of the descriptor's buffer address */
union {
__le32 data;
struct {
__le16 length; /* Data buffer length */
u8 typ_len_ext;
u8 cmd;
} flags;
} lower;
union {
__le32 data;
struct {
u8 status; /* Descriptor status */
u8 popts; /* Packet Options */
__le16 special; /* */
} fields;
} upper;
};
/* Statistics counters collected by the MAC */
struct e1000_hw_stats {
u64 crcerrs;
u64 algnerrc;
u64 symerrs;
u64 rxerrc;
u64 mpc;
u64 scc;
u64 ecol;
u64 mcc;
u64 latecol;
u64 colc;
u64 dc;
u64 tncrs;
u64 sec;
u64 cexterr;
u64 rlec;
u64 xonrxc;
u64 xontxc;
u64 xoffrxc;
u64 xofftxc;
u64 fcruc;
u64 prc64;
u64 prc127;
u64 prc255;
u64 prc511;
u64 prc1023;
u64 prc1522;
u64 gprc;
u64 bprc;
u64 mprc;
u64 gptc;
u64 gorc;
u64 gotc;
u64 rnbc;
u64 ruc;
u64 rfc;
u64 roc;
u64 rjc;
u64 mgprc;
u64 mgpdc;
u64 mgptc;
u64 tor;
u64 tot;
u64 tpr;
u64 tpt;
u64 ptc64;
u64 ptc127;
u64 ptc255;
u64 ptc511;
u64 ptc1023;
u64 ptc1522;
u64 mptc;
u64 bptc;
u64 tsctc;
u64 tsctfc;
u64 iac;
u64 icrxptc;
u64 icrxatc;
u64 ictxptc;
u64 ictxatc;
u64 ictxqec;
u64 ictxqmtc;
u64 icrxdmtc;
u64 icrxoc;
};
struct e1000_phy_stats {
u32 idle_errors;
u32 receive_errors;
};
struct e1000_host_mng_dhcp_cookie {
u32 signature;
u8 status;
u8 reserved0;
u16 vlan_id;
u32 reserved1;
u16 reserved2;
u8 reserved3;
u8 checksum;
};
/* Host Interface "Rev 1" */
struct e1000_host_command_header {
u8 command_id;
u8 command_length;
u8 command_options;
u8 checksum;
};
#define E1000_HI_MAX_DATA_LENGTH 252
struct e1000_host_command_info {
struct e1000_host_command_header command_header;
u8 command_data[E1000_HI_MAX_DATA_LENGTH];
};
/* Host Interface "Rev 2" */
struct e1000_host_mng_command_header {
u8 command_id;
u8 checksum;
u16 reserved1;
u16 reserved2;
u16 command_length;
};
#define E1000_HI_MAX_MNG_DATA_LENGTH 0x6F8
struct e1000_host_mng_command_info {
struct e1000_host_mng_command_header command_header;
u8 command_data[E1000_HI_MAX_MNG_DATA_LENGTH];
};
/* Function pointers and static data for the MAC. */
struct e1000_mac_operations {
s32 (*id_led_init)(struct e1000_hw *);
s32 (*blink_led)(struct e1000_hw *);
bool (*check_mng_mode)(struct e1000_hw *);
s32 (*check_for_link)(struct e1000_hw *);
s32 (*cleanup_led)(struct e1000_hw *);
void (*clear_hw_cntrs)(struct e1000_hw *);
void (*clear_vfta)(struct e1000_hw *);
s32 (*get_bus_info)(struct e1000_hw *);
void (*set_lan_id)(struct e1000_hw *);
s32 (*get_link_up_info)(struct e1000_hw *, u16 *, u16 *);
s32 (*led_on)(struct e1000_hw *);
s32 (*led_off)(struct e1000_hw *);
void (*update_mc_addr_list)(struct e1000_hw *, u8 *, u32);
s32 (*reset_hw)(struct e1000_hw *);
s32 (*init_hw)(struct e1000_hw *);
s32 (*setup_link)(struct e1000_hw *);
s32 (*setup_physical_interface)(struct e1000_hw *);
s32 (*setup_led)(struct e1000_hw *);
void (*write_vfta)(struct e1000_hw *, u32, u32);
s32 (*read_mac_addr)(struct e1000_hw *);
};
/*
* When to use various PHY register access functions:
*
* Func Caller
* Function Does Does When to use
* ~~~~~~~~~~~~ ~~~~~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* X_reg L,P,A n/a for simple PHY reg accesses
* X_reg_locked P,A L for multiple accesses of different regs
* on different pages
* X_reg_page A L,P for multiple accesses of different regs
* on the same page
*
* Where X=[read|write], L=locking, P=sets page, A=register access
*
*/
struct e1000_phy_operations {
s32 (*acquire)(struct e1000_hw *);
s32 (*cfg_on_link_up)(struct e1000_hw *);
s32 (*check_polarity)(struct e1000_hw *);
s32 (*check_reset_block)(struct e1000_hw *);
s32 (*commit)(struct e1000_hw *);
s32 (*force_speed_duplex)(struct e1000_hw *);
s32 (*get_cfg_done)(struct e1000_hw *hw);
s32 (*get_cable_length)(struct e1000_hw *);
s32 (*get_info)(struct e1000_hw *);
s32 (*set_page)(struct e1000_hw *, u16);
s32 (*read_reg)(struct e1000_hw *, u32, u16 *);
s32 (*read_reg_locked)(struct e1000_hw *, u32, u16 *);
s32 (*read_reg_page)(struct e1000_hw *, u32, u16 *);
void (*release)(struct e1000_hw *);
s32 (*reset)(struct e1000_hw *);
s32 (*set_d0_lplu_state)(struct e1000_hw *, bool);
s32 (*set_d3_lplu_state)(struct e1000_hw *, bool);
s32 (*write_reg)(struct e1000_hw *, u32, u16);
s32 (*write_reg_locked)(struct e1000_hw *, u32, u16);
s32 (*write_reg_page)(struct e1000_hw *, u32, u16);
void (*power_up)(struct e1000_hw *);
void (*power_down)(struct e1000_hw *);
};
/* Function pointers for the NVM. */
struct e1000_nvm_operations {
s32 (*acquire)(struct e1000_hw *);
s32 (*read)(struct e1000_hw *, u16, u16, u16 *);
void (*release)(struct e1000_hw *);
s32 (*update)(struct e1000_hw *);
s32 (*valid_led_default)(struct e1000_hw *, u16 *);
s32 (*validate)(struct e1000_hw *);
s32 (*write)(struct e1000_hw *, u16, u16, u16 *);
};
struct e1000_mac_info {
struct e1000_mac_operations ops;
u8 addr[ETH_ALEN];
u8 perm_addr[ETH_ALEN];
enum e1000_mac_type type;
u32 collision_delta;
u32 ledctl_default;
u32 ledctl_mode1;
u32 ledctl_mode2;
u32 mc_filter_type;
u32 tx_packet_delta;
u32 txcw;
u16 current_ifs_val;
u16 ifs_max_val;
u16 ifs_min_val;
u16 ifs_ratio;
u16 ifs_step_size;
u16 mta_reg_count;
/* Maximum size of the MTA register table in all supported adapters */
#define MAX_MTA_REG 128
u32 mta_shadow[MAX_MTA_REG];
u16 rar_entry_count;
u8 forced_speed_duplex;
bool adaptive_ifs;
bool has_fwsm;
bool arc_subsystem_valid;
bool autoneg;
bool autoneg_failed;
bool get_link_status;
bool in_ifs_mode;
bool serdes_has_link;
bool tx_pkt_filtering;
enum e1000_serdes_link_state serdes_link_state;
};
struct e1000_phy_info {
struct e1000_phy_operations ops;
enum e1000_phy_type type;
enum e1000_1000t_rx_status local_rx;
enum e1000_1000t_rx_status remote_rx;
enum e1000_ms_type ms_type;
enum e1000_ms_type original_ms_type;
enum e1000_rev_polarity cable_polarity;
enum e1000_smart_speed smart_speed;
u32 addr;
u32 id;
u32 reset_delay_us; /* in usec */
u32 revision;
enum e1000_media_type media_type;
u16 autoneg_advertised;
u16 autoneg_mask;
u16 cable_length;
u16 max_cable_length;
u16 min_cable_length;
u8 mdix;
bool disable_polarity_correction;
bool is_mdix;
bool polarity_correction;
bool speed_downgraded;
bool autoneg_wait_to_complete;
};
struct e1000_nvm_info {
struct e1000_nvm_operations ops;
enum e1000_nvm_type type;
enum e1000_nvm_override override;
u32 flash_bank_size;
u32 flash_base_addr;
u16 word_size;
u16 delay_usec;
u16 address_bits;
u16 opcode_bits;
u16 page_size;
};
struct e1000_bus_info {
enum e1000_bus_width width;
u16 func;
};
struct e1000_fc_info {
u32 high_water; /* Flow control high-water mark */
u32 low_water; /* Flow control low-water mark */
u16 pause_time; /* Flow control pause timer */
u16 refresh_time; /* Flow control refresh timer */
bool send_xon; /* Flow control send XON */
bool strict_ieee; /* Strict IEEE mode */
enum e1000_fc_mode current_mode; /* FC mode in effect */
enum e1000_fc_mode requested_mode; /* FC mode requested by caller */
};
struct e1000_dev_spec_82571 {
bool laa_is_present;
u32 smb_counter;
};
struct e1000_dev_spec_80003es2lan {
bool mdic_wa_enable;
};
struct e1000_shadow_ram {
u16 value;
bool modified;
};
#define E1000_ICH8_SHADOW_RAM_WORDS 2048
struct e1000_dev_spec_ich8lan {
bool kmrn_lock_loss_workaround_enabled;
struct e1000_shadow_ram shadow_ram[E1000_ICH8_SHADOW_RAM_WORDS];
bool nvm_k1_enabled;
bool eee_disable;
};
struct e1000_hw {
struct e1000_adapter *adapter;
u8 __iomem *hw_addr;
u8 __iomem *flash_address;
struct e1000_mac_info mac;
struct e1000_fc_info fc;
struct e1000_phy_info phy;
struct e1000_nvm_info nvm;
struct e1000_bus_info bus;
struct e1000_host_mng_dhcp_cookie mng_cookie;
union {
struct e1000_dev_spec_82571 e82571;
struct e1000_dev_spec_80003es2lan e80003es2lan;
struct e1000_dev_spec_ich8lan ich8lan;
} dev_spec;
};
#endif
-------------- n?chster Teil --------------
/*******************************************************************************
Intel PRO/1000 Linux driver
Copyright(c) 1999 - 2011 Intel Corporation.
This program is free software; you can redistribute it and/or modify it
under the terms and conditions of the GNU General Public License,
version 2, as published by the Free Software Foundation.
This program is distributed in the hope it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
The full GNU General Public License is included in this distribution in
the file called "COPYING".
Contact Information:
Linux NICS <linux.nics at intel.com>
e1000-devel Mailing List <e1000-devel at lists.sourceforge.net>
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*******************************************************************************/
/* Linux PRO/1000 Ethernet Driver main header file */
#ifndef _E1000_H_
#define _E1000_H_
#include <linux/bitops.h>
#include <linux/types.h>
#include <linux/timer.h>
#include <linux/workqueue.h>
#include <linux/io.h>
#include <linux/netdevice.h>
#include <linux/pci.h>
#include <linux/pci-aspm.h>
#include <linux/crc32.h>
#include <linux/if_vlan.h>
#include "hw-3.2.0-ethercat.h"
/* EtherCAT header file */
#include "../ecdev.h"
struct e1000_info;
#define e_dbg(format, arg...) \
netdev_dbg(hw->adapter->netdev, format, ## arg)
#define e_err(format, arg...) \
netdev_err(adapter->netdev, format, ## arg)
#define e_info(format, arg...) \
netdev_info(adapter->netdev, format, ## arg)
#define e_warn(format, arg...) \
netdev_warn(adapter->netdev, format, ## arg)
#define e_notice(format, arg...) \
netdev_notice(adapter->netdev, format, ## arg)
/* Interrupt modes, as used by the IntMode parameter */
#define E1000E_INT_MODE_LEGACY 0
#define E1000E_INT_MODE_MSI 1
#define E1000E_INT_MODE_MSIX 2
/* Tx/Rx descriptor defines */
#define E1000_DEFAULT_TXD 256
#define E1000_MAX_TXD 4096
#define E1000_MIN_TXD 64
#define E1000_DEFAULT_RXD 256
#define E1000_MAX_RXD 4096
#define E1000_MIN_RXD 64
#define E1000_MIN_ITR_USECS 10 /* 100000 irq/sec */
#define E1000_MAX_ITR_USECS 10000 /* 100 irq/sec */
/* Early Receive defines */
#define E1000_ERT_2048 0x100
#define E1000_FC_PAUSE_TIME 0x0680 /* 858 usec */
/* How many Tx Descriptors do we need to call netif_wake_queue ? */
/* How many Rx Buffers do we bundle into one write to the hardware ? */
#define E1000_RX_BUFFER_WRITE 16 /* Must be power of 2 */
#define AUTO_ALL_MODES 0
#define E1000_EEPROM_APME 0x0400
#define E1000_MNG_VLAN_NONE (-1)
/* Number of packet split data buffers (not including the header buffer) */
#define PS_PAGE_BUFFERS (MAX_PS_BUFFERS - 1)
#define DEFAULT_JUMBO 9234
/* BM/HV Specific Registers */
#define BM_PORT_CTRL_PAGE 769
#define PHY_UPPER_SHIFT 21
#define BM_PHY_REG(page, reg) \
(((reg) & MAX_PHY_REG_ADDRESS) |\
(((page) & 0xFFFF) << PHY_PAGE_SHIFT) |\
(((reg) & ~MAX_PHY_REG_ADDRESS) << (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)))
/* PHY Wakeup Registers and defines */
#define BM_PORT_GEN_CFG PHY_REG(BM_PORT_CTRL_PAGE, 17)
#define BM_RCTL PHY_REG(BM_WUC_PAGE, 0)
#define BM_WUC PHY_REG(BM_WUC_PAGE, 1)
#define BM_WUFC PHY_REG(BM_WUC_PAGE, 2)
#define BM_WUS PHY_REG(BM_WUC_PAGE, 3)
#define BM_RAR_L(_i) (BM_PHY_REG(BM_WUC_PAGE, 16 + ((_i) << 2)))
#define BM_RAR_M(_i) (BM_PHY_REG(BM_WUC_PAGE, 17 + ((_i) << 2)))
#define BM_RAR_H(_i) (BM_PHY_REG(BM_WUC_PAGE, 18 + ((_i) << 2)))
#define BM_RAR_CTRL(_i) (BM_PHY_REG(BM_WUC_PAGE, 19 + ((_i) << 2)))
#define BM_MTA(_i) (BM_PHY_REG(BM_WUC_PAGE, 128 + ((_i) << 1)))
#define BM_RCTL_UPE 0x0001 /* Unicast Promiscuous Mode */
#define BM_RCTL_MPE 0x0002 /* Multicast Promiscuous Mode */
#define BM_RCTL_MO_SHIFT 3 /* Multicast Offset Shift */
#define BM_RCTL_MO_MASK (3 << 3) /* Multicast Offset Mask */
#define BM_RCTL_BAM 0x0020 /* Broadcast Accept Mode */
#define BM_RCTL_PMCF 0x0040 /* Pass MAC Control Frames */
#define BM_RCTL_RFCE 0x0080 /* Rx Flow Control Enable */
#define HV_STATS_PAGE 778
#define HV_SCC_UPPER PHY_REG(HV_STATS_PAGE, 16) /* Single Collision Count */
#define HV_SCC_LOWER PHY_REG(HV_STATS_PAGE, 17)
#define HV_ECOL_UPPER PHY_REG(HV_STATS_PAGE, 18) /* Excessive Coll. Count */
#define HV_ECOL_LOWER PHY_REG(HV_STATS_PAGE, 19)
#define HV_MCC_UPPER PHY_REG(HV_STATS_PAGE, 20) /* Multiple Coll. Count */
#define HV_MCC_LOWER PHY_REG(HV_STATS_PAGE, 21)
#define HV_LATECOL_UPPER PHY_REG(HV_STATS_PAGE, 23) /* Late Collision Count */
#define HV_LATECOL_LOWER PHY_REG(HV_STATS_PAGE, 24)
#define HV_COLC_UPPER PHY_REG(HV_STATS_PAGE, 25) /* Collision Count */
#define HV_COLC_LOWER PHY_REG(HV_STATS_PAGE, 26)
#define HV_DC_UPPER PHY_REG(HV_STATS_PAGE, 27) /* Defer Count */
#define HV_DC_LOWER PHY_REG(HV_STATS_PAGE, 28)
#define HV_TNCRS_UPPER PHY_REG(HV_STATS_PAGE, 29) /* Transmit with no CRS */
#define HV_TNCRS_LOWER PHY_REG(HV_STATS_PAGE, 30)
#define E1000_FCRTV_PCH 0x05F40 /* PCH Flow Control Refresh Timer Value */
/* BM PHY Copper Specific Status */
#define BM_CS_STATUS 17
#define BM_CS_STATUS_LINK_UP 0x0400
#define BM_CS_STATUS_RESOLVED 0x0800
#define BM_CS_STATUS_SPEED_MASK 0xC000
#define BM_CS_STATUS_SPEED_1000 0x8000
/* 82577 Mobile Phy Status Register */
#define HV_M_STATUS 26
#define HV_M_STATUS_AUTONEG_COMPLETE 0x1000
#define HV_M_STATUS_SPEED_MASK 0x0300
#define HV_M_STATUS_SPEED_1000 0x0200
#define HV_M_STATUS_LINK_UP 0x0040
#define E1000_ICH_FWSM_PCIM2PCI 0x01000000 /* ME PCIm-to-PCI active */
#define E1000_ICH_FWSM_PCIM2PCI_COUNT 2000
/* Time to wait before putting the device into D3 if there's no link (in ms). */
#define LINK_TIMEOUT 100
#define DEFAULT_RDTR 0
#define DEFAULT_RADV 8
#define BURST_RDTR 0x20
#define BURST_RADV 0x20
/*
* in the case of WTHRESH, it appears at least the 82571/2 hardware
* writes back 4 descriptors when WTHRESH=5, and 3 descriptors when
* WTHRESH=4, and since we want 64 bytes at a time written back, set
* it to 5
*/
#define E1000_TXDCTL_DMA_BURST_ENABLE \
(E1000_TXDCTL_GRAN | /* set descriptor granularity */ \
E1000_TXDCTL_COUNT_DESC | \
(5 << 16) | /* wthresh must be +1 more than desired */\
(1 << 8) | /* hthresh */ \
0x1f) /* pthresh */
#define E1000_RXDCTL_DMA_BURST_ENABLE \
(0x01000000 | /* set descriptor granularity */ \
(4 << 16) | /* set writeback threshold */ \
(4 << 8) | /* set prefetch threshold */ \
0x20) /* set hthresh */
#define E1000_TIDV_FPD (1 << 31)
#define E1000_RDTR_FPD (1 << 31)
enum e1000_boards {
board_82571,
board_82572,
board_82573,
board_82574,
board_82583,
board_80003es2lan,
board_ich8lan,
board_ich9lan,
board_ich10lan,
board_pchlan,
board_pch2lan,
};
struct e1000_ps_page {
struct page *page;
u64 dma; /* must be u64 - written to hw */
};
/*
* wrappers around a pointer to a socket buffer,
* so a DMA handle can be stored along with the buffer
*/
struct e1000_buffer {
dma_addr_t dma;
struct sk_buff *skb;
union {
/* Tx */
struct {
unsigned long time_stamp;
u16 length;
u16 next_to_watch;
unsigned int segs;
unsigned int bytecount;
u16 mapped_as_page;
};
/* Rx */
struct {
/* arrays of page information for packet split */
struct e1000_ps_page *ps_pages;
struct page *page;
};
};
};
struct e1000_ring {
void *desc; /* pointer to ring memory */
dma_addr_t dma; /* phys address of ring */
unsigned int size; /* length of ring in bytes */
unsigned int count; /* number of desc. in ring */
u16 next_to_use;
u16 next_to_clean;
u16 head;
u16 tail;
/* array of buffer information structs */
struct e1000_buffer *buffer_info;
char name[IFNAMSIZ + 5];
u32 ims_val;
u32 itr_val;
u16 itr_register;
int set_itr;
struct sk_buff *rx_skb_top;
};
/* PHY register snapshot values */
struct e1000_phy_regs {
u16 bmcr; /* basic mode control register */
u16 bmsr; /* basic mode status register */
u16 advertise; /* auto-negotiation advertisement */
u16 lpa; /* link partner ability register */
u16 expansion; /* auto-negotiation expansion reg */
u16 ctrl1000; /* 1000BASE-T control register */
u16 stat1000; /* 1000BASE-T status register */
u16 estatus; /* extended status register */
};
/* board specific private data structure */
struct e1000_adapter {
struct timer_list watchdog_timer;
struct timer_list phy_info_timer;
struct timer_list blink_timer;
struct work_struct reset_task;
struct work_struct watchdog_task;
const struct e1000_info *ei;
unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
u32 bd_number;
u32 rx_buffer_len;
u16 mng_vlan_id;
u16 link_speed;
u16 link_duplex;
u16 eeprom_vers;
/* track device up/down/testing state */
unsigned long state;
/* Interrupt Throttle Rate */
u32 itr;
u32 itr_setting;
u16 tx_itr;
u16 rx_itr;
/*
* Tx
*/
struct e1000_ring *tx_ring /* One per active queue */
____cacheline_aligned_in_smp;
struct napi_struct napi;
unsigned int restart_queue;
u32 txd_cmd;
bool detect_tx_hung;
bool tx_hang_recheck;
u8 tx_timeout_factor;
u32 tx_int_delay;
u32 tx_abs_int_delay;
unsigned int total_tx_bytes;
unsigned int total_tx_packets;
unsigned int total_rx_bytes;
unsigned int total_rx_packets;
/* Tx stats */
u64 tpt_old;
u64 colc_old;
u32 gotc;
u64 gotc_old;
u32 tx_timeout_count;
u32 tx_fifo_head;
u32 tx_head_addr;
u32 tx_fifo_size;
u32 tx_dma_failed;
/*
* Rx
*/
bool (*clean_rx) (struct e1000_adapter *adapter,
int *work_done, int work_to_do)
____cacheline_aligned_in_smp;
void (*alloc_rx_buf) (struct e1000_adapter *adapter,
int cleaned_count, gfp_t gfp);
struct e1000_ring *rx_ring;
u32 rx_int_delay;
u32 rx_abs_int_delay;
/* Rx stats */
u64 hw_csum_err;
u64 hw_csum_good;
u64 rx_hdr_split;
u32 gorc;
u64 gorc_old;
u32 alloc_rx_buff_failed;
u32 rx_dma_failed;
unsigned int rx_ps_pages;
u16 rx_ps_bsize0;
u32 max_frame_size;
u32 min_frame_size;
/* OS defined structs */
struct net_device *netdev;
struct pci_dev *pdev;
/* structs defined in e1000_hw.h */
struct e1000_hw hw;
spinlock_t stats64_lock;
struct e1000_hw_stats stats;
struct e1000_phy_info phy_info;
struct e1000_phy_stats phy_stats;
/* Snapshot of PHY registers */
struct e1000_phy_regs phy_regs;
struct e1000_ring test_tx_ring;
struct e1000_ring test_rx_ring;
u32 test_icr;
u32 msg_enable;
unsigned int num_vectors;
struct msix_entry *msix_entries;
int int_mode;
u32 eiac_mask;
u32 eeprom_wol;
u32 wol;
u32 pba;
u32 max_hw_frame_size;
bool fc_autoneg;
unsigned int flags;
unsigned int flags2;
struct work_struct downshift_task;
struct work_struct update_phy_task;
struct work_struct print_hang_task;
bool idle_check;
int phy_hang_count;
/* EtherCAT device variables */
ec_device_t *ecdev;
unsigned long ec_watchdog_jiffies;
};
struct e1000_info {
enum e1000_mac_type mac;
unsigned int flags;
unsigned int flags2;
u32 pba;
u32 max_hw_frame_size;
s32 (*get_variants)(struct e1000_adapter *);
const struct e1000_mac_operations *mac_ops;
const struct e1000_phy_operations *phy_ops;
const struct e1000_nvm_operations *nvm_ops;
};
/* hardware capability, feature, and workaround flags */
#define FLAG_HAS_AMT (1 << 0)
#define FLAG_HAS_FLASH (1 << 1)
#define FLAG_HAS_HW_VLAN_FILTER (1 << 2)
#define FLAG_HAS_WOL (1 << 3)
#define FLAG_HAS_ERT (1 << 4)
#define FLAG_HAS_CTRLEXT_ON_LOAD (1 << 5)
#define FLAG_HAS_SWSM_ON_LOAD (1 << 6)
#define FLAG_HAS_JUMBO_FRAMES (1 << 7)
#define FLAG_READ_ONLY_NVM (1 << 8)
#define FLAG_IS_ICH (1 << 9)
#define FLAG_HAS_MSIX (1 << 10)
#define FLAG_HAS_SMART_POWER_DOWN (1 << 11)
#define FLAG_IS_QUAD_PORT_A (1 << 12)
#define FLAG_IS_QUAD_PORT (1 << 13)
#define FLAG_TIPG_MEDIUM_FOR_80003ESLAN (1 << 14)
#define FLAG_APME_IN_WUC (1 << 15)
#define FLAG_APME_IN_CTRL3 (1 << 16)
#define FLAG_APME_CHECK_PORT_B (1 << 17)
#define FLAG_DISABLE_FC_PAUSE_TIME (1 << 18)
#define FLAG_NO_WAKE_UCAST (1 << 19)
#define FLAG_MNG_PT_ENABLED (1 << 20)
#define FLAG_RESET_OVERWRITES_LAA (1 << 21)
#define FLAG_TARC_SPEED_MODE_BIT (1 << 22)
#define FLAG_TARC_SET_BIT_ZERO (1 << 23)
#define FLAG_RX_NEEDS_RESTART (1 << 24)
#define FLAG_LSC_GIG_SPEED_DROP (1 << 25)
#define FLAG_SMART_POWER_DOWN (1 << 26)
#define FLAG_MSI_ENABLED (1 << 27)
/* reserved (1 << 28) */
#define FLAG_TSO_FORCE (1 << 29)
#define FLAG_RX_RESTART_NOW (1 << 30)
#define FLAG_MSI_TEST_FAILED (1 << 31)
#define FLAG2_CRC_STRIPPING (1 << 0)
#define FLAG2_HAS_PHY_WAKEUP (1 << 1)
#define FLAG2_IS_DISCARDING (1 << 2)
#define FLAG2_DISABLE_ASPM_L1 (1 << 3)
#define FLAG2_HAS_PHY_STATS (1 << 4)
#define FLAG2_HAS_EEE (1 << 5)
#define FLAG2_DMA_BURST (1 << 6)
#define FLAG2_DISABLE_ASPM_L0S (1 << 7)
#define FLAG2_DISABLE_AIM (1 << 8)
#define FLAG2_CHECK_PHY_HANG (1 << 9)
#define FLAG2_NO_DISABLE_RX (1 << 10)
#define FLAG2_PCIM2PCI_ARBITER_WA (1 << 11)
#define E1000_RX_DESC_PS(R, i) \
(&(((union e1000_rx_desc_packet_split *)((R).desc))[i]))
#define E1000_RX_DESC_EXT(R, i) \
(&(((union e1000_rx_desc_extended *)((R).desc))[i]))
#define E1000_GET_DESC(R, i, type) (&(((struct type *)((R).desc))[i]))
#define E1000_TX_DESC(R, i) E1000_GET_DESC(R, i, e1000_tx_desc)
#define E1000_CONTEXT_DESC(R, i) E1000_GET_DESC(R, i, e1000_context_desc)
enum e1000_state_t {
__E1000_TESTING,
__E1000_RESETTING,
__E1000_ACCESS_SHARED_RESOURCE,
__E1000_DOWN
};
enum latency_range {
lowest_latency = 0,
low_latency = 1,
bulk_latency = 2,
latency_invalid = 255
};
extern char e1000e_driver_name[];
extern const char e1000e_driver_version[];
extern void e1000e_check_options(struct e1000_adapter *adapter);
extern void e1000e_set_ethtool_ops(struct net_device *netdev);
extern int e1000e_up(struct e1000_adapter *adapter);
extern void e1000e_down(struct e1000_adapter *adapter);
extern void e1000e_reinit_locked(struct e1000_adapter *adapter);
extern void e1000e_reset(struct e1000_adapter *adapter);
extern void e1000e_power_up_phy(struct e1000_adapter *adapter);
extern int e1000e_setup_rx_resources(struct e1000_adapter *adapter);
extern int e1000e_setup_tx_resources(struct e1000_adapter *adapter);
extern void e1000e_free_rx_resources(struct e1000_adapter *adapter);
extern void e1000e_free_tx_resources(struct e1000_adapter *adapter);
extern struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
struct rtnl_link_stats64
*stats);
extern void e1000e_set_interrupt_capability(struct e1000_adapter *adapter);
extern void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter);
extern void e1000e_get_hw_control(struct e1000_adapter *adapter);
extern void e1000e_release_hw_control(struct e1000_adapter *adapter);
extern unsigned int copybreak;
extern char *e1000e_get_hw_dev_name(struct e1000_hw *hw);
extern const struct e1000_info e1000_82571_info;
extern const struct e1000_info e1000_82572_info;
extern const struct e1000_info e1000_82573_info;
extern const struct e1000_info e1000_82574_info;
extern const struct e1000_info e1000_82583_info;
extern const struct e1000_info e1000_ich8_info;
extern const struct e1000_info e1000_ich9_info;
extern const struct e1000_info e1000_ich10_info;
extern const struct e1000_info e1000_pch_info;
extern const struct e1000_info e1000_pch2_info;
extern const struct e1000_info e1000_es2_info;
extern s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
u32 pba_num_size);
extern s32 e1000e_commit_phy(struct e1000_hw *hw);
extern bool e1000e_enable_mng_pass_thru(struct e1000_hw *hw);
extern bool e1000e_get_laa_state_82571(struct e1000_hw *hw);
extern void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state);
extern void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw);
extern void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
bool state);
extern void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw);
extern void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw);
extern void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw);
extern void e1000_resume_workarounds_pchlan(struct e1000_hw *hw);
extern s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable);
extern s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable);
extern void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw);
extern s32 e1000e_check_for_copper_link(struct e1000_hw *hw);
extern s32 e1000e_check_for_fiber_link(struct e1000_hw *hw);
extern s32 e1000e_check_for_serdes_link(struct e1000_hw *hw);
extern s32 e1000e_setup_led_generic(struct e1000_hw *hw);
extern s32 e1000e_cleanup_led_generic(struct e1000_hw *hw);
extern s32 e1000e_led_on_generic(struct e1000_hw *hw);
extern s32 e1000e_led_off_generic(struct e1000_hw *hw);
extern s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw);
extern void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw);
extern void e1000_set_lan_id_single_port(struct e1000_hw *hw);
extern s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, u16 *duplex);
extern s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed, u16 *duplex);
extern s32 e1000e_disable_pcie_master(struct e1000_hw *hw);
extern s32 e1000e_get_auto_rd_done(struct e1000_hw *hw);
extern s32 e1000e_id_led_init(struct e1000_hw *hw);
extern void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw);
extern s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw);
extern s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw);
extern s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw);
extern s32 e1000e_setup_link(struct e1000_hw *hw);
extern void e1000_clear_vfta_generic(struct e1000_hw *hw);
extern void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count);
extern void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw,
u8 *mc_addr_list,
u32 mc_addr_count);
extern void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index);
extern s32 e1000e_set_fc_watermarks(struct e1000_hw *hw);
extern void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop);
extern s32 e1000e_get_hw_semaphore(struct e1000_hw *hw);
extern s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data);
extern void e1000e_config_collision_dist(struct e1000_hw *hw);
extern s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw);
extern s32 e1000e_force_mac_fc(struct e1000_hw *hw);
extern s32 e1000e_blink_led_generic(struct e1000_hw *hw);
extern void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value);
extern s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw);
extern void e1000e_reset_adaptive(struct e1000_hw *hw);
extern void e1000e_update_adaptive(struct e1000_hw *hw);
extern s32 e1000e_setup_copper_link(struct e1000_hw *hw);
extern s32 e1000e_get_phy_id(struct e1000_hw *hw);
extern void e1000e_put_hw_semaphore(struct e1000_hw *hw);
extern s32 e1000e_check_reset_block_generic(struct e1000_hw *hw);
extern s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw);
extern s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw);
extern s32 e1000e_get_phy_info_igp(struct e1000_hw *hw);
extern s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page);
extern s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data);
extern s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset,
u16 *data);
extern s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw);
extern s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active);
extern s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data);
extern s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset,
u16 data);
extern s32 e1000e_phy_sw_reset(struct e1000_hw *hw);
extern s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw);
extern s32 e1000e_get_cfg_done(struct e1000_hw *hw);
extern s32 e1000e_get_cable_length_m88(struct e1000_hw *hw);
extern s32 e1000e_get_phy_info_m88(struct e1000_hw *hw);
extern s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data);
extern s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data);
extern s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw);
extern enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id);
extern s32 e1000e_determine_phy_address(struct e1000_hw *hw);
extern s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data);
extern s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data);
extern s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw,
u16 *phy_reg);
extern s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw,
u16 *phy_reg);
extern s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data);
extern s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data);
extern void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl);
extern s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data);
extern s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset,
u16 data);
extern s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data);
extern s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset,
u16 *data);
extern s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
u32 usec_interval, bool *success);
extern s32 e1000e_phy_reset_dsp(struct e1000_hw *hw);
extern void e1000_power_up_phy_copper(struct e1000_hw *hw);
extern void e1000_power_down_phy_copper(struct e1000_hw *hw);
extern s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data);
extern s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data);
extern s32 e1000e_check_downshift(struct e1000_hw *hw);
extern s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data);
extern s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset,
u16 *data);
extern s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset,
u16 *data);
extern s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data);
extern s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset,
u16 data);
extern s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset,
u16 data);
extern s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw);
extern s32 e1000_copper_link_setup_82577(struct e1000_hw *hw);
extern s32 e1000_check_polarity_82577(struct e1000_hw *hw);
extern s32 e1000_get_phy_info_82577(struct e1000_hw *hw);
extern s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw);
extern s32 e1000_get_cable_length_82577(struct e1000_hw *hw);
extern s32 e1000_check_polarity_m88(struct e1000_hw *hw);
extern s32 e1000_get_phy_info_ife(struct e1000_hw *hw);
extern s32 e1000_check_polarity_ife(struct e1000_hw *hw);
extern s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw);
extern s32 e1000_check_polarity_igp(struct e1000_hw *hw);
extern bool e1000_check_phy_82574(struct e1000_hw *hw);
static inline s32 e1000_phy_hw_reset(struct e1000_hw *hw)
{
return hw->phy.ops.reset(hw);
}
static inline s32 e1000_check_reset_block(struct e1000_hw *hw)
{
return hw->phy.ops.check_reset_block(hw);
}
static inline s32 e1e_rphy(struct e1000_hw *hw, u32 offset, u16 *data)
{
return hw->phy.ops.read_reg(hw, offset, data);
}
static inline s32 e1e_wphy(struct e1000_hw *hw, u32 offset, u16 data)
{
return hw->phy.ops.write_reg(hw, offset, data);
}
static inline s32 e1000_get_cable_length(struct e1000_hw *hw)
{
return hw->phy.ops.get_cable_length(hw);
}
extern s32 e1000e_acquire_nvm(struct e1000_hw *hw);
extern s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
extern s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw);
extern s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg);
extern s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
extern s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw);
extern void e1000e_release_nvm(struct e1000_hw *hw);
extern void e1000e_reload_nvm(struct e1000_hw *hw);
extern s32 e1000_read_mac_addr_generic(struct e1000_hw *hw);
static inline s32 e1000e_read_mac_addr(struct e1000_hw *hw)
{
if (hw->mac.ops.read_mac_addr)
return hw->mac.ops.read_mac_addr(hw);
return e1000_read_mac_addr_generic(hw);
}
static inline s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
{
return hw->nvm.ops.validate(hw);
}
static inline s32 e1000e_update_nvm_checksum(struct e1000_hw *hw)
{
return hw->nvm.ops.update(hw);
}
static inline s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
{
return hw->nvm.ops.read(hw, offset, words, data);
}
static inline s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
{
return hw->nvm.ops.write(hw, offset, words, data);
}
static inline s32 e1000_get_phy_info(struct e1000_hw *hw)
{
return hw->phy.ops.get_info(hw);
}
static inline s32 e1000e_check_mng_mode(struct e1000_hw *hw)
{
return hw->mac.ops.check_mng_mode(hw);
}
extern bool e1000e_check_mng_mode_generic(struct e1000_hw *hw);
extern bool e1000e_enable_tx_pkt_filtering(struct e1000_hw *hw);
extern s32 e1000e_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length);
static inline u32 __er32(struct e1000_hw *hw, unsigned long reg)
{
return readl(hw->hw_addr + reg);
}
static inline void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
{
writel(val, hw->hw_addr + reg);
}
#endif /* _E1000_H_ */
-------------- n?chster Teil --------------
/*******************************************************************************
Intel PRO/1000 Linux driver
Copyright(c) 1999 - 2011 Intel Corporation.
This program is free software; you can redistribute it and/or modify it
under the terms and conditions of the GNU General Public License,
version 2, as published by the Free Software Foundation.
This program is distributed in the hope it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
The full GNU General Public License is included in this distribution in
the file called "COPYING".
Contact Information:
Linux NICS <linux.nics at intel.com>
e1000-devel Mailing List <e1000-devel at lists.sourceforge.net>
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*******************************************************************************/
#ifndef _E1000_DEFINES_H_
#define _E1000_DEFINES_H_
#define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */
#define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */
#define E1000_TXD_CMD_EOP 0x01000000 /* End of Packet */
#define E1000_TXD_CMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */
#define E1000_TXD_CMD_IC 0x04000000 /* Insert Checksum */
#define E1000_TXD_CMD_RS 0x08000000 /* Report Status */
#define E1000_TXD_CMD_RPS 0x10000000 /* Report Packet Sent */
#define E1000_TXD_CMD_DEXT 0x20000000 /* Descriptor extension (0 = legacy) */
#define E1000_TXD_CMD_VLE 0x40000000 /* Add VLAN tag */
#define E1000_TXD_CMD_IDE 0x80000000 /* Enable Tidv register */
#define E1000_TXD_STAT_DD 0x00000001 /* Descriptor Done */
#define E1000_TXD_STAT_EC 0x00000002 /* Excess Collisions */
#define E1000_TXD_STAT_LC 0x00000004 /* Late Collisions */
#define E1000_TXD_STAT_TU 0x00000008 /* Transmit underrun */
#define E1000_TXD_CMD_TCP 0x01000000 /* TCP packet */
#define E1000_TXD_CMD_IP 0x02000000 /* IP packet */
#define E1000_TXD_CMD_TSE 0x04000000 /* TCP Seg enable */
#define E1000_TXD_STAT_TC 0x00000004 /* Tx Underrun */
/* Number of Transmit and Receive Descriptors must be a multiple of 8 */
#define REQ_TX_DESCRIPTOR_MULTIPLE 8
#define REQ_RX_DESCRIPTOR_MULTIPLE 8
/* Definitions for power management and wakeup registers */
/* Wake Up Control */
#define E1000_WUC_APME 0x00000001 /* APM Enable */
#define E1000_WUC_PME_EN 0x00000002 /* PME Enable */
#define E1000_WUC_PHY_WAKE 0x00000100 /* if PHY supports wakeup */
/* Wake Up Filter Control */
#define E1000_WUFC_LNKC 0x00000001 /* Link Status Change Wakeup Enable */
#define E1000_WUFC_MAG 0x00000002 /* Magic Packet Wakeup Enable */
#define E1000_WUFC_EX 0x00000004 /* Directed Exact Wakeup Enable */
#define E1000_WUFC_MC 0x00000008 /* Directed Multicast Wakeup Enable */
#define E1000_WUFC_BC 0x00000010 /* Broadcast Wakeup Enable */
#define E1000_WUFC_ARP 0x00000020 /* ARP Request Packet Wakeup Enable */
/* Wake Up Status */
#define E1000_WUS_LNKC E1000_WUFC_LNKC
#define E1000_WUS_MAG E1000_WUFC_MAG
#define E1000_WUS_EX E1000_WUFC_EX
#define E1000_WUS_MC E1000_WUFC_MC
#define E1000_WUS_BC E1000_WUFC_BC
/* Extended Device Control */
#define E1000_CTRL_EXT_SDP3_DATA 0x00000080 /* Value of SW Definable Pin 3 */
#define E1000_CTRL_EXT_EE_RST 0x00002000 /* Reinitialize from EEPROM */
#define E1000_CTRL_EXT_SPD_BYPS 0x00008000 /* Speed Select Bypass */
#define E1000_CTRL_EXT_RO_DIS 0x00020000 /* Relaxed Ordering disable */
#define E1000_CTRL_EXT_DMA_DYN_CLK_EN 0x00080000 /* DMA Dynamic Clock Gating */
#define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000
#define E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES 0x00C00000
#define E1000_CTRL_EXT_EIAME 0x01000000
#define E1000_CTRL_EXT_DRV_LOAD 0x10000000 /* Driver loaded bit for FW */
#define E1000_CTRL_EXT_IAME 0x08000000 /* Interrupt acknowledge Auto-mask */
#define E1000_CTRL_EXT_INT_TIMER_CLR 0x20000000 /* Clear Interrupt timers after IMS clear */
#define E1000_CTRL_EXT_PBA_CLR 0x80000000 /* PBA Clear */
#define E1000_CTRL_EXT_LSECCK 0x00001000
#define E1000_CTRL_EXT_PHYPDEN 0x00100000
/* Receive Descriptor bit definitions */
#define E1000_RXD_STAT_DD 0x01 /* Descriptor Done */
#define E1000_RXD_STAT_EOP 0x02 /* End of Packet */
#define E1000_RXD_STAT_IXSM 0x04 /* Ignore checksum */
#define E1000_RXD_STAT_VP 0x08 /* IEEE VLAN Packet */
#define E1000_RXD_STAT_UDPCS 0x10 /* UDP xsum calculated */
#define E1000_RXD_STAT_TCPCS 0x20 /* TCP xsum calculated */
#define E1000_RXD_ERR_CE 0x01 /* CRC Error */
#define E1000_RXD_ERR_SE 0x02 /* Symbol Error */
#define E1000_RXD_ERR_SEQ 0x04 /* Sequence Error */
#define E1000_RXD_ERR_CXE 0x10 /* Carrier Extension Error */
#define E1000_RXD_ERR_TCPE 0x20 /* TCP/UDP Checksum Error */
#define E1000_RXD_ERR_RXE 0x80 /* Rx Data Error */
#define E1000_RXD_SPC_VLAN_MASK 0x0FFF /* VLAN ID is in lower 12 bits */
#define E1000_RXDEXT_STATERR_CE 0x01000000
#define E1000_RXDEXT_STATERR_SE 0x02000000
#define E1000_RXDEXT_STATERR_SEQ 0x04000000
#define E1000_RXDEXT_STATERR_CXE 0x10000000
#define E1000_RXDEXT_STATERR_RXE 0x80000000
/* mask to determine if packets should be dropped due to frame errors */
#define E1000_RXD_ERR_FRAME_ERR_MASK ( \
E1000_RXD_ERR_CE | \
E1000_RXD_ERR_SE | \
E1000_RXD_ERR_SEQ | \
E1000_RXD_ERR_CXE | \
E1000_RXD_ERR_RXE)
/* Same mask, but for extended and packet split descriptors */
#define E1000_RXDEXT_ERR_FRAME_ERR_MASK ( \
E1000_RXDEXT_STATERR_CE | \
E1000_RXDEXT_STATERR_SE | \
E1000_RXDEXT_STATERR_SEQ | \
E1000_RXDEXT_STATERR_CXE | \
E1000_RXDEXT_STATERR_RXE)
#define E1000_RXDPS_HDRSTAT_HDRSP 0x00008000
/* Management Control */
#define E1000_MANC_SMBUS_EN 0x00000001 /* SMBus Enabled - RO */
#define E1000_MANC_ASF_EN 0x00000002 /* ASF Enabled - RO */
#define E1000_MANC_ARP_EN 0x00002000 /* Enable ARP Request Filtering */
#define E1000_MANC_RCV_TCO_EN 0x00020000 /* Receive TCO Packets Enabled */
#define E1000_MANC_BLK_PHY_RST_ON_IDE 0x00040000 /* Block phy resets */
/* Enable MAC address filtering */
#define E1000_MANC_EN_MAC_ADDR_FILTER 0x00100000
/* Enable MNG packets to host memory */
#define E1000_MANC_EN_MNG2HOST 0x00200000
#define E1000_MANC2H_PORT_623 0x00000020 /* Port 0x26f */
#define E1000_MANC2H_PORT_664 0x00000040 /* Port 0x298 */
#define E1000_MDEF_PORT_623 0x00000800 /* Port 0x26f */
#define E1000_MDEF_PORT_664 0x00000400 /* Port 0x298 */
/* Receive Control */
#define E1000_RCTL_EN 0x00000002 /* enable */
#define E1000_RCTL_SBP 0x00000004 /* store bad packet */
#define E1000_RCTL_UPE 0x00000008 /* unicast promiscuous enable */
#define E1000_RCTL_MPE 0x00000010 /* multicast promiscuous enab */
#define E1000_RCTL_LPE 0x00000020 /* long packet enable */
#define E1000_RCTL_LBM_NO 0x00000000 /* no loopback mode */
#define E1000_RCTL_LBM_MAC 0x00000040 /* MAC loopback mode */
#define E1000_RCTL_LBM_TCVR 0x000000C0 /* tcvr loopback mode */
#define E1000_RCTL_DTYP_PS 0x00000400 /* Packet Split descriptor */
#define E1000_RCTL_RDMTS_HALF 0x00000000 /* Rx desc min threshold size */
#define E1000_RCTL_MO_SHIFT 12 /* multicast offset shift */
#define E1000_RCTL_MO_3 0x00003000 /* multicast offset 15:4 */
#define E1000_RCTL_BAM 0x00008000 /* broadcast enable */
/* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */
#define E1000_RCTL_SZ_2048 0x00000000 /* Rx buffer size 2048 */
#define E1000_RCTL_SZ_1024 0x00010000 /* Rx buffer size 1024 */
#define E1000_RCTL_SZ_512 0x00020000 /* Rx buffer size 512 */
#define E1000_RCTL_SZ_256 0x00030000 /* Rx buffer size 256 */
/* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */
#define E1000_RCTL_SZ_16384 0x00010000 /* Rx buffer size 16384 */
#define E1000_RCTL_SZ_8192 0x00020000 /* Rx buffer size 8192 */
#define E1000_RCTL_SZ_4096 0x00030000 /* Rx buffer size 4096 */
#define E1000_RCTL_VFE 0x00040000 /* vlan filter enable */
#define E1000_RCTL_CFIEN 0x00080000 /* canonical form enable */
#define E1000_RCTL_CFI 0x00100000 /* canonical form indicator */
#define E1000_RCTL_PMCF 0x00800000 /* pass MAC control frames */
#define E1000_RCTL_BSEX 0x02000000 /* Buffer size extension */
#define E1000_RCTL_SECRC 0x04000000 /* Strip Ethernet CRC */
/*
* Use byte values for the following shift parameters
* Usage:
* psrctl |= (((ROUNDUP(value0, 128) >> E1000_PSRCTL_BSIZE0_SHIFT) &
* E1000_PSRCTL_BSIZE0_MASK) |
* ((ROUNDUP(value1, 1024) >> E1000_PSRCTL_BSIZE1_SHIFT) &
* E1000_PSRCTL_BSIZE1_MASK) |
* ((ROUNDUP(value2, 1024) << E1000_PSRCTL_BSIZE2_SHIFT) &
* E1000_PSRCTL_BSIZE2_MASK) |
* ((ROUNDUP(value3, 1024) << E1000_PSRCTL_BSIZE3_SHIFT) |;
* E1000_PSRCTL_BSIZE3_MASK))
* where value0 = [128..16256], default=256
* value1 = [1024..64512], default=4096
* value2 = [0..64512], default=4096
* value3 = [0..64512], default=0
*/
#define E1000_PSRCTL_BSIZE0_MASK 0x0000007F
#define E1000_PSRCTL_BSIZE1_MASK 0x00003F00
#define E1000_PSRCTL_BSIZE2_MASK 0x003F0000
#define E1000_PSRCTL_BSIZE3_MASK 0x3F000000
#define E1000_PSRCTL_BSIZE0_SHIFT 7 /* Shift _right_ 7 */
#define E1000_PSRCTL_BSIZE1_SHIFT 2 /* Shift _right_ 2 */
#define E1000_PSRCTL_BSIZE2_SHIFT 6 /* Shift _left_ 6 */
#define E1000_PSRCTL_BSIZE3_SHIFT 14 /* Shift _left_ 14 */
/* SWFW_SYNC Definitions */
#define E1000_SWFW_EEP_SM 0x1
#define E1000_SWFW_PHY0_SM 0x2
#define E1000_SWFW_PHY1_SM 0x4
#define E1000_SWFW_CSR_SM 0x8
/* Device Control */
#define E1000_CTRL_FD 0x00000001 /* Full duplex.0=half; 1=full */
#define E1000_CTRL_GIO_MASTER_DISABLE 0x00000004 /*Blocks new Master requests */
#define E1000_CTRL_LRST 0x00000008 /* Link reset. 0=normal,1=reset */
#define E1000_CTRL_ASDE 0x00000020 /* Auto-speed detect enable */
#define E1000_CTRL_SLU 0x00000040 /* Set link up (Force Link) */
#define E1000_CTRL_ILOS 0x00000080 /* Invert Loss-Of Signal */
#define E1000_CTRL_SPD_SEL 0x00000300 /* Speed Select Mask */
#define E1000_CTRL_SPD_10 0x00000000 /* Force 10Mb */
#define E1000_CTRL_SPD_100 0x00000100 /* Force 100Mb */
#define E1000_CTRL_SPD_1000 0x00000200 /* Force 1Gb */
#define E1000_CTRL_FRCSPD 0x00000800 /* Force Speed */
#define E1000_CTRL_FRCDPX 0x00001000 /* Force Duplex */
#define E1000_CTRL_LANPHYPC_OVERRIDE 0x00010000 /* SW control of LANPHYPC */
#define E1000_CTRL_LANPHYPC_VALUE 0x00020000 /* SW value of LANPHYPC */
#define E1000_CTRL_SWDPIN0 0x00040000 /* SWDPIN 0 value */
#define E1000_CTRL_SWDPIN1 0x00080000 /* SWDPIN 1 value */
#define E1000_CTRL_SWDPIO0 0x00400000 /* SWDPIN 0 Input or output */
#define E1000_CTRL_RST 0x04000000 /* Global reset */
#define E1000_CTRL_RFCE 0x08000000 /* Receive Flow Control enable */
#define E1000_CTRL_TFCE 0x10000000 /* Transmit flow control enable */
#define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */
#define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */
/*
* Bit definitions for the Management Data IO (MDIO) and Management Data
* Clock (MDC) pins in the Device Control Register.
*/
/* Device Status */
#define E1000_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */
#define E1000_STATUS_LU 0x00000002 /* Link up.0=no,1=link */
#define E1000_STATUS_FUNC_MASK 0x0000000C /* PCI Function Mask */
#define E1000_STATUS_FUNC_SHIFT 2
#define E1000_STATUS_FUNC_1 0x00000004 /* Function 1 */
#define E1000_STATUS_TXOFF 0x00000010 /* transmission paused */
#define E1000_STATUS_SPEED_10 0x00000000 /* Speed 10Mb/s */
#define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */
#define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */
#define E1000_STATUS_LAN_INIT_DONE 0x00000200 /* Lan Init Completion by NVM */
#define E1000_STATUS_PHYRA 0x00000400 /* PHY Reset Asserted */
#define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000 /* Status of Master requests. */
/* Constants used to interpret the masked PCI-X bus speed. */
#define HALF_DUPLEX 1
#define FULL_DUPLEX 2
#define ADVERTISE_10_HALF 0x0001
#define ADVERTISE_10_FULL 0x0002
#define ADVERTISE_100_HALF 0x0004
#define ADVERTISE_100_FULL 0x0008
#define ADVERTISE_1000_HALF 0x0010 /* Not used, just FYI */
#define ADVERTISE_1000_FULL 0x0020
/* 1000/H is not supported, nor spec-compliant. */
#define E1000_ALL_SPEED_DUPLEX ( ADVERTISE_10_HALF | ADVERTISE_10_FULL | \
ADVERTISE_100_HALF | ADVERTISE_100_FULL | \
ADVERTISE_1000_FULL)
#define E1000_ALL_NOT_GIG ( ADVERTISE_10_HALF | ADVERTISE_10_FULL | \
ADVERTISE_100_HALF | ADVERTISE_100_FULL)
#define E1000_ALL_100_SPEED (ADVERTISE_100_HALF | ADVERTISE_100_FULL)
#define E1000_ALL_10_SPEED (ADVERTISE_10_HALF | ADVERTISE_10_FULL)
#define E1000_ALL_HALF_DUPLEX (ADVERTISE_10_HALF | ADVERTISE_100_HALF)
#define AUTONEG_ADVERTISE_SPEED_DEFAULT E1000_ALL_SPEED_DUPLEX
/* LED Control */
#define E1000_PHY_LED0_MODE_MASK 0x00000007
#define E1000_PHY_LED0_IVRT 0x00000008
#define E1000_PHY_LED0_MASK 0x0000001F
#define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F
#define E1000_LEDCTL_LED0_MODE_SHIFT 0
#define E1000_LEDCTL_LED0_IVRT 0x00000040
#define E1000_LEDCTL_LED0_BLINK 0x00000080
#define E1000_LEDCTL_MODE_LINK_UP 0x2
#define E1000_LEDCTL_MODE_LED_ON 0xE
#define E1000_LEDCTL_MODE_LED_OFF 0xF
/* Transmit Descriptor bit definitions */
#define E1000_TXD_DTYP_D 0x00100000 /* Data Descriptor */
#define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */
#define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */
#define E1000_TXD_CMD_EOP 0x01000000 /* End of Packet */
#define E1000_TXD_CMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */
#define E1000_TXD_CMD_IC 0x04000000 /* Insert Checksum */
#define E1000_TXD_CMD_RS 0x08000000 /* Report Status */
#define E1000_TXD_CMD_RPS 0x10000000 /* Report Packet Sent */
#define E1000_TXD_CMD_DEXT 0x20000000 /* Descriptor extension (0 = legacy) */
#define E1000_TXD_CMD_VLE 0x40000000 /* Add VLAN tag */
#define E1000_TXD_CMD_IDE 0x80000000 /* Enable Tidv register */
#define E1000_TXD_STAT_DD 0x00000001 /* Descriptor Done */
#define E1000_TXD_STAT_EC 0x00000002 /* Excess Collisions */
#define E1000_TXD_STAT_LC 0x00000004 /* Late Collisions */
#define E1000_TXD_STAT_TU 0x00000008 /* Transmit underrun */
#define E1000_TXD_CMD_TCP 0x01000000 /* TCP packet */
#define E1000_TXD_CMD_IP 0x02000000 /* IP packet */
#define E1000_TXD_CMD_TSE 0x04000000 /* TCP Seg enable */
#define E1000_TXD_STAT_TC 0x00000004 /* Tx Underrun */
/* Transmit Control */
#define E1000_TCTL_EN 0x00000002 /* enable Tx */
#define E1000_TCTL_PSP 0x00000008 /* pad short packets */
#define E1000_TCTL_CT 0x00000ff0 /* collision threshold */
#define E1000_TCTL_COLD 0x003ff000 /* collision distance */
#define E1000_TCTL_RTLC 0x01000000 /* Re-transmit on late collision */
#define E1000_TCTL_MULR 0x10000000 /* Multiple request support */
/* Transmit Arbitration Count */
/* SerDes Control */
#define E1000_SCTL_DISABLE_SERDES_LOOPBACK 0x0400
/* Receive Checksum Control */
#define E1000_RXCSUM_TUOFL 0x00000200 /* TCP / UDP checksum offload */
#define E1000_RXCSUM_IPPCSE 0x00001000 /* IP payload checksum enable */
/* Header split receive */
#define E1000_RFCTL_NFSW_DIS 0x00000040
#define E1000_RFCTL_NFSR_DIS 0x00000080
#define E1000_RFCTL_ACK_DIS 0x00001000
#define E1000_RFCTL_EXTEN 0x00008000
#define E1000_RFCTL_IPV6_EX_DIS 0x00010000
#define E1000_RFCTL_NEW_IPV6_EXT_DIS 0x00020000
/* Collision related configuration parameters */
#define E1000_COLLISION_THRESHOLD 15
#define E1000_CT_SHIFT 4
#define E1000_COLLISION_DISTANCE 63
#define E1000_COLD_SHIFT 12
/* Default values for the transmit IPG register */
#define DEFAULT_82543_TIPG_IPGT_COPPER 8
#define E1000_TIPG_IPGT_MASK 0x000003FF
#define DEFAULT_82543_TIPG_IPGR1 8
#define E1000_TIPG_IPGR1_SHIFT 10
#define DEFAULT_82543_TIPG_IPGR2 6
#define DEFAULT_80003ES2LAN_TIPG_IPGR2 7
#define E1000_TIPG_IPGR2_SHIFT 20
#define MAX_JUMBO_FRAME_SIZE 0x3F00
/* Extended Configuration Control and Size */
#define E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP 0x00000020
#define E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE 0x00000001
#define E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE 0x00000008
#define E1000_EXTCNF_CTRL_SWFLAG 0x00000020
#define E1000_EXTCNF_CTRL_GATE_PHY_CFG 0x00000080
#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK 0x00FF0000
#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT 16
#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK 0x0FFF0000
#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT 16
#define E1000_PHY_CTRL_D0A_LPLU 0x00000002
#define E1000_PHY_CTRL_NOND0A_LPLU 0x00000004
#define E1000_PHY_CTRL_NOND0A_GBE_DISABLE 0x00000008
#define E1000_PHY_CTRL_GBE_DISABLE 0x00000040
#define E1000_KABGTXD_BGSQLBIAS 0x00050000
/* PBA constants */
#define E1000_PBA_8K 0x0008 /* 8KB */
#define E1000_PBA_16K 0x0010 /* 16KB */
#define E1000_PBS_16K E1000_PBA_16K
#define IFS_MAX 80
#define IFS_MIN 40
#define IFS_RATIO 4
#define IFS_STEP 10
#define MIN_NUM_XMITS 1000
/* SW Semaphore Register */
#define E1000_SWSM_SMBI 0x00000001 /* Driver Semaphore bit */
#define E1000_SWSM_SWESMBI 0x00000002 /* FW Semaphore bit */
#define E1000_SWSM_DRV_LOAD 0x00000008 /* Driver Loaded Bit */
#define E1000_SWSM2_LOCK 0x00000002 /* Secondary driver semaphore bit */
/* Interrupt Cause Read */
#define E1000_ICR_TXDW 0x00000001 /* Transmit desc written back */
#define E1000_ICR_LSC 0x00000004 /* Link Status Change */
#define E1000_ICR_RXSEQ 0x00000008 /* Rx sequence error */
#define E1000_ICR_RXDMT0 0x00000010 /* Rx desc min. threshold (0) */
#define E1000_ICR_RXT0 0x00000080 /* Rx timer intr (ring 0) */
#define E1000_ICR_INT_ASSERTED 0x80000000 /* If this bit asserted, the driver should claim the interrupt */
#define E1000_ICR_RXQ0 0x00100000 /* Rx Queue 0 Interrupt */
#define E1000_ICR_RXQ1 0x00200000 /* Rx Queue 1 Interrupt */
#define E1000_ICR_TXQ0 0x00400000 /* Tx Queue 0 Interrupt */
#define E1000_ICR_TXQ1 0x00800000 /* Tx Queue 1 Interrupt */
#define E1000_ICR_OTHER 0x01000000 /* Other Interrupts */
/* PBA ECC Register */
#define E1000_PBA_ECC_COUNTER_MASK 0xFFF00000 /* ECC counter mask */
#define E1000_PBA_ECC_COUNTER_SHIFT 20 /* ECC counter shift value */
#define E1000_PBA_ECC_CORR_EN 0x00000001 /* ECC correction enable */
#define E1000_PBA_ECC_STAT_CLR 0x00000002 /* Clear ECC error counter */
#define E1000_PBA_ECC_INT_EN 0x00000004 /* Enable ICR bit 5 for ECC */
/*
* This defines the bits that are set in the Interrupt Mask
* Set/Read Register. Each bit is documented below:
* o RXT0 = Receiver Timer Interrupt (ring 0)
* o TXDW = Transmit Descriptor Written Back
* o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0)
* o RXSEQ = Receive Sequence Error
* o LSC = Link Status Change
*/
#define IMS_ENABLE_MASK ( \
E1000_IMS_RXT0 | \
E1000_IMS_TXDW | \
E1000_IMS_RXDMT0 | \
E1000_IMS_RXSEQ | \
E1000_IMS_LSC)
/* Interrupt Mask Set */
#define E1000_IMS_TXDW E1000_ICR_TXDW /* Transmit desc written back */
#define E1000_IMS_LSC E1000_ICR_LSC /* Link Status Change */
#define E1000_IMS_RXSEQ E1000_ICR_RXSEQ /* Rx sequence error */
#define E1000_IMS_RXDMT0 E1000_ICR_RXDMT0 /* Rx desc min. threshold */
#define E1000_IMS_RXT0 E1000_ICR_RXT0 /* Rx timer intr */
#define E1000_IMS_RXQ0 E1000_ICR_RXQ0 /* Rx Queue 0 Interrupt */
#define E1000_IMS_RXQ1 E1000_ICR_RXQ1 /* Rx Queue 1 Interrupt */
#define E1000_IMS_TXQ0 E1000_ICR_TXQ0 /* Tx Queue 0 Interrupt */
#define E1000_IMS_TXQ1 E1000_ICR_TXQ1 /* Tx Queue 1 Interrupt */
#define E1000_IMS_OTHER E1000_ICR_OTHER /* Other Interrupts */
/* Interrupt Cause Set */
#define E1000_ICS_LSC E1000_ICR_LSC /* Link Status Change */
#define E1000_ICS_RXSEQ E1000_ICR_RXSEQ /* Rx sequence error */
#define E1000_ICS_RXDMT0 E1000_ICR_RXDMT0 /* Rx desc min. threshold */
/* Transmit Descriptor Control */
#define E1000_TXDCTL_PTHRESH 0x0000003F /* TXDCTL Prefetch Threshold */
#define E1000_TXDCTL_HTHRESH 0x00003F00 /* TXDCTL Host Threshold */
#define E1000_TXDCTL_WTHRESH 0x003F0000 /* TXDCTL Writeback Threshold */
#define E1000_TXDCTL_GRAN 0x01000000 /* TXDCTL Granularity */
#define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */
#define E1000_TXDCTL_MAX_TX_DESC_PREFETCH 0x0100001F /* GRAN=1, PTHRESH=31 */
/* Enable the counting of desc. still to be processed. */
#define E1000_TXDCTL_COUNT_DESC 0x00400000
/* Flow Control Constants */
#define FLOW_CONTROL_ADDRESS_LOW 0x00C28001
#define FLOW_CONTROL_ADDRESS_HIGH 0x00000100
#define FLOW_CONTROL_TYPE 0x8808
/* 802.1q VLAN Packet Size */
#define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */
/* Receive Address */
/*
* Number of high/low register pairs in the RAR. The RAR (Receive Address
* Registers) holds the directed and multicast addresses that we monitor.
* Technically, we have 16 spots. However, we reserve one of these spots
* (RAR[15]) for our directed address used by controllers with
* manageability enabled, allowing us room for 15 multicast addresses.
*/
#define E1000_RAR_ENTRIES 15
#define E1000_RAH_AV 0x80000000 /* Receive descriptor valid */
#define E1000_RAL_MAC_ADDR_LEN 4
#define E1000_RAH_MAC_ADDR_LEN 2
/* Error Codes */
#define E1000_ERR_NVM 1
#define E1000_ERR_PHY 2
#define E1000_ERR_CONFIG 3
#define E1000_ERR_PARAM 4
#define E1000_ERR_MAC_INIT 5
#define E1000_ERR_PHY_TYPE 6
#define E1000_ERR_RESET 9
#define E1000_ERR_MASTER_REQUESTS_PENDING 10
#define E1000_ERR_HOST_INTERFACE_COMMAND 11
#define E1000_BLK_PHY_RESET 12
#define E1000_ERR_SWFW_SYNC 13
#define E1000_NOT_IMPLEMENTED 14
#define E1000_ERR_INVALID_ARGUMENT 16
#define E1000_ERR_NO_SPACE 17
#define E1000_ERR_NVM_PBA_SECTION 18
/* Loop limit on how long we wait for auto-negotiation to complete */
#define FIBER_LINK_UP_LIMIT 50
#define COPPER_LINK_UP_LIMIT 10
#define PHY_AUTO_NEG_LIMIT 45
#define PHY_FORCE_LIMIT 20
/* Number of 100 microseconds we wait for PCI Express master disable */
#define MASTER_DISABLE_TIMEOUT 800
/* Number of milliseconds we wait for PHY configuration done after MAC reset */
#define PHY_CFG_TIMEOUT 100
/* Number of 2 milliseconds we wait for acquiring MDIO ownership. */
#define MDIO_OWNERSHIP_TIMEOUT 10
/* Number of milliseconds for NVM auto read done after MAC reset. */
#define AUTO_READ_DONE_TIMEOUT 10
/* Flow Control */
#define E1000_FCRTH_RTH 0x0000FFF8 /* Mask Bits[15:3] for RTH */
#define E1000_FCRTL_RTL 0x0000FFF8 /* Mask Bits[15:3] for RTL */
#define E1000_FCRTL_XONE 0x80000000 /* Enable XON frame transmission */
/* Transmit Configuration Word */
#define E1000_TXCW_FD 0x00000020 /* TXCW full duplex */
#define E1000_TXCW_PAUSE 0x00000080 /* TXCW sym pause request */
#define E1000_TXCW_ASM_DIR 0x00000100 /* TXCW astm pause direction */
#define E1000_TXCW_PAUSE_MASK 0x00000180 /* TXCW pause request mask */
#define E1000_TXCW_ANE 0x80000000 /* Auto-neg enable */
/* Receive Configuration Word */
#define E1000_RXCW_CW 0x0000ffff /* RxConfigWord mask */
#define E1000_RXCW_IV 0x08000000 /* Receive config invalid */
#define E1000_RXCW_C 0x20000000 /* Receive config */
#define E1000_RXCW_SYNCH 0x40000000 /* Receive config synch */
/* PCI Express Control */
#define E1000_GCR_RXD_NO_SNOOP 0x00000001
#define E1000_GCR_RXDSCW_NO_SNOOP 0x00000002
#define E1000_GCR_RXDSCR_NO_SNOOP 0x00000004
#define E1000_GCR_TXD_NO_SNOOP 0x00000008
#define E1000_GCR_TXDSCW_NO_SNOOP 0x00000010
#define E1000_GCR_TXDSCR_NO_SNOOP 0x00000020
#define PCIE_NO_SNOOP_ALL (E1000_GCR_RXD_NO_SNOOP | \
E1000_GCR_RXDSCW_NO_SNOOP | \
E1000_GCR_RXDSCR_NO_SNOOP | \
E1000_GCR_TXD_NO_SNOOP | \
E1000_GCR_TXDSCW_NO_SNOOP | \
E1000_GCR_TXDSCR_NO_SNOOP)
/* PHY Control Register */
#define MII_CR_FULL_DUPLEX 0x0100 /* FDX =1, half duplex =0 */
#define MII_CR_RESTART_AUTO_NEG 0x0200 /* Restart auto negotiation */
#define MII_CR_POWER_DOWN 0x0800 /* Power down */
#define MII_CR_AUTO_NEG_EN 0x1000 /* Auto Neg Enable */
#define MII_CR_LOOPBACK 0x4000 /* 0 = normal, 1 = loopback */
#define MII_CR_RESET 0x8000 /* 0 = normal, 1 = PHY reset */
#define MII_CR_SPEED_1000 0x0040
#define MII_CR_SPEED_100 0x2000
#define MII_CR_SPEED_10 0x0000
/* PHY Status Register */
#define MII_SR_LINK_STATUS 0x0004 /* Link Status 1 = link */
#define MII_SR_AUTONEG_COMPLETE 0x0020 /* Auto Neg Complete */
/* Autoneg Advertisement Register */
#define NWAY_AR_10T_HD_CAPS 0x0020 /* 10T Half Duplex Capable */
#define NWAY_AR_10T_FD_CAPS 0x0040 /* 10T Full Duplex Capable */
#define NWAY_AR_100TX_HD_CAPS 0x0080 /* 100TX Half Duplex Capable */
#define NWAY_AR_100TX_FD_CAPS 0x0100 /* 100TX Full Duplex Capable */
#define NWAY_AR_PAUSE 0x0400 /* Pause operation desired */
#define NWAY_AR_ASM_DIR 0x0800 /* Asymmetric Pause Direction bit */
/* Link Partner Ability Register (Base Page) */
#define NWAY_LPAR_PAUSE 0x0400 /* LP Pause operation desired */
#define NWAY_LPAR_ASM_DIR 0x0800 /* LP Asymmetric Pause Direction bit */
/* Autoneg Expansion Register */
#define NWAY_ER_LP_NWAY_CAPS 0x0001 /* LP has Auto Neg Capability */
/* 1000BASE-T Control Register */
#define CR_1000T_HD_CAPS 0x0100 /* Advertise 1000T HD capability */
#define CR_1000T_FD_CAPS 0x0200 /* Advertise 1000T FD capability */
/* 0=DTE device */
#define CR_1000T_MS_VALUE 0x0800 /* 1=Configure PHY as Master */
/* 0=Configure PHY as Slave */
#define CR_1000T_MS_ENABLE 0x1000 /* 1=Master/Slave manual config value */
/* 0=Automatic Master/Slave config */
/* 1000BASE-T Status Register */
#define SR_1000T_REMOTE_RX_STATUS 0x1000 /* Remote receiver OK */
#define SR_1000T_LOCAL_RX_STATUS 0x2000 /* Local receiver OK */
/* PHY 1000 MII Register/Bit Definitions */
/* PHY Registers defined by IEEE */
#define PHY_CONTROL 0x00 /* Control Register */
#define PHY_STATUS 0x01 /* Status Register */
#define PHY_ID1 0x02 /* Phy Id Reg (word 1) */
#define PHY_ID2 0x03 /* Phy Id Reg (word 2) */
#define PHY_AUTONEG_ADV 0x04 /* Autoneg Advertisement */
#define PHY_LP_ABILITY 0x05 /* Link Partner Ability (Base Page) */
#define PHY_AUTONEG_EXP 0x06 /* Autoneg Expansion Reg */
#define PHY_1000T_CTRL 0x09 /* 1000Base-T Control Reg */
#define PHY_1000T_STATUS 0x0A /* 1000Base-T Status Reg */
#define PHY_EXT_STATUS 0x0F /* Extended Status Reg */
#define PHY_CONTROL_LB 0x4000 /* PHY Loopback bit */
/* NVM Control */
#define E1000_EECD_SK 0x00000001 /* NVM Clock */
#define E1000_EECD_CS 0x00000002 /* NVM Chip Select */
#define E1000_EECD_DI 0x00000004 /* NVM Data In */
#define E1000_EECD_DO 0x00000008 /* NVM Data Out */
#define E1000_EECD_REQ 0x00000040 /* NVM Access Request */
#define E1000_EECD_GNT 0x00000080 /* NVM Access Grant */
#define E1000_EECD_PRES 0x00000100 /* NVM Present */
#define E1000_EECD_SIZE 0x00000200 /* NVM Size (0=64 word 1=256 word) */
/* NVM Addressing bits based on type (0-small, 1-large) */
#define E1000_EECD_ADDR_BITS 0x00000400
#define E1000_NVM_GRANT_ATTEMPTS 1000 /* NVM # attempts to gain grant */
#define E1000_EECD_AUTO_RD 0x00000200 /* NVM Auto Read done */
#define E1000_EECD_SIZE_EX_MASK 0x00007800 /* NVM Size */
#define E1000_EECD_SIZE_EX_SHIFT 11
#define E1000_EECD_FLUPD 0x00080000 /* Update FLASH */
#define E1000_EECD_AUPDEN 0x00100000 /* Enable Autonomous FLASH update */
#define E1000_EECD_SEC1VAL 0x00400000 /* Sector One Valid */
#define E1000_EECD_SEC1VAL_VALID_MASK (E1000_EECD_AUTO_RD | E1000_EECD_PRES)
#define E1000_NVM_RW_REG_DATA 16 /* Offset to data in NVM read/write registers */
#define E1000_NVM_RW_REG_DONE 2 /* Offset to READ/WRITE done bit */
#define E1000_NVM_RW_REG_START 1 /* Start operation */
#define E1000_NVM_RW_ADDR_SHIFT 2 /* Shift to the address bits */
#define E1000_NVM_POLL_WRITE 1 /* Flag for polling for write complete */
#define E1000_NVM_POLL_READ 0 /* Flag for polling for read complete */
#define E1000_FLASH_UPDATES 2000
/* NVM Word Offsets */
#define NVM_COMPAT 0x0003
#define NVM_ID_LED_SETTINGS 0x0004
#define NVM_INIT_CONTROL2_REG 0x000F
#define NVM_INIT_CONTROL3_PORT_B 0x0014
#define NVM_INIT_3GIO_3 0x001A
#define NVM_INIT_CONTROL3_PORT_A 0x0024
#define NVM_CFG 0x0012
#define NVM_ALT_MAC_ADDR_PTR 0x0037
#define NVM_CHECKSUM_REG 0x003F
#define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */
#define E1000_NVM_CFG_DONE_PORT_0 0x40000 /* MNG config cycle done */
#define E1000_NVM_CFG_DONE_PORT_1 0x80000 /* ...for second port */
/* Mask bits for fields in Word 0x0f of the NVM */
#define NVM_WORD0F_PAUSE_MASK 0x3000
#define NVM_WORD0F_PAUSE 0x1000
#define NVM_WORD0F_ASM_DIR 0x2000
/* Mask bits for fields in Word 0x1a of the NVM */
#define NVM_WORD1A_ASPM_MASK 0x000C
/* Mask bits for fields in Word 0x03 of the EEPROM */
#define NVM_COMPAT_LOM 0x0800
/* length of string needed to store PBA number */
#define E1000_PBANUM_LENGTH 11
/* For checksumming, the sum of all words in the NVM should equal 0xBABA. */
#define NVM_SUM 0xBABA
/* PBA (printed board assembly) number words */
#define NVM_PBA_OFFSET_0 8
#define NVM_PBA_OFFSET_1 9
#define NVM_PBA_PTR_GUARD 0xFAFA
#define NVM_WORD_SIZE_BASE_SHIFT 6
/* NVM Commands - SPI */
#define NVM_MAX_RETRY_SPI 5000 /* Max wait of 5ms, for RDY signal */
#define NVM_READ_OPCODE_SPI 0x03 /* NVM read opcode */
#define NVM_WRITE_OPCODE_SPI 0x02 /* NVM write opcode */
#define NVM_A8_OPCODE_SPI 0x08 /* opcode bit-3 = address bit-8 */
#define NVM_WREN_OPCODE_SPI 0x06 /* NVM set Write Enable latch */
#define NVM_RDSR_OPCODE_SPI 0x05 /* NVM read Status register */
/* SPI NVM Status Register */
#define NVM_STATUS_RDY_SPI 0x01
/* Word definitions for ID LED Settings */
#define ID_LED_RESERVED_0000 0x0000
#define ID_LED_RESERVED_FFFF 0xFFFF
#define ID_LED_DEFAULT ((ID_LED_OFF1_ON2 << 12) | \
(ID_LED_OFF1_OFF2 << 8) | \
(ID_LED_DEF1_DEF2 << 4) | \
(ID_LED_DEF1_DEF2))
#define ID_LED_DEF1_DEF2 0x1
#define ID_LED_DEF1_ON2 0x2
#define ID_LED_DEF1_OFF2 0x3
#define ID_LED_ON1_DEF2 0x4
#define ID_LED_ON1_ON2 0x5
#define ID_LED_ON1_OFF2 0x6
#define ID_LED_OFF1_DEF2 0x7
#define ID_LED_OFF1_ON2 0x8
#define ID_LED_OFF1_OFF2 0x9
#define IGP_ACTIVITY_LED_MASK 0xFFFFF0FF
#define IGP_ACTIVITY_LED_ENABLE 0x0300
#define IGP_LED3_MODE 0x07000000
/* PCI/PCI-X/PCI-EX Config space */
#define PCI_HEADER_TYPE_REGISTER 0x0E
#define PCIE_LINK_STATUS 0x12
#define PCI_HEADER_TYPE_MULTIFUNC 0x80
#define PCIE_LINK_WIDTH_MASK 0x3F0
#define PCIE_LINK_WIDTH_SHIFT 4
#define PHY_REVISION_MASK 0xFFFFFFF0
#define MAX_PHY_REG_ADDRESS 0x1F /* 5 bit address bus (0-0x1F) */
#define MAX_PHY_MULTI_PAGE_REG 0xF
/* Bit definitions for valid PHY IDs. */
/*
* I = Integrated
* E = External
*/
#define M88E1000_E_PHY_ID 0x01410C50
#define M88E1000_I_PHY_ID 0x01410C30
#define M88E1011_I_PHY_ID 0x01410C20
#define IGP01E1000_I_PHY_ID 0x02A80380
#define M88E1111_I_PHY_ID 0x01410CC0
#define GG82563_E_PHY_ID 0x01410CA0
#define IGP03E1000_E_PHY_ID 0x02A80390
#define IFE_E_PHY_ID 0x02A80330
#define IFE_PLUS_E_PHY_ID 0x02A80320
#define IFE_C_E_PHY_ID 0x02A80310
#define BME1000_E_PHY_ID 0x01410CB0
#define BME1000_E_PHY_ID_R2 0x01410CB1
#define I82577_E_PHY_ID 0x01540050
#define I82578_E_PHY_ID 0x004DD040
#define I82579_E_PHY_ID 0x01540090
/* M88E1000 Specific Registers */
#define M88E1000_PHY_SPEC_CTRL 0x10 /* PHY Specific Control Register */
#define M88E1000_PHY_SPEC_STATUS 0x11 /* PHY Specific Status Register */
#define M88E1000_EXT_PHY_SPEC_CTRL 0x14 /* Extended PHY Specific Control */
#define M88E1000_PHY_PAGE_SELECT 0x1D /* Reg 29 for page number setting */
#define M88E1000_PHY_GEN_CONTROL 0x1E /* Its meaning depends on reg 29 */
/* M88E1000 PHY Specific Control Register */
#define M88E1000_PSCR_POLARITY_REVERSAL 0x0002 /* 1=Polarity Reversal enabled */
#define M88E1000_PSCR_MDI_MANUAL_MODE 0x0000 /* MDI Crossover Mode bits 6:5 */
/* Manual MDI configuration */
#define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020 /* Manual MDIX configuration */
/* 1000BASE-T: Auto crossover, 100BASE-TX/10BASE-T: MDI Mode */
#define M88E1000_PSCR_AUTO_X_1000T 0x0040
/* Auto crossover enabled all speeds */
#define M88E1000_PSCR_AUTO_X_MODE 0x0060
/*
* 1=Enable Extended 10BASE-T distance (Lower 10BASE-T Rx Threshold)
* 0=Normal 10BASE-T Rx Threshold
*/
#define M88E1000_PSCR_ASSERT_CRS_ON_TX 0x0800 /* 1=Assert CRS on Transmit */
/* M88E1000 PHY Specific Status Register */
#define M88E1000_PSSR_REV_POLARITY 0x0002 /* 1=Polarity reversed */
#define M88E1000_PSSR_DOWNSHIFT 0x0020 /* 1=Downshifted */
#define M88E1000_PSSR_MDIX 0x0040 /* 1=MDIX; 0=MDI */
/* 0=<50M; 1=50-80M; 2=80-110M; 3=110-140M; 4=>140M */
#define M88E1000_PSSR_CABLE_LENGTH 0x0380
#define M88E1000_PSSR_SPEED 0xC000 /* Speed, bits 14:15 */
#define M88E1000_PSSR_1000MBS 0x8000 /* 10=1000Mbs */
#define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7
/*
* Number of times we will attempt to autonegotiate before downshifting if we
* are the master
*/
#define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00
#define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X 0x0000
/*
* Number of times we will attempt to autonegotiate before downshifting if we
* are the slave
*/
#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK 0x0300
#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X 0x0100
#define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */
/* M88EC018 Rev 2 specific DownShift settings */
#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK 0x0E00
#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X 0x0800
#define I82578_EPSCR_DOWNSHIFT_ENABLE 0x0020
#define I82578_EPSCR_DOWNSHIFT_COUNTER_MASK 0x001C
/* BME1000 PHY Specific Control Register */
#define BME1000_PSCR_ENABLE_DOWNSHIFT 0x0800 /* 1 = enable downshift */
#define PHY_PAGE_SHIFT 5
#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
((reg) & MAX_PHY_REG_ADDRESS))
/*
* Bits...
* 15-5: page
* 4-0: register offset
*/
#define GG82563_PAGE_SHIFT 5
#define GG82563_REG(page, reg) \
(((page) << GG82563_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS))
#define GG82563_MIN_ALT_REG 30
/* GG82563 Specific Registers */
#define GG82563_PHY_SPEC_CTRL \
GG82563_REG(0, 16) /* PHY Specific Control */
#define GG82563_PHY_PAGE_SELECT \
GG82563_REG(0, 22) /* Page Select */
#define GG82563_PHY_SPEC_CTRL_2 \
GG82563_REG(0, 26) /* PHY Specific Control 2 */
#define GG82563_PHY_PAGE_SELECT_ALT \
GG82563_REG(0, 29) /* Alternate Page Select */
#define GG82563_PHY_MAC_SPEC_CTRL \
GG82563_REG(2, 21) /* MAC Specific Control Register */
#define GG82563_PHY_DSP_DISTANCE \
GG82563_REG(5, 26) /* DSP Distance */
/* Page 193 - Port Control Registers */
#define GG82563_PHY_KMRN_MODE_CTRL \
GG82563_REG(193, 16) /* Kumeran Mode Control */
#define GG82563_PHY_PWR_MGMT_CTRL \
GG82563_REG(193, 20) /* Power Management Control */
/* Page 194 - KMRN Registers */
#define GG82563_PHY_INBAND_CTRL \
GG82563_REG(194, 18) /* Inband Control */
/* MDI Control */
#define E1000_MDIC_REG_SHIFT 16
#define E1000_MDIC_PHY_SHIFT 21
#define E1000_MDIC_OP_WRITE 0x04000000
#define E1000_MDIC_OP_READ 0x08000000
#define E1000_MDIC_READY 0x10000000
#define E1000_MDIC_ERROR 0x40000000
/* SerDes Control */
#define E1000_GEN_POLL_TIMEOUT 640
#endif /* _E1000_DEFINES_H_ */
-------------- n?chster Teil --------------
/*******************************************************************************
Intel PRO/1000 Linux driver
Copyright(c) 1999 - 2011 Intel Corporation.
This program is free software; you can redistribute it and/or modify it
under the terms and conditions of the GNU General Public License,
version 2, as published by the Free Software Foundation.
This program is distributed in the hope it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
The full GNU General Public License is included in this distribution in
the file called "COPYING".
Contact Information:
Linux NICS <linux.nics at intel.com>
e1000-devel Mailing List <e1000-devel at lists.sourceforge.net>
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*******************************************************************************/
#ifndef _E1000_DEFINES_H_
#define _E1000_DEFINES_H_
#define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */
#define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */
#define E1000_TXD_CMD_EOP 0x01000000 /* End of Packet */
#define E1000_TXD_CMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */
#define E1000_TXD_CMD_IC 0x04000000 /* Insert Checksum */
#define E1000_TXD_CMD_RS 0x08000000 /* Report Status */
#define E1000_TXD_CMD_RPS 0x10000000 /* Report Packet Sent */
#define E1000_TXD_CMD_DEXT 0x20000000 /* Descriptor extension (0 = legacy) */
#define E1000_TXD_CMD_VLE 0x40000000 /* Add VLAN tag */
#define E1000_TXD_CMD_IDE 0x80000000 /* Enable Tidv register */
#define E1000_TXD_STAT_DD 0x00000001 /* Descriptor Done */
#define E1000_TXD_STAT_EC 0x00000002 /* Excess Collisions */
#define E1000_TXD_STAT_LC 0x00000004 /* Late Collisions */
#define E1000_TXD_STAT_TU 0x00000008 /* Transmit underrun */
#define E1000_TXD_CMD_TCP 0x01000000 /* TCP packet */
#define E1000_TXD_CMD_IP 0x02000000 /* IP packet */
#define E1000_TXD_CMD_TSE 0x04000000 /* TCP Seg enable */
#define E1000_TXD_STAT_TC 0x00000004 /* Tx Underrun */
/* Number of Transmit and Receive Descriptors must be a multiple of 8 */
#define REQ_TX_DESCRIPTOR_MULTIPLE 8
#define REQ_RX_DESCRIPTOR_MULTIPLE 8
/* Definitions for power management and wakeup registers */
/* Wake Up Control */
#define E1000_WUC_APME 0x00000001 /* APM Enable */
#define E1000_WUC_PME_EN 0x00000002 /* PME Enable */
#define E1000_WUC_PHY_WAKE 0x00000100 /* if PHY supports wakeup */
/* Wake Up Filter Control */
#define E1000_WUFC_LNKC 0x00000001 /* Link Status Change Wakeup Enable */
#define E1000_WUFC_MAG 0x00000002 /* Magic Packet Wakeup Enable */
#define E1000_WUFC_EX 0x00000004 /* Directed Exact Wakeup Enable */
#define E1000_WUFC_MC 0x00000008 /* Directed Multicast Wakeup Enable */
#define E1000_WUFC_BC 0x00000010 /* Broadcast Wakeup Enable */
#define E1000_WUFC_ARP 0x00000020 /* ARP Request Packet Wakeup Enable */
/* Wake Up Status */
#define E1000_WUS_LNKC E1000_WUFC_LNKC
#define E1000_WUS_MAG E1000_WUFC_MAG
#define E1000_WUS_EX E1000_WUFC_EX
#define E1000_WUS_MC E1000_WUFC_MC
#define E1000_WUS_BC E1000_WUFC_BC
/* Extended Device Control */
#define E1000_CTRL_EXT_SDP3_DATA 0x00000080 /* Value of SW Definable Pin 3 */
#define E1000_CTRL_EXT_EE_RST 0x00002000 /* Reinitialize from EEPROM */
#define E1000_CTRL_EXT_SPD_BYPS 0x00008000 /* Speed Select Bypass */
#define E1000_CTRL_EXT_RO_DIS 0x00020000 /* Relaxed Ordering disable */
#define E1000_CTRL_EXT_DMA_DYN_CLK_EN 0x00080000 /* DMA Dynamic Clock Gating */
#define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000
#define E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES 0x00C00000
#define E1000_CTRL_EXT_EIAME 0x01000000
#define E1000_CTRL_EXT_DRV_LOAD 0x10000000 /* Driver loaded bit for FW */
#define E1000_CTRL_EXT_IAME 0x08000000 /* Interrupt acknowledge Auto-mask */
#define E1000_CTRL_EXT_INT_TIMER_CLR 0x20000000 /* Clear Interrupt timers after IMS clear */
#define E1000_CTRL_EXT_PBA_CLR 0x80000000 /* PBA Clear */
#define E1000_CTRL_EXT_LSECCK 0x00001000
#define E1000_CTRL_EXT_PHYPDEN 0x00100000
/* Receive Descriptor bit definitions */
#define E1000_RXD_STAT_DD 0x01 /* Descriptor Done */
#define E1000_RXD_STAT_EOP 0x02 /* End of Packet */
#define E1000_RXD_STAT_IXSM 0x04 /* Ignore checksum */
#define E1000_RXD_STAT_VP 0x08 /* IEEE VLAN Packet */
#define E1000_RXD_STAT_UDPCS 0x10 /* UDP xsum calculated */
#define E1000_RXD_STAT_TCPCS 0x20 /* TCP xsum calculated */
#define E1000_RXD_ERR_CE 0x01 /* CRC Error */
#define E1000_RXD_ERR_SE 0x02 /* Symbol Error */
#define E1000_RXD_ERR_SEQ 0x04 /* Sequence Error */
#define E1000_RXD_ERR_CXE 0x10 /* Carrier Extension Error */
#define E1000_RXD_ERR_TCPE 0x20 /* TCP/UDP Checksum Error */
#define E1000_RXD_ERR_RXE 0x80 /* Rx Data Error */
#define E1000_RXD_SPC_VLAN_MASK 0x0FFF /* VLAN ID is in lower 12 bits */
#define E1000_RXDEXT_STATERR_CE 0x01000000
#define E1000_RXDEXT_STATERR_SE 0x02000000
#define E1000_RXDEXT_STATERR_SEQ 0x04000000
#define E1000_RXDEXT_STATERR_CXE 0x10000000
#define E1000_RXDEXT_STATERR_RXE 0x80000000
/* mask to determine if packets should be dropped due to frame errors */
#define E1000_RXD_ERR_FRAME_ERR_MASK ( \
E1000_RXD_ERR_CE | \
E1000_RXD_ERR_SE | \
E1000_RXD_ERR_SEQ | \
E1000_RXD_ERR_CXE | \
E1000_RXD_ERR_RXE)
/* Same mask, but for extended and packet split descriptors */
#define E1000_RXDEXT_ERR_FRAME_ERR_MASK ( \
E1000_RXDEXT_STATERR_CE | \
E1000_RXDEXT_STATERR_SE | \
E1000_RXDEXT_STATERR_SEQ | \
E1000_RXDEXT_STATERR_CXE | \
E1000_RXDEXT_STATERR_RXE)
#define E1000_RXDPS_HDRSTAT_HDRSP 0x00008000
/* Management Control */
#define E1000_MANC_SMBUS_EN 0x00000001 /* SMBus Enabled - RO */
#define E1000_MANC_ASF_EN 0x00000002 /* ASF Enabled - RO */
#define E1000_MANC_ARP_EN 0x00002000 /* Enable ARP Request Filtering */
#define E1000_MANC_RCV_TCO_EN 0x00020000 /* Receive TCO Packets Enabled */
#define E1000_MANC_BLK_PHY_RST_ON_IDE 0x00040000 /* Block phy resets */
/* Enable MAC address filtering */
#define E1000_MANC_EN_MAC_ADDR_FILTER 0x00100000
/* Enable MNG packets to host memory */
#define E1000_MANC_EN_MNG2HOST 0x00200000
#define E1000_MANC2H_PORT_623 0x00000020 /* Port 0x26f */
#define E1000_MANC2H_PORT_664 0x00000040 /* Port 0x298 */
#define E1000_MDEF_PORT_623 0x00000800 /* Port 0x26f */
#define E1000_MDEF_PORT_664 0x00000400 /* Port 0x298 */
/* Receive Control */
#define E1000_RCTL_EN 0x00000002 /* enable */
#define E1000_RCTL_SBP 0x00000004 /* store bad packet */
#define E1000_RCTL_UPE 0x00000008 /* unicast promiscuous enable */
#define E1000_RCTL_MPE 0x00000010 /* multicast promiscuous enab */
#define E1000_RCTL_LPE 0x00000020 /* long packet enable */
#define E1000_RCTL_LBM_NO 0x00000000 /* no loopback mode */
#define E1000_RCTL_LBM_MAC 0x00000040 /* MAC loopback mode */
#define E1000_RCTL_LBM_TCVR 0x000000C0 /* tcvr loopback mode */
#define E1000_RCTL_DTYP_PS 0x00000400 /* Packet Split descriptor */
#define E1000_RCTL_RDMTS_HALF 0x00000000 /* Rx desc min threshold size */
#define E1000_RCTL_MO_SHIFT 12 /* multicast offset shift */
#define E1000_RCTL_MO_3 0x00003000 /* multicast offset 15:4 */
#define E1000_RCTL_BAM 0x00008000 /* broadcast enable */
/* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */
#define E1000_RCTL_SZ_2048 0x00000000 /* Rx buffer size 2048 */
#define E1000_RCTL_SZ_1024 0x00010000 /* Rx buffer size 1024 */
#define E1000_RCTL_SZ_512 0x00020000 /* Rx buffer size 512 */
#define E1000_RCTL_SZ_256 0x00030000 /* Rx buffer size 256 */
/* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */
#define E1000_RCTL_SZ_16384 0x00010000 /* Rx buffer size 16384 */
#define E1000_RCTL_SZ_8192 0x00020000 /* Rx buffer size 8192 */
#define E1000_RCTL_SZ_4096 0x00030000 /* Rx buffer size 4096 */
#define E1000_RCTL_VFE 0x00040000 /* vlan filter enable */
#define E1000_RCTL_CFIEN 0x00080000 /* canonical form enable */
#define E1000_RCTL_CFI 0x00100000 /* canonical form indicator */
#define E1000_RCTL_PMCF 0x00800000 /* pass MAC control frames */
#define E1000_RCTL_BSEX 0x02000000 /* Buffer size extension */
#define E1000_RCTL_SECRC 0x04000000 /* Strip Ethernet CRC */
/*
* Use byte values for the following shift parameters
* Usage:
* psrctl |= (((ROUNDUP(value0, 128) >> E1000_PSRCTL_BSIZE0_SHIFT) &
* E1000_PSRCTL_BSIZE0_MASK) |
* ((ROUNDUP(value1, 1024) >> E1000_PSRCTL_BSIZE1_SHIFT) &
* E1000_PSRCTL_BSIZE1_MASK) |
* ((ROUNDUP(value2, 1024) << E1000_PSRCTL_BSIZE2_SHIFT) &
* E1000_PSRCTL_BSIZE2_MASK) |
* ((ROUNDUP(value3, 1024) << E1000_PSRCTL_BSIZE3_SHIFT) |;
* E1000_PSRCTL_BSIZE3_MASK))
* where value0 = [128..16256], default=256
* value1 = [1024..64512], default=4096
* value2 = [0..64512], default=4096
* value3 = [0..64512], default=0
*/
#define E1000_PSRCTL_BSIZE0_MASK 0x0000007F
#define E1000_PSRCTL_BSIZE1_MASK 0x00003F00
#define E1000_PSRCTL_BSIZE2_MASK 0x003F0000
#define E1000_PSRCTL_BSIZE3_MASK 0x3F000000
#define E1000_PSRCTL_BSIZE0_SHIFT 7 /* Shift _right_ 7 */
#define E1000_PSRCTL_BSIZE1_SHIFT 2 /* Shift _right_ 2 */
#define E1000_PSRCTL_BSIZE2_SHIFT 6 /* Shift _left_ 6 */
#define E1000_PSRCTL_BSIZE3_SHIFT 14 /* Shift _left_ 14 */
/* SWFW_SYNC Definitions */
#define E1000_SWFW_EEP_SM 0x1
#define E1000_SWFW_PHY0_SM 0x2
#define E1000_SWFW_PHY1_SM 0x4
#define E1000_SWFW_CSR_SM 0x8
/* Device Control */
#define E1000_CTRL_FD 0x00000001 /* Full duplex.0=half; 1=full */
#define E1000_CTRL_GIO_MASTER_DISABLE 0x00000004 /*Blocks new Master requests */
#define E1000_CTRL_LRST 0x00000008 /* Link reset. 0=normal,1=reset */
#define E1000_CTRL_ASDE 0x00000020 /* Auto-speed detect enable */
#define E1000_CTRL_SLU 0x00000040 /* Set link up (Force Link) */
#define E1000_CTRL_ILOS 0x00000080 /* Invert Loss-Of Signal */
#define E1000_CTRL_SPD_SEL 0x00000300 /* Speed Select Mask */
#define E1000_CTRL_SPD_10 0x00000000 /* Force 10Mb */
#define E1000_CTRL_SPD_100 0x00000100 /* Force 100Mb */
#define E1000_CTRL_SPD_1000 0x00000200 /* Force 1Gb */
#define E1000_CTRL_FRCSPD 0x00000800 /* Force Speed */
#define E1000_CTRL_FRCDPX 0x00001000 /* Force Duplex */
#define E1000_CTRL_LANPHYPC_OVERRIDE 0x00010000 /* SW control of LANPHYPC */
#define E1000_CTRL_LANPHYPC_VALUE 0x00020000 /* SW value of LANPHYPC */
#define E1000_CTRL_SWDPIN0 0x00040000 /* SWDPIN 0 value */
#define E1000_CTRL_SWDPIN1 0x00080000 /* SWDPIN 1 value */
#define E1000_CTRL_SWDPIO0 0x00400000 /* SWDPIN 0 Input or output */
#define E1000_CTRL_RST 0x04000000 /* Global reset */
#define E1000_CTRL_RFCE 0x08000000 /* Receive Flow Control enable */
#define E1000_CTRL_TFCE 0x10000000 /* Transmit flow control enable */
#define E1000_CTRL_VME 0x40000000 /* IEEE VLAN mode enable */
#define E1000_CTRL_PHY_RST 0x80000000 /* PHY Reset */
/*
* Bit definitions for the Management Data IO (MDIO) and Management Data
* Clock (MDC) pins in the Device Control Register.
*/
/* Device Status */
#define E1000_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */
#define E1000_STATUS_LU 0x00000002 /* Link up.0=no,1=link */
#define E1000_STATUS_FUNC_MASK 0x0000000C /* PCI Function Mask */
#define E1000_STATUS_FUNC_SHIFT 2
#define E1000_STATUS_FUNC_1 0x00000004 /* Function 1 */
#define E1000_STATUS_TXOFF 0x00000010 /* transmission paused */
#define E1000_STATUS_SPEED_10 0x00000000 /* Speed 10Mb/s */
#define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */
#define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */
#define E1000_STATUS_LAN_INIT_DONE 0x00000200 /* Lan Init Completion by NVM */
#define E1000_STATUS_PHYRA 0x00000400 /* PHY Reset Asserted */
#define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000 /* Status of Master requests. */
/* Constants used to interpret the masked PCI-X bus speed. */
#define HALF_DUPLEX 1
#define FULL_DUPLEX 2
#define ADVERTISE_10_HALF 0x0001
#define ADVERTISE_10_FULL 0x0002
#define ADVERTISE_100_HALF 0x0004
#define ADVERTISE_100_FULL 0x0008
#define ADVERTISE_1000_HALF 0x0010 /* Not used, just FYI */
#define ADVERTISE_1000_FULL 0x0020
/* 1000/H is not supported, nor spec-compliant. */
#define E1000_ALL_SPEED_DUPLEX ( ADVERTISE_10_HALF | ADVERTISE_10_FULL | \
ADVERTISE_100_HALF | ADVERTISE_100_FULL | \
ADVERTISE_1000_FULL)
#define E1000_ALL_NOT_GIG ( ADVERTISE_10_HALF | ADVERTISE_10_FULL | \
ADVERTISE_100_HALF | ADVERTISE_100_FULL)
#define E1000_ALL_100_SPEED (ADVERTISE_100_HALF | ADVERTISE_100_FULL)
#define E1000_ALL_10_SPEED (ADVERTISE_10_HALF | ADVERTISE_10_FULL)
#define E1000_ALL_HALF_DUPLEX (ADVERTISE_10_HALF | ADVERTISE_100_HALF)
#define AUTONEG_ADVERTISE_SPEED_DEFAULT E1000_ALL_SPEED_DUPLEX
/* LED Control */
#define E1000_PHY_LED0_MODE_MASK 0x00000007
#define E1000_PHY_LED0_IVRT 0x00000008
#define E1000_PHY_LED0_MASK 0x0000001F
#define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F
#define E1000_LEDCTL_LED0_MODE_SHIFT 0
#define E1000_LEDCTL_LED0_IVRT 0x00000040
#define E1000_LEDCTL_LED0_BLINK 0x00000080
#define E1000_LEDCTL_MODE_LINK_UP 0x2
#define E1000_LEDCTL_MODE_LED_ON 0xE
#define E1000_LEDCTL_MODE_LED_OFF 0xF
/* Transmit Descriptor bit definitions */
#define E1000_TXD_DTYP_D 0x00100000 /* Data Descriptor */
#define E1000_TXD_POPTS_IXSM 0x01 /* Insert IP checksum */
#define E1000_TXD_POPTS_TXSM 0x02 /* Insert TCP/UDP checksum */
#define E1000_TXD_CMD_EOP 0x01000000 /* End of Packet */
#define E1000_TXD_CMD_IFCS 0x02000000 /* Insert FCS (Ethernet CRC) */
#define E1000_TXD_CMD_IC 0x04000000 /* Insert Checksum */
#define E1000_TXD_CMD_RS 0x08000000 /* Report Status */
#define E1000_TXD_CMD_RPS 0x10000000 /* Report Packet Sent */
#define E1000_TXD_CMD_DEXT 0x20000000 /* Descriptor extension (0 = legacy) */
#define E1000_TXD_CMD_VLE 0x40000000 /* Add VLAN tag */
#define E1000_TXD_CMD_IDE 0x80000000 /* Enable Tidv register */
#define E1000_TXD_STAT_DD 0x00000001 /* Descriptor Done */
#define E1000_TXD_STAT_EC 0x00000002 /* Excess Collisions */
#define E1000_TXD_STAT_LC 0x00000004 /* Late Collisions */
#define E1000_TXD_STAT_TU 0x00000008 /* Transmit underrun */
#define E1000_TXD_CMD_TCP 0x01000000 /* TCP packet */
#define E1000_TXD_CMD_IP 0x02000000 /* IP packet */
#define E1000_TXD_CMD_TSE 0x04000000 /* TCP Seg enable */
#define E1000_TXD_STAT_TC 0x00000004 /* Tx Underrun */
/* Transmit Control */
#define E1000_TCTL_EN 0x00000002 /* enable Tx */
#define E1000_TCTL_PSP 0x00000008 /* pad short packets */
#define E1000_TCTL_CT 0x00000ff0 /* collision threshold */
#define E1000_TCTL_COLD 0x003ff000 /* collision distance */
#define E1000_TCTL_RTLC 0x01000000 /* Re-transmit on late collision */
#define E1000_TCTL_MULR 0x10000000 /* Multiple request support */
/* Transmit Arbitration Count */
/* SerDes Control */
#define E1000_SCTL_DISABLE_SERDES_LOOPBACK 0x0400
/* Receive Checksum Control */
#define E1000_RXCSUM_TUOFL 0x00000200 /* TCP / UDP checksum offload */
#define E1000_RXCSUM_IPPCSE 0x00001000 /* IP payload checksum enable */
/* Header split receive */
#define E1000_RFCTL_NFSW_DIS 0x00000040
#define E1000_RFCTL_NFSR_DIS 0x00000080
#define E1000_RFCTL_ACK_DIS 0x00001000
#define E1000_RFCTL_EXTEN 0x00008000
#define E1000_RFCTL_IPV6_EX_DIS 0x00010000
#define E1000_RFCTL_NEW_IPV6_EXT_DIS 0x00020000
/* Collision related configuration parameters */
#define E1000_COLLISION_THRESHOLD 15
#define E1000_CT_SHIFT 4
#define E1000_COLLISION_DISTANCE 63
#define E1000_COLD_SHIFT 12
/* Default values for the transmit IPG register */
#define DEFAULT_82543_TIPG_IPGT_COPPER 8
#define E1000_TIPG_IPGT_MASK 0x000003FF
#define DEFAULT_82543_TIPG_IPGR1 8
#define E1000_TIPG_IPGR1_SHIFT 10
#define DEFAULT_82543_TIPG_IPGR2 6
#define DEFAULT_80003ES2LAN_TIPG_IPGR2 7
#define E1000_TIPG_IPGR2_SHIFT 20
#define MAX_JUMBO_FRAME_SIZE 0x3F00
/* Extended Configuration Control and Size */
#define E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP 0x00000020
#define E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE 0x00000001
#define E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE 0x00000008
#define E1000_EXTCNF_CTRL_SWFLAG 0x00000020
#define E1000_EXTCNF_CTRL_GATE_PHY_CFG 0x00000080
#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK 0x00FF0000
#define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT 16
#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK 0x0FFF0000
#define E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT 16
#define E1000_PHY_CTRL_D0A_LPLU 0x00000002
#define E1000_PHY_CTRL_NOND0A_LPLU 0x00000004
#define E1000_PHY_CTRL_NOND0A_GBE_DISABLE 0x00000008
#define E1000_PHY_CTRL_GBE_DISABLE 0x00000040
#define E1000_KABGTXD_BGSQLBIAS 0x00050000
/* PBA constants */
#define E1000_PBA_8K 0x0008 /* 8KB */
#define E1000_PBA_16K 0x0010 /* 16KB */
#define E1000_PBS_16K E1000_PBA_16K
#define IFS_MAX 80
#define IFS_MIN 40
#define IFS_RATIO 4
#define IFS_STEP 10
#define MIN_NUM_XMITS 1000
/* SW Semaphore Register */
#define E1000_SWSM_SMBI 0x00000001 /* Driver Semaphore bit */
#define E1000_SWSM_SWESMBI 0x00000002 /* FW Semaphore bit */
#define E1000_SWSM_DRV_LOAD 0x00000008 /* Driver Loaded Bit */
#define E1000_SWSM2_LOCK 0x00000002 /* Secondary driver semaphore bit */
/* Interrupt Cause Read */
#define E1000_ICR_TXDW 0x00000001 /* Transmit desc written back */
#define E1000_ICR_LSC 0x00000004 /* Link Status Change */
#define E1000_ICR_RXSEQ 0x00000008 /* Rx sequence error */
#define E1000_ICR_RXDMT0 0x00000010 /* Rx desc min. threshold (0) */
#define E1000_ICR_RXT0 0x00000080 /* Rx timer intr (ring 0) */
#define E1000_ICR_INT_ASSERTED 0x80000000 /* If this bit asserted, the driver should claim the interrupt */
#define E1000_ICR_RXQ0 0x00100000 /* Rx Queue 0 Interrupt */
#define E1000_ICR_RXQ1 0x00200000 /* Rx Queue 1 Interrupt */
#define E1000_ICR_TXQ0 0x00400000 /* Tx Queue 0 Interrupt */
#define E1000_ICR_TXQ1 0x00800000 /* Tx Queue 1 Interrupt */
#define E1000_ICR_OTHER 0x01000000 /* Other Interrupts */
/* PBA ECC Register */
#define E1000_PBA_ECC_COUNTER_MASK 0xFFF00000 /* ECC counter mask */
#define E1000_PBA_ECC_COUNTER_SHIFT 20 /* ECC counter shift value */
#define E1000_PBA_ECC_CORR_EN 0x00000001 /* ECC correction enable */
#define E1000_PBA_ECC_STAT_CLR 0x00000002 /* Clear ECC error counter */
#define E1000_PBA_ECC_INT_EN 0x00000004 /* Enable ICR bit 5 for ECC */
/*
* This defines the bits that are set in the Interrupt Mask
* Set/Read Register. Each bit is documented below:
* o RXT0 = Receiver Timer Interrupt (ring 0)
* o TXDW = Transmit Descriptor Written Back
* o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0)
* o RXSEQ = Receive Sequence Error
* o LSC = Link Status Change
*/
#define IMS_ENABLE_MASK ( \
E1000_IMS_RXT0 | \
E1000_IMS_TXDW | \
E1000_IMS_RXDMT0 | \
E1000_IMS_RXSEQ | \
E1000_IMS_LSC)
/* Interrupt Mask Set */
#define E1000_IMS_TXDW E1000_ICR_TXDW /* Transmit desc written back */
#define E1000_IMS_LSC E1000_ICR_LSC /* Link Status Change */
#define E1000_IMS_RXSEQ E1000_ICR_RXSEQ /* Rx sequence error */
#define E1000_IMS_RXDMT0 E1000_ICR_RXDMT0 /* Rx desc min. threshold */
#define E1000_IMS_RXT0 E1000_ICR_RXT0 /* Rx timer intr */
#define E1000_IMS_RXQ0 E1000_ICR_RXQ0 /* Rx Queue 0 Interrupt */
#define E1000_IMS_RXQ1 E1000_ICR_RXQ1 /* Rx Queue 1 Interrupt */
#define E1000_IMS_TXQ0 E1000_ICR_TXQ0 /* Tx Queue 0 Interrupt */
#define E1000_IMS_TXQ1 E1000_ICR_TXQ1 /* Tx Queue 1 Interrupt */
#define E1000_IMS_OTHER E1000_ICR_OTHER /* Other Interrupts */
/* Interrupt Cause Set */
#define E1000_ICS_LSC E1000_ICR_LSC /* Link Status Change */
#define E1000_ICS_RXSEQ E1000_ICR_RXSEQ /* Rx sequence error */
#define E1000_ICS_RXDMT0 E1000_ICR_RXDMT0 /* Rx desc min. threshold */
/* Transmit Descriptor Control */
#define E1000_TXDCTL_PTHRESH 0x0000003F /* TXDCTL Prefetch Threshold */
#define E1000_TXDCTL_HTHRESH 0x00003F00 /* TXDCTL Host Threshold */
#define E1000_TXDCTL_WTHRESH 0x003F0000 /* TXDCTL Writeback Threshold */
#define E1000_TXDCTL_GRAN 0x01000000 /* TXDCTL Granularity */
#define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */
#define E1000_TXDCTL_MAX_TX_DESC_PREFETCH 0x0100001F /* GRAN=1, PTHRESH=31 */
/* Enable the counting of desc. still to be processed. */
#define E1000_TXDCTL_COUNT_DESC 0x00400000
/* Flow Control Constants */
#define FLOW_CONTROL_ADDRESS_LOW 0x00C28001
#define FLOW_CONTROL_ADDRESS_HIGH 0x00000100
#define FLOW_CONTROL_TYPE 0x8808
/* 802.1q VLAN Packet Size */
#define E1000_VLAN_FILTER_TBL_SIZE 128 /* VLAN Filter Table (4096 bits) */
/* Receive Address */
/*
* Number of high/low register pairs in the RAR. The RAR (Receive Address
* Registers) holds the directed and multicast addresses that we monitor.
* Technically, we have 16 spots. However, we reserve one of these spots
* (RAR[15]) for our directed address used by controllers with
* manageability enabled, allowing us room for 15 multicast addresses.
*/
#define E1000_RAR_ENTRIES 15
#define E1000_RAH_AV 0x80000000 /* Receive descriptor valid */
#define E1000_RAL_MAC_ADDR_LEN 4
#define E1000_RAH_MAC_ADDR_LEN 2
/* Error Codes */
#define E1000_ERR_NVM 1
#define E1000_ERR_PHY 2
#define E1000_ERR_CONFIG 3
#define E1000_ERR_PARAM 4
#define E1000_ERR_MAC_INIT 5
#define E1000_ERR_PHY_TYPE 6
#define E1000_ERR_RESET 9
#define E1000_ERR_MASTER_REQUESTS_PENDING 10
#define E1000_ERR_HOST_INTERFACE_COMMAND 11
#define E1000_BLK_PHY_RESET 12
#define E1000_ERR_SWFW_SYNC 13
#define E1000_NOT_IMPLEMENTED 14
#define E1000_ERR_INVALID_ARGUMENT 16
#define E1000_ERR_NO_SPACE 17
#define E1000_ERR_NVM_PBA_SECTION 18
/* Loop limit on how long we wait for auto-negotiation to complete */
#define FIBER_LINK_UP_LIMIT 50
#define COPPER_LINK_UP_LIMIT 10
#define PHY_AUTO_NEG_LIMIT 45
#define PHY_FORCE_LIMIT 20
/* Number of 100 microseconds we wait for PCI Express master disable */
#define MASTER_DISABLE_TIMEOUT 800
/* Number of milliseconds we wait for PHY configuration done after MAC reset */
#define PHY_CFG_TIMEOUT 100
/* Number of 2 milliseconds we wait for acquiring MDIO ownership. */
#define MDIO_OWNERSHIP_TIMEOUT 10
/* Number of milliseconds for NVM auto read done after MAC reset. */
#define AUTO_READ_DONE_TIMEOUT 10
/* Flow Control */
#define E1000_FCRTH_RTH 0x0000FFF8 /* Mask Bits[15:3] for RTH */
#define E1000_FCRTL_RTL 0x0000FFF8 /* Mask Bits[15:3] for RTL */
#define E1000_FCRTL_XONE 0x80000000 /* Enable XON frame transmission */
/* Transmit Configuration Word */
#define E1000_TXCW_FD 0x00000020 /* TXCW full duplex */
#define E1000_TXCW_PAUSE 0x00000080 /* TXCW sym pause request */
#define E1000_TXCW_ASM_DIR 0x00000100 /* TXCW astm pause direction */
#define E1000_TXCW_PAUSE_MASK 0x00000180 /* TXCW pause request mask */
#define E1000_TXCW_ANE 0x80000000 /* Auto-neg enable */
/* Receive Configuration Word */
#define E1000_RXCW_CW 0x0000ffff /* RxConfigWord mask */
#define E1000_RXCW_IV 0x08000000 /* Receive config invalid */
#define E1000_RXCW_C 0x20000000 /* Receive config */
#define E1000_RXCW_SYNCH 0x40000000 /* Receive config synch */
/* PCI Express Control */
#define E1000_GCR_RXD_NO_SNOOP 0x00000001
#define E1000_GCR_RXDSCW_NO_SNOOP 0x00000002
#define E1000_GCR_RXDSCR_NO_SNOOP 0x00000004
#define E1000_GCR_TXD_NO_SNOOP 0x00000008
#define E1000_GCR_TXDSCW_NO_SNOOP 0x00000010
#define E1000_GCR_TXDSCR_NO_SNOOP 0x00000020
#define PCIE_NO_SNOOP_ALL (E1000_GCR_RXD_NO_SNOOP | \
E1000_GCR_RXDSCW_NO_SNOOP | \
E1000_GCR_RXDSCR_NO_SNOOP | \
E1000_GCR_TXD_NO_SNOOP | \
E1000_GCR_TXDSCW_NO_SNOOP | \
E1000_GCR_TXDSCR_NO_SNOOP)
/* PHY Control Register */
#define MII_CR_FULL_DUPLEX 0x0100 /* FDX =1, half duplex =0 */
#define MII_CR_RESTART_AUTO_NEG 0x0200 /* Restart auto negotiation */
#define MII_CR_POWER_DOWN 0x0800 /* Power down */
#define MII_CR_AUTO_NEG_EN 0x1000 /* Auto Neg Enable */
#define MII_CR_LOOPBACK 0x4000 /* 0 = normal, 1 = loopback */
#define MII_CR_RESET 0x8000 /* 0 = normal, 1 = PHY reset */
#define MII_CR_SPEED_1000 0x0040
#define MII_CR_SPEED_100 0x2000
#define MII_CR_SPEED_10 0x0000
/* PHY Status Register */
#define MII_SR_LINK_STATUS 0x0004 /* Link Status 1 = link */
#define MII_SR_AUTONEG_COMPLETE 0x0020 /* Auto Neg Complete */
/* Autoneg Advertisement Register */
#define NWAY_AR_10T_HD_CAPS 0x0020 /* 10T Half Duplex Capable */
#define NWAY_AR_10T_FD_CAPS 0x0040 /* 10T Full Duplex Capable */
#define NWAY_AR_100TX_HD_CAPS 0x0080 /* 100TX Half Duplex Capable */
#define NWAY_AR_100TX_FD_CAPS 0x0100 /* 100TX Full Duplex Capable */
#define NWAY_AR_PAUSE 0x0400 /* Pause operation desired */
#define NWAY_AR_ASM_DIR 0x0800 /* Asymmetric Pause Direction bit */
/* Link Partner Ability Register (Base Page) */
#define NWAY_LPAR_PAUSE 0x0400 /* LP Pause operation desired */
#define NWAY_LPAR_ASM_DIR 0x0800 /* LP Asymmetric Pause Direction bit */
/* Autoneg Expansion Register */
#define NWAY_ER_LP_NWAY_CAPS 0x0001 /* LP has Auto Neg Capability */
/* 1000BASE-T Control Register */
#define CR_1000T_HD_CAPS 0x0100 /* Advertise 1000T HD capability */
#define CR_1000T_FD_CAPS 0x0200 /* Advertise 1000T FD capability */
/* 0=DTE device */
#define CR_1000T_MS_VALUE 0x0800 /* 1=Configure PHY as Master */
/* 0=Configure PHY as Slave */
#define CR_1000T_MS_ENABLE 0x1000 /* 1=Master/Slave manual config value */
/* 0=Automatic Master/Slave config */
/* 1000BASE-T Status Register */
#define SR_1000T_REMOTE_RX_STATUS 0x1000 /* Remote receiver OK */
#define SR_1000T_LOCAL_RX_STATUS 0x2000 /* Local receiver OK */
/* PHY 1000 MII Register/Bit Definitions */
/* PHY Registers defined by IEEE */
#define PHY_CONTROL 0x00 /* Control Register */
#define PHY_STATUS 0x01 /* Status Register */
#define PHY_ID1 0x02 /* Phy Id Reg (word 1) */
#define PHY_ID2 0x03 /* Phy Id Reg (word 2) */
#define PHY_AUTONEG_ADV 0x04 /* Autoneg Advertisement */
#define PHY_LP_ABILITY 0x05 /* Link Partner Ability (Base Page) */
#define PHY_AUTONEG_EXP 0x06 /* Autoneg Expansion Reg */
#define PHY_1000T_CTRL 0x09 /* 1000Base-T Control Reg */
#define PHY_1000T_STATUS 0x0A /* 1000Base-T Status Reg */
#define PHY_EXT_STATUS 0x0F /* Extended Status Reg */
#define PHY_CONTROL_LB 0x4000 /* PHY Loopback bit */
/* NVM Control */
#define E1000_EECD_SK 0x00000001 /* NVM Clock */
#define E1000_EECD_CS 0x00000002 /* NVM Chip Select */
#define E1000_EECD_DI 0x00000004 /* NVM Data In */
#define E1000_EECD_DO 0x00000008 /* NVM Data Out */
#define E1000_EECD_REQ 0x00000040 /* NVM Access Request */
#define E1000_EECD_GNT 0x00000080 /* NVM Access Grant */
#define E1000_EECD_PRES 0x00000100 /* NVM Present */
#define E1000_EECD_SIZE 0x00000200 /* NVM Size (0=64 word 1=256 word) */
/* NVM Addressing bits based on type (0-small, 1-large) */
#define E1000_EECD_ADDR_BITS 0x00000400
#define E1000_NVM_GRANT_ATTEMPTS 1000 /* NVM # attempts to gain grant */
#define E1000_EECD_AUTO_RD 0x00000200 /* NVM Auto Read done */
#define E1000_EECD_SIZE_EX_MASK 0x00007800 /* NVM Size */
#define E1000_EECD_SIZE_EX_SHIFT 11
#define E1000_EECD_FLUPD 0x00080000 /* Update FLASH */
#define E1000_EECD_AUPDEN 0x00100000 /* Enable Autonomous FLASH update */
#define E1000_EECD_SEC1VAL 0x00400000 /* Sector One Valid */
#define E1000_EECD_SEC1VAL_VALID_MASK (E1000_EECD_AUTO_RD | E1000_EECD_PRES)
#define E1000_NVM_RW_REG_DATA 16 /* Offset to data in NVM read/write registers */
#define E1000_NVM_RW_REG_DONE 2 /* Offset to READ/WRITE done bit */
#define E1000_NVM_RW_REG_START 1 /* Start operation */
#define E1000_NVM_RW_ADDR_SHIFT 2 /* Shift to the address bits */
#define E1000_NVM_POLL_WRITE 1 /* Flag for polling for write complete */
#define E1000_NVM_POLL_READ 0 /* Flag for polling for read complete */
#define E1000_FLASH_UPDATES 2000
/* NVM Word Offsets */
#define NVM_COMPAT 0x0003
#define NVM_ID_LED_SETTINGS 0x0004
#define NVM_INIT_CONTROL2_REG 0x000F
#define NVM_INIT_CONTROL3_PORT_B 0x0014
#define NVM_INIT_3GIO_3 0x001A
#define NVM_INIT_CONTROL3_PORT_A 0x0024
#define NVM_CFG 0x0012
#define NVM_ALT_MAC_ADDR_PTR 0x0037
#define NVM_CHECKSUM_REG 0x003F
#define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */
#define E1000_NVM_CFG_DONE_PORT_0 0x40000 /* MNG config cycle done */
#define E1000_NVM_CFG_DONE_PORT_1 0x80000 /* ...for second port */
/* Mask bits for fields in Word 0x0f of the NVM */
#define NVM_WORD0F_PAUSE_MASK 0x3000
#define NVM_WORD0F_PAUSE 0x1000
#define NVM_WORD0F_ASM_DIR 0x2000
/* Mask bits for fields in Word 0x1a of the NVM */
#define NVM_WORD1A_ASPM_MASK 0x000C
/* Mask bits for fields in Word 0x03 of the EEPROM */
#define NVM_COMPAT_LOM 0x0800
/* length of string needed to store PBA number */
#define E1000_PBANUM_LENGTH 11
/* For checksumming, the sum of all words in the NVM should equal 0xBABA. */
#define NVM_SUM 0xBABA
/* PBA (printed board assembly) number words */
#define NVM_PBA_OFFSET_0 8
#define NVM_PBA_OFFSET_1 9
#define NVM_PBA_PTR_GUARD 0xFAFA
#define NVM_WORD_SIZE_BASE_SHIFT 6
/* NVM Commands - SPI */
#define NVM_MAX_RETRY_SPI 5000 /* Max wait of 5ms, for RDY signal */
#define NVM_READ_OPCODE_SPI 0x03 /* NVM read opcode */
#define NVM_WRITE_OPCODE_SPI 0x02 /* NVM write opcode */
#define NVM_A8_OPCODE_SPI 0x08 /* opcode bit-3 = address bit-8 */
#define NVM_WREN_OPCODE_SPI 0x06 /* NVM set Write Enable latch */
#define NVM_RDSR_OPCODE_SPI 0x05 /* NVM read Status register */
/* SPI NVM Status Register */
#define NVM_STATUS_RDY_SPI 0x01
/* Word definitions for ID LED Settings */
#define ID_LED_RESERVED_0000 0x0000
#define ID_LED_RESERVED_FFFF 0xFFFF
#define ID_LED_DEFAULT ((ID_LED_OFF1_ON2 << 12) | \
(ID_LED_OFF1_OFF2 << 8) | \
(ID_LED_DEF1_DEF2 << 4) | \
(ID_LED_DEF1_DEF2))
#define ID_LED_DEF1_DEF2 0x1
#define ID_LED_DEF1_ON2 0x2
#define ID_LED_DEF1_OFF2 0x3
#define ID_LED_ON1_DEF2 0x4
#define ID_LED_ON1_ON2 0x5
#define ID_LED_ON1_OFF2 0x6
#define ID_LED_OFF1_DEF2 0x7
#define ID_LED_OFF1_ON2 0x8
#define ID_LED_OFF1_OFF2 0x9
#define IGP_ACTIVITY_LED_MASK 0xFFFFF0FF
#define IGP_ACTIVITY_LED_ENABLE 0x0300
#define IGP_LED3_MODE 0x07000000
/* PCI/PCI-X/PCI-EX Config space */
#define PCI_HEADER_TYPE_REGISTER 0x0E
#define PCIE_LINK_STATUS 0x12
#define PCI_HEADER_TYPE_MULTIFUNC 0x80
#define PCIE_LINK_WIDTH_MASK 0x3F0
#define PCIE_LINK_WIDTH_SHIFT 4
#define PHY_REVISION_MASK 0xFFFFFFF0
#define MAX_PHY_REG_ADDRESS 0x1F /* 5 bit address bus (0-0x1F) */
#define MAX_PHY_MULTI_PAGE_REG 0xF
/* Bit definitions for valid PHY IDs. */
/*
* I = Integrated
* E = External
*/
#define M88E1000_E_PHY_ID 0x01410C50
#define M88E1000_I_PHY_ID 0x01410C30
#define M88E1011_I_PHY_ID 0x01410C20
#define IGP01E1000_I_PHY_ID 0x02A80380
#define M88E1111_I_PHY_ID 0x01410CC0
#define GG82563_E_PHY_ID 0x01410CA0
#define IGP03E1000_E_PHY_ID 0x02A80390
#define IFE_E_PHY_ID 0x02A80330
#define IFE_PLUS_E_PHY_ID 0x02A80320
#define IFE_C_E_PHY_ID 0x02A80310
#define BME1000_E_PHY_ID 0x01410CB0
#define BME1000_E_PHY_ID_R2 0x01410CB1
#define I82577_E_PHY_ID 0x01540050
#define I82578_E_PHY_ID 0x004DD040
#define I82579_E_PHY_ID 0x01540090
/* M88E1000 Specific Registers */
#define M88E1000_PHY_SPEC_CTRL 0x10 /* PHY Specific Control Register */
#define M88E1000_PHY_SPEC_STATUS 0x11 /* PHY Specific Status Register */
#define M88E1000_EXT_PHY_SPEC_CTRL 0x14 /* Extended PHY Specific Control */
#define M88E1000_PHY_PAGE_SELECT 0x1D /* Reg 29 for page number setting */
#define M88E1000_PHY_GEN_CONTROL 0x1E /* Its meaning depends on reg 29 */
/* M88E1000 PHY Specific Control Register */
#define M88E1000_PSCR_POLARITY_REVERSAL 0x0002 /* 1=Polarity Reversal enabled */
#define M88E1000_PSCR_MDI_MANUAL_MODE 0x0000 /* MDI Crossover Mode bits 6:5 */
/* Manual MDI configuration */
#define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020 /* Manual MDIX configuration */
/* 1000BASE-T: Auto crossover, 100BASE-TX/10BASE-T: MDI Mode */
#define M88E1000_PSCR_AUTO_X_1000T 0x0040
/* Auto crossover enabled all speeds */
#define M88E1000_PSCR_AUTO_X_MODE 0x0060
/*
* 1=Enable Extended 10BASE-T distance (Lower 10BASE-T Rx Threshold)
* 0=Normal 10BASE-T Rx Threshold
*/
#define M88E1000_PSCR_ASSERT_CRS_ON_TX 0x0800 /* 1=Assert CRS on Transmit */
/* M88E1000 PHY Specific Status Register */
#define M88E1000_PSSR_REV_POLARITY 0x0002 /* 1=Polarity reversed */
#define M88E1000_PSSR_DOWNSHIFT 0x0020 /* 1=Downshifted */
#define M88E1000_PSSR_MDIX 0x0040 /* 1=MDIX; 0=MDI */
/* 0=<50M; 1=50-80M; 2=80-110M; 3=110-140M; 4=>140M */
#define M88E1000_PSSR_CABLE_LENGTH 0x0380
#define M88E1000_PSSR_SPEED 0xC000 /* Speed, bits 14:15 */
#define M88E1000_PSSR_1000MBS 0x8000 /* 10=1000Mbs */
#define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7
/*
* Number of times we will attempt to autonegotiate before downshifting if we
* are the master
*/
#define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00
#define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X 0x0000
/*
* Number of times we will attempt to autonegotiate before downshifting if we
* are the slave
*/
#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK 0x0300
#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X 0x0100
#define M88E1000_EPSCR_TX_CLK_25 0x0070 /* 25 MHz TX_CLK */
/* M88EC018 Rev 2 specific DownShift settings */
#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK 0x0E00
#define M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X 0x0800
#define I82578_EPSCR_DOWNSHIFT_ENABLE 0x0020
#define I82578_EPSCR_DOWNSHIFT_COUNTER_MASK 0x001C
/* BME1000 PHY Specific Control Register */
#define BME1000_PSCR_ENABLE_DOWNSHIFT 0x0800 /* 1 = enable downshift */
#define PHY_PAGE_SHIFT 5
#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
((reg) & MAX_PHY_REG_ADDRESS))
/*
* Bits...
* 15-5: page
* 4-0: register offset
*/
#define GG82563_PAGE_SHIFT 5
#define GG82563_REG(page, reg) \
(((page) << GG82563_PAGE_SHIFT) | ((reg) & MAX_PHY_REG_ADDRESS))
#define GG82563_MIN_ALT_REG 30
/* GG82563 Specific Registers */
#define GG82563_PHY_SPEC_CTRL \
GG82563_REG(0, 16) /* PHY Specific Control */
#define GG82563_PHY_PAGE_SELECT \
GG82563_REG(0, 22) /* Page Select */
#define GG82563_PHY_SPEC_CTRL_2 \
GG82563_REG(0, 26) /* PHY Specific Control 2 */
#define GG82563_PHY_PAGE_SELECT_ALT \
GG82563_REG(0, 29) /* Alternate Page Select */
#define GG82563_PHY_MAC_SPEC_CTRL \
GG82563_REG(2, 21) /* MAC Specific Control Register */
#define GG82563_PHY_DSP_DISTANCE \
GG82563_REG(5, 26) /* DSP Distance */
/* Page 193 - Port Control Registers */
#define GG82563_PHY_KMRN_MODE_CTRL \
GG82563_REG(193, 16) /* Kumeran Mode Control */
#define GG82563_PHY_PWR_MGMT_CTRL \
GG82563_REG(193, 20) /* Power Management Control */
/* Page 194 - KMRN Registers */
#define GG82563_PHY_INBAND_CTRL \
GG82563_REG(194, 18) /* Inband Control */
/* MDI Control */
#define E1000_MDIC_REG_SHIFT 16
#define E1000_MDIC_PHY_SHIFT 21
#define E1000_MDIC_OP_WRITE 0x04000000
#define E1000_MDIC_OP_READ 0x08000000
#define E1000_MDIC_READY 0x10000000
#define E1000_MDIC_ERROR 0x40000000
/* SerDes Control */
#define E1000_GEN_POLL_TIMEOUT 640
#endif /* _E1000_DEFINES_H_ */
-------------- n?chster Teil --------------
/*******************************************************************************
Intel PRO/1000 Linux driver
Copyright(c) 1999 - 2011 Intel Corporation.
This program is free software; you can redistribute it and/or modify it
under the terms and conditions of the GNU General Public License,
version 2, as published by the Free Software Foundation.
This program is distributed in the hope it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
The full GNU General Public License is included in this distribution in
the file called "COPYING".
Contact Information:
Linux NICS <linux.nics at intel.com>
e1000-devel Mailing List <e1000-devel at lists.sourceforge.net>
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*******************************************************************************/
/* Linux PRO/1000 Ethernet Driver main header file */
#ifndef _E1000_H_
#define _E1000_H_
#include <linux/bitops.h>
#include <linux/types.h>
#include <linux/timer.h>
#include <linux/workqueue.h>
#include <linux/io.h>
#include <linux/netdevice.h>
#include <linux/pci.h>
#include <linux/pci-aspm.h>
#include <linux/crc32.h>
#include <linux/if_vlan.h>
#include "hw.h"
struct e1000_info;
#define e_dbg(format, arg...) \
netdev_dbg(hw->adapter->netdev, format, ## arg)
#define e_err(format, arg...) \
netdev_err(adapter->netdev, format, ## arg)
#define e_info(format, arg...) \
netdev_info(adapter->netdev, format, ## arg)
#define e_warn(format, arg...) \
netdev_warn(adapter->netdev, format, ## arg)
#define e_notice(format, arg...) \
netdev_notice(adapter->netdev, format, ## arg)
/* Interrupt modes, as used by the IntMode parameter */
#define E1000E_INT_MODE_LEGACY 0
#define E1000E_INT_MODE_MSI 1
#define E1000E_INT_MODE_MSIX 2
/* Tx/Rx descriptor defines */
#define E1000_DEFAULT_TXD 256
#define E1000_MAX_TXD 4096
#define E1000_MIN_TXD 64
#define E1000_DEFAULT_RXD 256
#define E1000_MAX_RXD 4096
#define E1000_MIN_RXD 64
#define E1000_MIN_ITR_USECS 10 /* 100000 irq/sec */
#define E1000_MAX_ITR_USECS 10000 /* 100 irq/sec */
/* Early Receive defines */
#define E1000_ERT_2048 0x100
#define E1000_FC_PAUSE_TIME 0x0680 /* 858 usec */
/* How many Tx Descriptors do we need to call netif_wake_queue ? */
/* How many Rx Buffers do we bundle into one write to the hardware ? */
#define E1000_RX_BUFFER_WRITE 16 /* Must be power of 2 */
#define AUTO_ALL_MODES 0
#define E1000_EEPROM_APME 0x0400
#define E1000_MNG_VLAN_NONE (-1)
/* Number of packet split data buffers (not including the header buffer) */
#define PS_PAGE_BUFFERS (MAX_PS_BUFFERS - 1)
#define DEFAULT_JUMBO 9234
/* BM/HV Specific Registers */
#define BM_PORT_CTRL_PAGE 769
#define PHY_UPPER_SHIFT 21
#define BM_PHY_REG(page, reg) \
(((reg) & MAX_PHY_REG_ADDRESS) |\
(((page) & 0xFFFF) << PHY_PAGE_SHIFT) |\
(((reg) & ~MAX_PHY_REG_ADDRESS) << (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)))
/* PHY Wakeup Registers and defines */
#define BM_PORT_GEN_CFG PHY_REG(BM_PORT_CTRL_PAGE, 17)
#define BM_RCTL PHY_REG(BM_WUC_PAGE, 0)
#define BM_WUC PHY_REG(BM_WUC_PAGE, 1)
#define BM_WUFC PHY_REG(BM_WUC_PAGE, 2)
#define BM_WUS PHY_REG(BM_WUC_PAGE, 3)
#define BM_RAR_L(_i) (BM_PHY_REG(BM_WUC_PAGE, 16 + ((_i) << 2)))
#define BM_RAR_M(_i) (BM_PHY_REG(BM_WUC_PAGE, 17 + ((_i) << 2)))
#define BM_RAR_H(_i) (BM_PHY_REG(BM_WUC_PAGE, 18 + ((_i) << 2)))
#define BM_RAR_CTRL(_i) (BM_PHY_REG(BM_WUC_PAGE, 19 + ((_i) << 2)))
#define BM_MTA(_i) (BM_PHY_REG(BM_WUC_PAGE, 128 + ((_i) << 1)))
#define BM_RCTL_UPE 0x0001 /* Unicast Promiscuous Mode */
#define BM_RCTL_MPE 0x0002 /* Multicast Promiscuous Mode */
#define BM_RCTL_MO_SHIFT 3 /* Multicast Offset Shift */
#define BM_RCTL_MO_MASK (3 << 3) /* Multicast Offset Mask */
#define BM_RCTL_BAM 0x0020 /* Broadcast Accept Mode */
#define BM_RCTL_PMCF 0x0040 /* Pass MAC Control Frames */
#define BM_RCTL_RFCE 0x0080 /* Rx Flow Control Enable */
#define HV_STATS_PAGE 778
#define HV_SCC_UPPER PHY_REG(HV_STATS_PAGE, 16) /* Single Collision Count */
#define HV_SCC_LOWER PHY_REG(HV_STATS_PAGE, 17)
#define HV_ECOL_UPPER PHY_REG(HV_STATS_PAGE, 18) /* Excessive Coll. Count */
#define HV_ECOL_LOWER PHY_REG(HV_STATS_PAGE, 19)
#define HV_MCC_UPPER PHY_REG(HV_STATS_PAGE, 20) /* Multiple Coll. Count */
#define HV_MCC_LOWER PHY_REG(HV_STATS_PAGE, 21)
#define HV_LATECOL_UPPER PHY_REG(HV_STATS_PAGE, 23) /* Late Collision Count */
#define HV_LATECOL_LOWER PHY_REG(HV_STATS_PAGE, 24)
#define HV_COLC_UPPER PHY_REG(HV_STATS_PAGE, 25) /* Collision Count */
#define HV_COLC_LOWER PHY_REG(HV_STATS_PAGE, 26)
#define HV_DC_UPPER PHY_REG(HV_STATS_PAGE, 27) /* Defer Count */
#define HV_DC_LOWER PHY_REG(HV_STATS_PAGE, 28)
#define HV_TNCRS_UPPER PHY_REG(HV_STATS_PAGE, 29) /* Transmit with no CRS */
#define HV_TNCRS_LOWER PHY_REG(HV_STATS_PAGE, 30)
#define E1000_FCRTV_PCH 0x05F40 /* PCH Flow Control Refresh Timer Value */
/* BM PHY Copper Specific Status */
#define BM_CS_STATUS 17
#define BM_CS_STATUS_LINK_UP 0x0400
#define BM_CS_STATUS_RESOLVED 0x0800
#define BM_CS_STATUS_SPEED_MASK 0xC000
#define BM_CS_STATUS_SPEED_1000 0x8000
/* 82577 Mobile Phy Status Register */
#define HV_M_STATUS 26
#define HV_M_STATUS_AUTONEG_COMPLETE 0x1000
#define HV_M_STATUS_SPEED_MASK 0x0300
#define HV_M_STATUS_SPEED_1000 0x0200
#define HV_M_STATUS_LINK_UP 0x0040
#define E1000_ICH_FWSM_PCIM2PCI 0x01000000 /* ME PCIm-to-PCI active */
#define E1000_ICH_FWSM_PCIM2PCI_COUNT 2000
/* Time to wait before putting the device into D3 if there's no link (in ms). */
#define LINK_TIMEOUT 100
#define DEFAULT_RDTR 0
#define DEFAULT_RADV 8
#define BURST_RDTR 0x20
#define BURST_RADV 0x20
/*
* in the case of WTHRESH, it appears at least the 82571/2 hardware
* writes back 4 descriptors when WTHRESH=5, and 3 descriptors when
* WTHRESH=4, and since we want 64 bytes at a time written back, set
* it to 5
*/
#define E1000_TXDCTL_DMA_BURST_ENABLE \
(E1000_TXDCTL_GRAN | /* set descriptor granularity */ \
E1000_TXDCTL_COUNT_DESC | \
(5 << 16) | /* wthresh must be +1 more than desired */\
(1 << 8) | /* hthresh */ \
0x1f) /* pthresh */
#define E1000_RXDCTL_DMA_BURST_ENABLE \
(0x01000000 | /* set descriptor granularity */ \
(4 << 16) | /* set writeback threshold */ \
(4 << 8) | /* set prefetch threshold */ \
0x20) /* set hthresh */
#define E1000_TIDV_FPD (1 << 31)
#define E1000_RDTR_FPD (1 << 31)
enum e1000_boards {
board_82571,
board_82572,
board_82573,
board_82574,
board_82583,
board_80003es2lan,
board_ich8lan,
board_ich9lan,
board_ich10lan,
board_pchlan,
board_pch2lan,
};
struct e1000_ps_page {
struct page *page;
u64 dma; /* must be u64 - written to hw */
};
/*
* wrappers around a pointer to a socket buffer,
* so a DMA handle can be stored along with the buffer
*/
struct e1000_buffer {
dma_addr_t dma;
struct sk_buff *skb;
union {
/* Tx */
struct {
unsigned long time_stamp;
u16 length;
u16 next_to_watch;
unsigned int segs;
unsigned int bytecount;
u16 mapped_as_page;
};
/* Rx */
struct {
/* arrays of page information for packet split */
struct e1000_ps_page *ps_pages;
struct page *page;
};
};
};
struct e1000_ring {
void *desc; /* pointer to ring memory */
dma_addr_t dma; /* phys address of ring */
unsigned int size; /* length of ring in bytes */
unsigned int count; /* number of desc. in ring */
u16 next_to_use;
u16 next_to_clean;
u16 head;
u16 tail;
/* array of buffer information structs */
struct e1000_buffer *buffer_info;
char name[IFNAMSIZ + 5];
u32 ims_val;
u32 itr_val;
u16 itr_register;
int set_itr;
struct sk_buff *rx_skb_top;
};
/* PHY register snapshot values */
struct e1000_phy_regs {
u16 bmcr; /* basic mode control register */
u16 bmsr; /* basic mode status register */
u16 advertise; /* auto-negotiation advertisement */
u16 lpa; /* link partner ability register */
u16 expansion; /* auto-negotiation expansion reg */
u16 ctrl1000; /* 1000BASE-T control register */
u16 stat1000; /* 1000BASE-T status register */
u16 estatus; /* extended status register */
};
/* board specific private data structure */
struct e1000_adapter {
struct timer_list watchdog_timer;
struct timer_list phy_info_timer;
struct timer_list blink_timer;
struct work_struct reset_task;
struct work_struct watchdog_task;
const struct e1000_info *ei;
unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
u32 bd_number;
u32 rx_buffer_len;
u16 mng_vlan_id;
u16 link_speed;
u16 link_duplex;
u16 eeprom_vers;
/* track device up/down/testing state */
unsigned long state;
/* Interrupt Throttle Rate */
u32 itr;
u32 itr_setting;
u16 tx_itr;
u16 rx_itr;
/*
* Tx
*/
struct e1000_ring *tx_ring /* One per active queue */
____cacheline_aligned_in_smp;
struct napi_struct napi;
unsigned int restart_queue;
u32 txd_cmd;
bool detect_tx_hung;
bool tx_hang_recheck;
u8 tx_timeout_factor;
u32 tx_int_delay;
u32 tx_abs_int_delay;
unsigned int total_tx_bytes;
unsigned int total_tx_packets;
unsigned int total_rx_bytes;
unsigned int total_rx_packets;
/* Tx stats */
u64 tpt_old;
u64 colc_old;
u32 gotc;
u64 gotc_old;
u32 tx_timeout_count;
u32 tx_fifo_head;
u32 tx_head_addr;
u32 tx_fifo_size;
u32 tx_dma_failed;
/*
* Rx
*/
bool (*clean_rx) (struct e1000_adapter *adapter,
int *work_done, int work_to_do)
____cacheline_aligned_in_smp;
void (*alloc_rx_buf) (struct e1000_adapter *adapter,
int cleaned_count, gfp_t gfp);
struct e1000_ring *rx_ring;
u32 rx_int_delay;
u32 rx_abs_int_delay;
/* Rx stats */
u64 hw_csum_err;
u64 hw_csum_good;
u64 rx_hdr_split;
u32 gorc;
u64 gorc_old;
u32 alloc_rx_buff_failed;
u32 rx_dma_failed;
unsigned int rx_ps_pages;
u16 rx_ps_bsize0;
u32 max_frame_size;
u32 min_frame_size;
/* OS defined structs */
struct net_device *netdev;
struct pci_dev *pdev;
/* structs defined in e1000_hw.h */
struct e1000_hw hw;
spinlock_t stats64_lock;
struct e1000_hw_stats stats;
struct e1000_phy_info phy_info;
struct e1000_phy_stats phy_stats;
/* Snapshot of PHY registers */
struct e1000_phy_regs phy_regs;
struct e1000_ring test_tx_ring;
struct e1000_ring test_rx_ring;
u32 test_icr;
u32 msg_enable;
unsigned int num_vectors;
struct msix_entry *msix_entries;
int int_mode;
u32 eiac_mask;
u32 eeprom_wol;
u32 wol;
u32 pba;
u32 max_hw_frame_size;
bool fc_autoneg;
unsigned int flags;
unsigned int flags2;
struct work_struct downshift_task;
struct work_struct update_phy_task;
struct work_struct print_hang_task;
bool idle_check;
int phy_hang_count;
};
struct e1000_info {
enum e1000_mac_type mac;
unsigned int flags;
unsigned int flags2;
u32 pba;
u32 max_hw_frame_size;
s32 (*get_variants)(struct e1000_adapter *);
const struct e1000_mac_operations *mac_ops;
const struct e1000_phy_operations *phy_ops;
const struct e1000_nvm_operations *nvm_ops;
};
/* hardware capability, feature, and workaround flags */
#define FLAG_HAS_AMT (1 << 0)
#define FLAG_HAS_FLASH (1 << 1)
#define FLAG_HAS_HW_VLAN_FILTER (1 << 2)
#define FLAG_HAS_WOL (1 << 3)
#define FLAG_HAS_ERT (1 << 4)
#define FLAG_HAS_CTRLEXT_ON_LOAD (1 << 5)
#define FLAG_HAS_SWSM_ON_LOAD (1 << 6)
#define FLAG_HAS_JUMBO_FRAMES (1 << 7)
#define FLAG_READ_ONLY_NVM (1 << 8)
#define FLAG_IS_ICH (1 << 9)
#define FLAG_HAS_MSIX (1 << 10)
#define FLAG_HAS_SMART_POWER_DOWN (1 << 11)
#define FLAG_IS_QUAD_PORT_A (1 << 12)
#define FLAG_IS_QUAD_PORT (1 << 13)
#define FLAG_TIPG_MEDIUM_FOR_80003ESLAN (1 << 14)
#define FLAG_APME_IN_WUC (1 << 15)
#define FLAG_APME_IN_CTRL3 (1 << 16)
#define FLAG_APME_CHECK_PORT_B (1 << 17)
#define FLAG_DISABLE_FC_PAUSE_TIME (1 << 18)
#define FLAG_NO_WAKE_UCAST (1 << 19)
#define FLAG_MNG_PT_ENABLED (1 << 20)
#define FLAG_RESET_OVERWRITES_LAA (1 << 21)
#define FLAG_TARC_SPEED_MODE_BIT (1 << 22)
#define FLAG_TARC_SET_BIT_ZERO (1 << 23)
#define FLAG_RX_NEEDS_RESTART (1 << 24)
#define FLAG_LSC_GIG_SPEED_DROP (1 << 25)
#define FLAG_SMART_POWER_DOWN (1 << 26)
#define FLAG_MSI_ENABLED (1 << 27)
/* reserved (1 << 28) */
#define FLAG_TSO_FORCE (1 << 29)
#define FLAG_RX_RESTART_NOW (1 << 30)
#define FLAG_MSI_TEST_FAILED (1 << 31)
#define FLAG2_CRC_STRIPPING (1 << 0)
#define FLAG2_HAS_PHY_WAKEUP (1 << 1)
#define FLAG2_IS_DISCARDING (1 << 2)
#define FLAG2_DISABLE_ASPM_L1 (1 << 3)
#define FLAG2_HAS_PHY_STATS (1 << 4)
#define FLAG2_HAS_EEE (1 << 5)
#define FLAG2_DMA_BURST (1 << 6)
#define FLAG2_DISABLE_ASPM_L0S (1 << 7)
#define FLAG2_DISABLE_AIM (1 << 8)
#define FLAG2_CHECK_PHY_HANG (1 << 9)
#define FLAG2_NO_DISABLE_RX (1 << 10)
#define FLAG2_PCIM2PCI_ARBITER_WA (1 << 11)
#define E1000_RX_DESC_PS(R, i) \
(&(((union e1000_rx_desc_packet_split *)((R).desc))[i]))
#define E1000_RX_DESC_EXT(R, i) \
(&(((union e1000_rx_desc_extended *)((R).desc))[i]))
#define E1000_GET_DESC(R, i, type) (&(((struct type *)((R).desc))[i]))
#define E1000_TX_DESC(R, i) E1000_GET_DESC(R, i, e1000_tx_desc)
#define E1000_CONTEXT_DESC(R, i) E1000_GET_DESC(R, i, e1000_context_desc)
enum e1000_state_t {
__E1000_TESTING,
__E1000_RESETTING,
__E1000_ACCESS_SHARED_RESOURCE,
__E1000_DOWN
};
enum latency_range {
lowest_latency = 0,
low_latency = 1,
bulk_latency = 2,
latency_invalid = 255
};
extern char e1000e_driver_name[];
extern const char e1000e_driver_version[];
extern void e1000e_check_options(struct e1000_adapter *adapter);
extern void e1000e_set_ethtool_ops(struct net_device *netdev);
extern int e1000e_up(struct e1000_adapter *adapter);
extern void e1000e_down(struct e1000_adapter *adapter);
extern void e1000e_reinit_locked(struct e1000_adapter *adapter);
extern void e1000e_reset(struct e1000_adapter *adapter);
extern void e1000e_power_up_phy(struct e1000_adapter *adapter);
extern int e1000e_setup_rx_resources(struct e1000_adapter *adapter);
extern int e1000e_setup_tx_resources(struct e1000_adapter *adapter);
extern void e1000e_free_rx_resources(struct e1000_adapter *adapter);
extern void e1000e_free_tx_resources(struct e1000_adapter *adapter);
extern struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
struct rtnl_link_stats64
*stats);
extern void e1000e_set_interrupt_capability(struct e1000_adapter *adapter);
extern void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter);
extern void e1000e_get_hw_control(struct e1000_adapter *adapter);
extern void e1000e_release_hw_control(struct e1000_adapter *adapter);
extern unsigned int copybreak;
extern char *e1000e_get_hw_dev_name(struct e1000_hw *hw);
extern const struct e1000_info e1000_82571_info;
extern const struct e1000_info e1000_82572_info;
extern const struct e1000_info e1000_82573_info;
extern const struct e1000_info e1000_82574_info;
extern const struct e1000_info e1000_82583_info;
extern const struct e1000_info e1000_ich8_info;
extern const struct e1000_info e1000_ich9_info;
extern const struct e1000_info e1000_ich10_info;
extern const struct e1000_info e1000_pch_info;
extern const struct e1000_info e1000_pch2_info;
extern const struct e1000_info e1000_es2_info;
extern s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
u32 pba_num_size);
extern s32 e1000e_commit_phy(struct e1000_hw *hw);
extern bool e1000e_enable_mng_pass_thru(struct e1000_hw *hw);
extern bool e1000e_get_laa_state_82571(struct e1000_hw *hw);
extern void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state);
extern void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw);
extern void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
bool state);
extern void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw);
extern void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw);
extern void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw);
extern void e1000_resume_workarounds_pchlan(struct e1000_hw *hw);
extern s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable);
extern s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable);
extern void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw);
extern s32 e1000e_check_for_copper_link(struct e1000_hw *hw);
extern s32 e1000e_check_for_fiber_link(struct e1000_hw *hw);
extern s32 e1000e_check_for_serdes_link(struct e1000_hw *hw);
extern s32 e1000e_setup_led_generic(struct e1000_hw *hw);
extern s32 e1000e_cleanup_led_generic(struct e1000_hw *hw);
extern s32 e1000e_led_on_generic(struct e1000_hw *hw);
extern s32 e1000e_led_off_generic(struct e1000_hw *hw);
extern s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw);
extern void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw);
extern void e1000_set_lan_id_single_port(struct e1000_hw *hw);
extern s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, u16 *duplex);
extern s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed, u16 *duplex);
extern s32 e1000e_disable_pcie_master(struct e1000_hw *hw);
extern s32 e1000e_get_auto_rd_done(struct e1000_hw *hw);
extern s32 e1000e_id_led_init(struct e1000_hw *hw);
extern void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw);
extern s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw);
extern s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw);
extern s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw);
extern s32 e1000e_setup_link(struct e1000_hw *hw);
extern void e1000_clear_vfta_generic(struct e1000_hw *hw);
extern void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count);
extern void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw,
u8 *mc_addr_list,
u32 mc_addr_count);
extern void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index);
extern s32 e1000e_set_fc_watermarks(struct e1000_hw *hw);
extern void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop);
extern s32 e1000e_get_hw_semaphore(struct e1000_hw *hw);
extern s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data);
extern void e1000e_config_collision_dist(struct e1000_hw *hw);
extern s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw);
extern s32 e1000e_force_mac_fc(struct e1000_hw *hw);
extern s32 e1000e_blink_led_generic(struct e1000_hw *hw);
extern void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value);
extern s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw);
extern void e1000e_reset_adaptive(struct e1000_hw *hw);
extern void e1000e_update_adaptive(struct e1000_hw *hw);
extern s32 e1000e_setup_copper_link(struct e1000_hw *hw);
extern s32 e1000e_get_phy_id(struct e1000_hw *hw);
extern void e1000e_put_hw_semaphore(struct e1000_hw *hw);
extern s32 e1000e_check_reset_block_generic(struct e1000_hw *hw);
extern s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw);
extern s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw);
extern s32 e1000e_get_phy_info_igp(struct e1000_hw *hw);
extern s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page);
extern s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data);
extern s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset,
u16 *data);
extern s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw);
extern s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active);
extern s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data);
extern s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset,
u16 data);
extern s32 e1000e_phy_sw_reset(struct e1000_hw *hw);
extern s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw);
extern s32 e1000e_get_cfg_done(struct e1000_hw *hw);
extern s32 e1000e_get_cable_length_m88(struct e1000_hw *hw);
extern s32 e1000e_get_phy_info_m88(struct e1000_hw *hw);
extern s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data);
extern s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data);
extern s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw);
extern enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id);
extern s32 e1000e_determine_phy_address(struct e1000_hw *hw);
extern s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data);
extern s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data);
extern s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw,
u16 *phy_reg);
extern s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw,
u16 *phy_reg);
extern s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data);
extern s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data);
extern void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl);
extern s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data);
extern s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset,
u16 data);
extern s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data);
extern s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset,
u16 *data);
extern s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
u32 usec_interval, bool *success);
extern s32 e1000e_phy_reset_dsp(struct e1000_hw *hw);
extern void e1000_power_up_phy_copper(struct e1000_hw *hw);
extern void e1000_power_down_phy_copper(struct e1000_hw *hw);
extern s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data);
extern s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data);
extern s32 e1000e_check_downshift(struct e1000_hw *hw);
extern s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data);
extern s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset,
u16 *data);
extern s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset,
u16 *data);
extern s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data);
extern s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset,
u16 data);
extern s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset,
u16 data);
extern s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw);
extern s32 e1000_copper_link_setup_82577(struct e1000_hw *hw);
extern s32 e1000_check_polarity_82577(struct e1000_hw *hw);
extern s32 e1000_get_phy_info_82577(struct e1000_hw *hw);
extern s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw);
extern s32 e1000_get_cable_length_82577(struct e1000_hw *hw);
extern s32 e1000_check_polarity_m88(struct e1000_hw *hw);
extern s32 e1000_get_phy_info_ife(struct e1000_hw *hw);
extern s32 e1000_check_polarity_ife(struct e1000_hw *hw);
extern s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw);
extern s32 e1000_check_polarity_igp(struct e1000_hw *hw);
extern bool e1000_check_phy_82574(struct e1000_hw *hw);
static inline s32 e1000_phy_hw_reset(struct e1000_hw *hw)
{
return hw->phy.ops.reset(hw);
}
static inline s32 e1000_check_reset_block(struct e1000_hw *hw)
{
return hw->phy.ops.check_reset_block(hw);
}
static inline s32 e1e_rphy(struct e1000_hw *hw, u32 offset, u16 *data)
{
return hw->phy.ops.read_reg(hw, offset, data);
}
static inline s32 e1e_wphy(struct e1000_hw *hw, u32 offset, u16 data)
{
return hw->phy.ops.write_reg(hw, offset, data);
}
static inline s32 e1000_get_cable_length(struct e1000_hw *hw)
{
return hw->phy.ops.get_cable_length(hw);
}
extern s32 e1000e_acquire_nvm(struct e1000_hw *hw);
extern s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
extern s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw);
extern s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg);
extern s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data);
extern s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw);
extern void e1000e_release_nvm(struct e1000_hw *hw);
extern void e1000e_reload_nvm(struct e1000_hw *hw);
extern s32 e1000_read_mac_addr_generic(struct e1000_hw *hw);
static inline s32 e1000e_read_mac_addr(struct e1000_hw *hw)
{
if (hw->mac.ops.read_mac_addr)
return hw->mac.ops.read_mac_addr(hw);
return e1000_read_mac_addr_generic(hw);
}
static inline s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
{
return hw->nvm.ops.validate(hw);
}
static inline s32 e1000e_update_nvm_checksum(struct e1000_hw *hw)
{
return hw->nvm.ops.update(hw);
}
static inline s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
{
return hw->nvm.ops.read(hw, offset, words, data);
}
static inline s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
{
return hw->nvm.ops.write(hw, offset, words, data);
}
static inline s32 e1000_get_phy_info(struct e1000_hw *hw)
{
return hw->phy.ops.get_info(hw);
}
static inline s32 e1000e_check_mng_mode(struct e1000_hw *hw)
{
return hw->mac.ops.check_mng_mode(hw);
}
extern bool e1000e_check_mng_mode_generic(struct e1000_hw *hw);
extern bool e1000e_enable_tx_pkt_filtering(struct e1000_hw *hw);
extern s32 e1000e_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length);
static inline u32 __er32(struct e1000_hw *hw, unsigned long reg)
{
return readl(hw->hw_addr + reg);
}
static inline void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
{
writel(val, hw->hw_addr + reg);
}
#endif /* _E1000_H_ */
-------------- n?chster Teil --------------
/*******************************************************************************
Intel PRO/1000 Linux driver
Copyright(c) 1999 - 2011 Intel Corporation.
This program is free software; you can redistribute it and/or modify it
under the terms and conditions of the GNU General Public License,
version 2, as published by the Free Software Foundation.
This program is distributed in the hope it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
The full GNU General Public License is included in this distribution in
the file called "COPYING".
Contact Information:
Linux NICS <linux.nics at intel.com>
e1000-devel Mailing List <e1000-devel at lists.sourceforge.net>
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*******************************************************************************/
#ifndef _E1000_HW_H_
#define _E1000_HW_H_
#include <linux/types.h>
struct e1000_hw;
struct e1000_adapter;
#include "defines.h"
#define er32(reg) __er32(hw, E1000_##reg)
#define ew32(reg,val) __ew32(hw, E1000_##reg, (val))
#define e1e_flush() er32(STATUS)
#define E1000_WRITE_REG_ARRAY(a, reg, offset, value) \
(writel((value), ((a)->hw_addr + reg + ((offset) << 2))))
#define E1000_READ_REG_ARRAY(a, reg, offset) \
(readl((a)->hw_addr + reg + ((offset) << 2)))
enum e1e_registers {
E1000_CTRL = 0x00000, /* Device Control - RW */
E1000_STATUS = 0x00008, /* Device Status - RO */
E1000_EECD = 0x00010, /* EEPROM/Flash Control - RW */
E1000_EERD = 0x00014, /* EEPROM Read - RW */
E1000_CTRL_EXT = 0x00018, /* Extended Device Control - RW */
E1000_FLA = 0x0001C, /* Flash Access - RW */
E1000_MDIC = 0x00020, /* MDI Control - RW */
E1000_SCTL = 0x00024, /* SerDes Control - RW */
E1000_FCAL = 0x00028, /* Flow Control Address Low - RW */
E1000_FCAH = 0x0002C, /* Flow Control Address High -RW */
E1000_FEXTNVM4 = 0x00024, /* Future Extended NVM 4 - RW */
E1000_FEXTNVM = 0x00028, /* Future Extended NVM - RW */
E1000_FCT = 0x00030, /* Flow Control Type - RW */
E1000_VET = 0x00038, /* VLAN Ether Type - RW */
E1000_ICR = 0x000C0, /* Interrupt Cause Read - R/clr */
E1000_ITR = 0x000C4, /* Interrupt Throttling Rate - RW */
E1000_ICS = 0x000C8, /* Interrupt Cause Set - WO */
E1000_IMS = 0x000D0, /* Interrupt Mask Set - RW */
E1000_IMC = 0x000D8, /* Interrupt Mask Clear - WO */
E1000_EIAC_82574 = 0x000DC, /* Ext. Interrupt Auto Clear - RW */
E1000_IAM = 0x000E0, /* Interrupt Acknowledge Auto Mask */
E1000_IVAR = 0x000E4, /* Interrupt Vector Allocation - RW */
E1000_EITR_82574_BASE = 0x000E8, /* Interrupt Throttling - RW */
#define E1000_EITR_82574(_n) (E1000_EITR_82574_BASE + (_n << 2))
E1000_RCTL = 0x00100, /* Rx Control - RW */
E1000_FCTTV = 0x00170, /* Flow Control Transmit Timer Value - RW */
E1000_TXCW = 0x00178, /* Tx Configuration Word - RW */
E1000_RXCW = 0x00180, /* Rx Configuration Word - RO */
E1000_TCTL = 0x00400, /* Tx Control - RW */
E1000_TCTL_EXT = 0x00404, /* Extended Tx Control - RW */
E1000_TIPG = 0x00410, /* Tx Inter-packet gap -RW */
E1000_AIT = 0x00458, /* Adaptive Interframe Spacing Throttle -RW */
E1000_LEDCTL = 0x00E00, /* LED Control - RW */
E1000_EXTCNF_CTRL = 0x00F00, /* Extended Configuration Control */
E1000_EXTCNF_SIZE = 0x00F08, /* Extended Configuration Size */
E1000_PHY_CTRL = 0x00F10, /* PHY Control Register in CSR */
#define E1000_POEMB E1000_PHY_CTRL /* PHY OEM Bits */
E1000_PBA = 0x01000, /* Packet Buffer Allocation - RW */
E1000_PBS = 0x01008, /* Packet Buffer Size */
E1000_EEMNGCTL = 0x01010, /* MNG EEprom Control */
E1000_EEWR = 0x0102C, /* EEPROM Write Register - RW */
E1000_FLOP = 0x0103C, /* FLASH Opcode Register */
E1000_PBA_ECC = 0x01100, /* PBA ECC Register */
E1000_ERT = 0x02008, /* Early Rx Threshold - RW */
E1000_FCRTL = 0x02160, /* Flow Control Receive Threshold Low - RW */
E1000_FCRTH = 0x02168, /* Flow Control Receive Threshold High - RW */
E1000_PSRCTL = 0x02170, /* Packet Split Receive Control - RW */
E1000_RDBAL = 0x02800, /* Rx Descriptor Base Address Low - RW */
E1000_RDBAH = 0x02804, /* Rx Descriptor Base Address High - RW */
E1000_RDLEN = 0x02808, /* Rx Descriptor Length - RW */
E1000_RDH = 0x02810, /* Rx Descriptor Head - RW */
E1000_RDT = 0x02818, /* Rx Descriptor Tail - RW */
E1000_RDTR = 0x02820, /* Rx Delay Timer - RW */
E1000_RXDCTL_BASE = 0x02828, /* Rx Descriptor Control - RW */
#define E1000_RXDCTL(_n) (E1000_RXDCTL_BASE + (_n << 8))
E1000_RADV = 0x0282C, /* Rx Interrupt Absolute Delay Timer - RW */
/* Convenience macros
*
* Note: "_n" is the queue number of the register to be written to.
*
* Example usage:
* E1000_RDBAL_REG(current_rx_queue)
*
*/
#define E1000_RDBAL_REG(_n) (E1000_RDBAL + (_n << 8))
E1000_KABGTXD = 0x03004, /* AFE Band Gap Transmit Ref Data */
E1000_TDBAL = 0x03800, /* Tx Descriptor Base Address Low - RW */
E1000_TDBAH = 0x03804, /* Tx Descriptor Base Address High - RW */
E1000_TDLEN = 0x03808, /* Tx Descriptor Length - RW */
E1000_TDH = 0x03810, /* Tx Descriptor Head - RW */
E1000_TDT = 0x03818, /* Tx Descriptor Tail - RW */
E1000_TIDV = 0x03820, /* Tx Interrupt Delay Value - RW */
E1000_TXDCTL_BASE = 0x03828, /* Tx Descriptor Control - RW */
#define E1000_TXDCTL(_n) (E1000_TXDCTL_BASE + (_n << 8))
E1000_TADV = 0x0382C, /* Tx Interrupt Absolute Delay Val - RW */
E1000_TARC_BASE = 0x03840, /* Tx Arbitration Count (0) */
#define E1000_TARC(_n) (E1000_TARC_BASE + (_n << 8))
E1000_CRCERRS = 0x04000, /* CRC Error Count - R/clr */
E1000_ALGNERRC = 0x04004, /* Alignment Error Count - R/clr */
E1000_SYMERRS = 0x04008, /* Symbol Error Count - R/clr */
E1000_RXERRC = 0x0400C, /* Receive Error Count - R/clr */
E1000_MPC = 0x04010, /* Missed Packet Count - R/clr */
E1000_SCC = 0x04014, /* Single Collision Count - R/clr */
E1000_ECOL = 0x04018, /* Excessive Collision Count - R/clr */
E1000_MCC = 0x0401C, /* Multiple Collision Count - R/clr */
E1000_LATECOL = 0x04020, /* Late Collision Count - R/clr */
E1000_COLC = 0x04028, /* Collision Count - R/clr */
E1000_DC = 0x04030, /* Defer Count - R/clr */
E1000_TNCRS = 0x04034, /* Tx-No CRS - R/clr */
E1000_SEC = 0x04038, /* Sequence Error Count - R/clr */
E1000_CEXTERR = 0x0403C, /* Carrier Extension Error Count - R/clr */
E1000_RLEC = 0x04040, /* Receive Length Error Count - R/clr */
E1000_XONRXC = 0x04048, /* XON Rx Count - R/clr */
E1000_XONTXC = 0x0404C, /* XON Tx Count - R/clr */
E1000_XOFFRXC = 0x04050, /* XOFF Rx Count - R/clr */
E1000_XOFFTXC = 0x04054, /* XOFF Tx Count - R/clr */
E1000_FCRUC = 0x04058, /* Flow Control Rx Unsupported Count- R/clr */
E1000_PRC64 = 0x0405C, /* Packets Rx (64 bytes) - R/clr */
E1000_PRC127 = 0x04060, /* Packets Rx (65-127 bytes) - R/clr */
E1000_PRC255 = 0x04064, /* Packets Rx (128-255 bytes) - R/clr */
E1000_PRC511 = 0x04068, /* Packets Rx (255-511 bytes) - R/clr */
E1000_PRC1023 = 0x0406C, /* Packets Rx (512-1023 bytes) - R/clr */
E1000_PRC1522 = 0x04070, /* Packets Rx (1024-1522 bytes) - R/clr */
E1000_GPRC = 0x04074, /* Good Packets Rx Count - R/clr */
E1000_BPRC = 0x04078, /* Broadcast Packets Rx Count - R/clr */
E1000_MPRC = 0x0407C, /* Multicast Packets Rx Count - R/clr */
E1000_GPTC = 0x04080, /* Good Packets Tx Count - R/clr */
E1000_GORCL = 0x04088, /* Good Octets Rx Count Low - R/clr */
E1000_GORCH = 0x0408C, /* Good Octets Rx Count High - R/clr */
E1000_GOTCL = 0x04090, /* Good Octets Tx Count Low - R/clr */
E1000_GOTCH = 0x04094, /* Good Octets Tx Count High - R/clr */
E1000_RNBC = 0x040A0, /* Rx No Buffers Count - R/clr */
E1000_RUC = 0x040A4, /* Rx Undersize Count - R/clr */
E1000_RFC = 0x040A8, /* Rx Fragment Count - R/clr */
E1000_ROC = 0x040AC, /* Rx Oversize Count - R/clr */
E1000_RJC = 0x040B0, /* Rx Jabber Count - R/clr */
E1000_MGTPRC = 0x040B4, /* Management Packets Rx Count - R/clr */
E1000_MGTPDC = 0x040B8, /* Management Packets Dropped Count - R/clr */
E1000_MGTPTC = 0x040BC, /* Management Packets Tx Count - R/clr */
E1000_TORL = 0x040C0, /* Total Octets Rx Low - R/clr */
E1000_TORH = 0x040C4, /* Total Octets Rx High - R/clr */
E1000_TOTL = 0x040C8, /* Total Octets Tx Low - R/clr */
E1000_TOTH = 0x040CC, /* Total Octets Tx High - R/clr */
E1000_TPR = 0x040D0, /* Total Packets Rx - R/clr */
E1000_TPT = 0x040D4, /* Total Packets Tx - R/clr */
E1000_PTC64 = 0x040D8, /* Packets Tx (64 bytes) - R/clr */
E1000_PTC127 = 0x040DC, /* Packets Tx (65-127 bytes) - R/clr */
E1000_PTC255 = 0x040E0, /* Packets Tx (128-255 bytes) - R/clr */
E1000_PTC511 = 0x040E4, /* Packets Tx (256-511 bytes) - R/clr */
E1000_PTC1023 = 0x040E8, /* Packets Tx (512-1023 bytes) - R/clr */
E1000_PTC1522 = 0x040EC, /* Packets Tx (1024-1522 Bytes) - R/clr */
E1000_MPTC = 0x040F0, /* Multicast Packets Tx Count - R/clr */
E1000_BPTC = 0x040F4, /* Broadcast Packets Tx Count - R/clr */
E1000_TSCTC = 0x040F8, /* TCP Segmentation Context Tx - R/clr */
E1000_TSCTFC = 0x040FC, /* TCP Segmentation Context Tx Fail - R/clr */
E1000_IAC = 0x04100, /* Interrupt Assertion Count */
E1000_ICRXPTC = 0x04104, /* Irq Cause Rx Packet Timer Expire Count */
E1000_ICRXATC = 0x04108, /* Irq Cause Rx Abs Timer Expire Count */
E1000_ICTXPTC = 0x0410C, /* Irq Cause Tx Packet Timer Expire Count */
E1000_ICTXATC = 0x04110, /* Irq Cause Tx Abs Timer Expire Count */
E1000_ICTXQEC = 0x04118, /* Irq Cause Tx Queue Empty Count */
E1000_ICTXQMTC = 0x0411C, /* Irq Cause Tx Queue MinThreshold Count */
E1000_ICRXDMTC = 0x04120, /* Irq Cause Rx Desc MinThreshold Count */
E1000_ICRXOC = 0x04124, /* Irq Cause Receiver Overrun Count */
E1000_RXCSUM = 0x05000, /* Rx Checksum Control - RW */
E1000_RFCTL = 0x05008, /* Receive Filter Control */
E1000_MTA = 0x05200, /* Multicast Table Array - RW Array */
E1000_RAL_BASE = 0x05400, /* Receive Address Low - RW */
#define E1000_RAL(_n) (E1000_RAL_BASE + ((_n) * 8))
#define E1000_RA (E1000_RAL(0))
E1000_RAH_BASE = 0x05404, /* Receive Address High - RW */
#define E1000_RAH(_n) (E1000_RAH_BASE + ((_n) * 8))
E1000_VFTA = 0x05600, /* VLAN Filter Table Array - RW Array */
E1000_WUC = 0x05800, /* Wakeup Control - RW */
E1000_WUFC = 0x05808, /* Wakeup Filter Control - RW */
E1000_WUS = 0x05810, /* Wakeup Status - RO */
E1000_MANC = 0x05820, /* Management Control - RW */
E1000_FFLT = 0x05F00, /* Flexible Filter Length Table - RW Array */
E1000_HOST_IF = 0x08800, /* Host Interface */
E1000_KMRNCTRLSTA = 0x00034, /* MAC-PHY interface - RW */
E1000_MANC2H = 0x05860, /* Management Control To Host - RW */
E1000_MDEF_BASE = 0x05890, /* Management Decision Filters */
#define E1000_MDEF(_n) (E1000_MDEF_BASE + ((_n) * 4))
E1000_SW_FW_SYNC = 0x05B5C, /* Software-Firmware Synchronization - RW */
E1000_GCR = 0x05B00, /* PCI-Ex Control */
E1000_GCR2 = 0x05B64, /* PCI-Ex Control #2 */
E1000_FACTPS = 0x05B30, /* Function Active and Power State to MNG */
E1000_SWSM = 0x05B50, /* SW Semaphore */
E1000_FWSM = 0x05B54, /* FW Semaphore */
E1000_SWSM2 = 0x05B58, /* Driver-only SW semaphore */
E1000_FFLT_DBG = 0x05F04, /* Debug Register */
E1000_PCH_RAICC_BASE = 0x05F50, /* Receive Address Initial CRC */
#define E1000_PCH_RAICC(_n) (E1000_PCH_RAICC_BASE + ((_n) * 4))
#define E1000_CRC_OFFSET E1000_PCH_RAICC_BASE
E1000_HICR = 0x08F00, /* Host Interface Control */
};
#define E1000_MAX_PHY_ADDR 4
/* IGP01E1000 Specific Registers */
#define IGP01E1000_PHY_PORT_CONFIG 0x10 /* Port Config */
#define IGP01E1000_PHY_PORT_STATUS 0x11 /* Status */
#define IGP01E1000_PHY_PORT_CTRL 0x12 /* Control */
#define IGP01E1000_PHY_LINK_HEALTH 0x13 /* PHY Link Health */
#define IGP02E1000_PHY_POWER_MGMT 0x19 /* Power Management */
#define IGP01E1000_PHY_PAGE_SELECT 0x1F /* Page Select */
#define BM_PHY_PAGE_SELECT 22 /* Page Select for BM */
#define IGP_PAGE_SHIFT 5
#define PHY_REG_MASK 0x1F
#define BM_WUC_PAGE 800
#define BM_WUC_ADDRESS_OPCODE 0x11
#define BM_WUC_DATA_OPCODE 0x12
#define BM_WUC_ENABLE_PAGE 769
#define BM_WUC_ENABLE_REG 17
#define BM_WUC_ENABLE_BIT (1 << 2)
#define BM_WUC_HOST_WU_BIT (1 << 4)
#define BM_WUC_ME_WU_BIT (1 << 5)
#define BM_WUC PHY_REG(BM_WUC_PAGE, 1)
#define BM_WUFC PHY_REG(BM_WUC_PAGE, 2)
#define BM_WUS PHY_REG(BM_WUC_PAGE, 3)
#define IGP01E1000_PHY_PCS_INIT_REG 0x00B4
#define IGP01E1000_PHY_POLARITY_MASK 0x0078
#define IGP01E1000_PSCR_AUTO_MDIX 0x1000
#define IGP01E1000_PSCR_FORCE_MDI_MDIX 0x2000 /* 0=MDI, 1=MDIX */
#define IGP01E1000_PSCFR_SMART_SPEED 0x0080
#define IGP02E1000_PM_SPD 0x0001 /* Smart Power Down */
#define IGP02E1000_PM_D0_LPLU 0x0002 /* For D0a states */
#define IGP02E1000_PM_D3_LPLU 0x0004 /* For all other states */
#define IGP01E1000_PLHR_SS_DOWNGRADE 0x8000
#define IGP01E1000_PSSR_POLARITY_REVERSED 0x0002
#define IGP01E1000_PSSR_MDIX 0x0800
#define IGP01E1000_PSSR_SPEED_MASK 0xC000
#define IGP01E1000_PSSR_SPEED_1000MBPS 0xC000
#define IGP02E1000_PHY_CHANNEL_NUM 4
#define IGP02E1000_PHY_AGC_A 0x11B1
#define IGP02E1000_PHY_AGC_B 0x12B1
#define IGP02E1000_PHY_AGC_C 0x14B1
#define IGP02E1000_PHY_AGC_D 0x18B1
#define IGP02E1000_AGC_LENGTH_SHIFT 9 /* Course - 15:13, Fine - 12:9 */
#define IGP02E1000_AGC_LENGTH_MASK 0x7F
#define IGP02E1000_AGC_RANGE 15
/* manage.c */
#define E1000_VFTA_ENTRY_SHIFT 5
#define E1000_VFTA_ENTRY_MASK 0x7F
#define E1000_VFTA_ENTRY_BIT_SHIFT_MASK 0x1F
#define E1000_HICR_EN 0x01 /* Enable bit - RO */
/* Driver sets this bit when done to put command in RAM */
#define E1000_HICR_C 0x02
#define E1000_HICR_FW_RESET_ENABLE 0x40
#define E1000_HICR_FW_RESET 0x80
#define E1000_FWSM_MODE_MASK 0xE
#define E1000_FWSM_MODE_SHIFT 1
#define E1000_MNG_IAMT_MODE 0x3
#define E1000_MNG_DHCP_COOKIE_LENGTH 0x10
#define E1000_MNG_DHCP_COOKIE_OFFSET 0x6F0
#define E1000_MNG_DHCP_COMMAND_TIMEOUT 10
#define E1000_MNG_DHCP_TX_PAYLOAD_CMD 64
#define E1000_MNG_DHCP_COOKIE_STATUS_PARSING 0x1
#define E1000_MNG_DHCP_COOKIE_STATUS_VLAN 0x2
/* nvm.c */
#define E1000_STM_OPCODE 0xDB00
#define E1000_KMRNCTRLSTA_OFFSET 0x001F0000
#define E1000_KMRNCTRLSTA_OFFSET_SHIFT 16
#define E1000_KMRNCTRLSTA_REN 0x00200000
#define E1000_KMRNCTRLSTA_CTRL_OFFSET 0x1 /* Kumeran Control */
#define E1000_KMRNCTRLSTA_DIAG_OFFSET 0x3 /* Kumeran Diagnostic */
#define E1000_KMRNCTRLSTA_TIMEOUTS 0x4 /* Kumeran Timeouts */
#define E1000_KMRNCTRLSTA_INBAND_PARAM 0x9 /* Kumeran InBand Parameters */
#define E1000_KMRNCTRLSTA_IBIST_DISABLE 0x0200 /* Kumeran IBIST Disable */
#define E1000_KMRNCTRLSTA_DIAG_NELPBK 0x1000 /* Nearend Loopback mode */
#define E1000_KMRNCTRLSTA_K1_CONFIG 0x7
#define E1000_KMRNCTRLSTA_K1_ENABLE 0x0002
#define E1000_KMRNCTRLSTA_HD_CTRL 0x10 /* Kumeran HD Control */
#define IFE_PHY_EXTENDED_STATUS_CONTROL 0x10
#define IFE_PHY_SPECIAL_CONTROL 0x11 /* 100BaseTx PHY Special Control */
#define IFE_PHY_SPECIAL_CONTROL_LED 0x1B /* PHY Special and LED Control */
#define IFE_PHY_MDIX_CONTROL 0x1C /* MDI/MDI-X Control */
/* IFE PHY Extended Status Control */
#define IFE_PESC_POLARITY_REVERSED 0x0100
/* IFE PHY Special Control */
#define IFE_PSC_AUTO_POLARITY_DISABLE 0x0010
#define IFE_PSC_FORCE_POLARITY 0x0020
/* IFE PHY Special Control and LED Control */
#define IFE_PSCL_PROBE_MODE 0x0020
#define IFE_PSCL_PROBE_LEDS_OFF 0x0006 /* Force LEDs 0 and 2 off */
#define IFE_PSCL_PROBE_LEDS_ON 0x0007 /* Force LEDs 0 and 2 on */
/* IFE PHY MDIX Control */
#define IFE_PMC_MDIX_STATUS 0x0020 /* 1=MDI-X, 0=MDI */
#define IFE_PMC_FORCE_MDIX 0x0040 /* 1=force MDI-X, 0=force MDI */
#define IFE_PMC_AUTO_MDIX 0x0080 /* 1=enable auto MDI/MDI-X, 0=disable */
#define E1000_CABLE_LENGTH_UNDEFINED 0xFF
#define E1000_DEV_ID_82571EB_COPPER 0x105E
#define E1000_DEV_ID_82571EB_FIBER 0x105F
#define E1000_DEV_ID_82571EB_SERDES 0x1060
#define E1000_DEV_ID_82571EB_QUAD_COPPER 0x10A4
#define E1000_DEV_ID_82571PT_QUAD_COPPER 0x10D5
#define E1000_DEV_ID_82571EB_QUAD_FIBER 0x10A5
#define E1000_DEV_ID_82571EB_QUAD_COPPER_LP 0x10BC
#define E1000_DEV_ID_82571EB_SERDES_DUAL 0x10D9
#define E1000_DEV_ID_82571EB_SERDES_QUAD 0x10DA
#define E1000_DEV_ID_82572EI_COPPER 0x107D
#define E1000_DEV_ID_82572EI_FIBER 0x107E
#define E1000_DEV_ID_82572EI_SERDES 0x107F
#define E1000_DEV_ID_82572EI 0x10B9
#define E1000_DEV_ID_82573E 0x108B
#define E1000_DEV_ID_82573E_IAMT 0x108C
#define E1000_DEV_ID_82573L 0x109A
#define E1000_DEV_ID_82574L 0x10D3
#define E1000_DEV_ID_82574LA 0x10F6
#define E1000_DEV_ID_82583V 0x150C
#define E1000_DEV_ID_80003ES2LAN_COPPER_DPT 0x1096
#define E1000_DEV_ID_80003ES2LAN_SERDES_DPT 0x1098
#define E1000_DEV_ID_80003ES2LAN_COPPER_SPT 0x10BA
#define E1000_DEV_ID_80003ES2LAN_SERDES_SPT 0x10BB
#define E1000_DEV_ID_ICH8_82567V_3 0x1501
#define E1000_DEV_ID_ICH8_IGP_M_AMT 0x1049
#define E1000_DEV_ID_ICH8_IGP_AMT 0x104A
#define E1000_DEV_ID_ICH8_IGP_C 0x104B
#define E1000_DEV_ID_ICH8_IFE 0x104C
#define E1000_DEV_ID_ICH8_IFE_GT 0x10C4
#define E1000_DEV_ID_ICH8_IFE_G 0x10C5
#define E1000_DEV_ID_ICH8_IGP_M 0x104D
#define E1000_DEV_ID_ICH9_IGP_AMT 0x10BD
#define E1000_DEV_ID_ICH9_BM 0x10E5
#define E1000_DEV_ID_ICH9_IGP_M_AMT 0x10F5
#define E1000_DEV_ID_ICH9_IGP_M 0x10BF
#define E1000_DEV_ID_ICH9_IGP_M_V 0x10CB
#define E1000_DEV_ID_ICH9_IGP_C 0x294C
#define E1000_DEV_ID_ICH9_IFE 0x10C0
#define E1000_DEV_ID_ICH9_IFE_GT 0x10C3
#define E1000_DEV_ID_ICH9_IFE_G 0x10C2
#define E1000_DEV_ID_ICH10_R_BM_LM 0x10CC
#define E1000_DEV_ID_ICH10_R_BM_LF 0x10CD
#define E1000_DEV_ID_ICH10_R_BM_V 0x10CE
#define E1000_DEV_ID_ICH10_D_BM_LM 0x10DE
#define E1000_DEV_ID_ICH10_D_BM_LF 0x10DF
#define E1000_DEV_ID_ICH10_D_BM_V 0x1525
#define E1000_DEV_ID_PCH_M_HV_LM 0x10EA
#define E1000_DEV_ID_PCH_M_HV_LC 0x10EB
#define E1000_DEV_ID_PCH_D_HV_DM 0x10EF
#define E1000_DEV_ID_PCH_D_HV_DC 0x10F0
#define E1000_DEV_ID_PCH2_LV_LM 0x1502
#define E1000_DEV_ID_PCH2_LV_V 0x1503
#define E1000_REVISION_4 4
#define E1000_FUNC_1 1
#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN0 0
#define E1000_ALT_MAC_ADDRESS_OFFSET_LAN1 3
enum e1000_mac_type {
e1000_82571,
e1000_82572,
e1000_82573,
e1000_82574,
e1000_82583,
e1000_80003es2lan,
e1000_ich8lan,
e1000_ich9lan,
e1000_ich10lan,
e1000_pchlan,
e1000_pch2lan,
};
enum e1000_media_type {
e1000_media_type_unknown = 0,
e1000_media_type_copper = 1,
e1000_media_type_fiber = 2,
e1000_media_type_internal_serdes = 3,
e1000_num_media_types
};
enum e1000_nvm_type {
e1000_nvm_unknown = 0,
e1000_nvm_none,
e1000_nvm_eeprom_spi,
e1000_nvm_flash_hw,
e1000_nvm_flash_sw
};
enum e1000_nvm_override {
e1000_nvm_override_none = 0,
e1000_nvm_override_spi_small,
e1000_nvm_override_spi_large
};
enum e1000_phy_type {
e1000_phy_unknown = 0,
e1000_phy_none,
e1000_phy_m88,
e1000_phy_igp,
e1000_phy_igp_2,
e1000_phy_gg82563,
e1000_phy_igp_3,
e1000_phy_ife,
e1000_phy_bm,
e1000_phy_82578,
e1000_phy_82577,
e1000_phy_82579,
};
enum e1000_bus_width {
e1000_bus_width_unknown = 0,
e1000_bus_width_pcie_x1,
e1000_bus_width_pcie_x2,
e1000_bus_width_pcie_x4 = 4,
e1000_bus_width_32,
e1000_bus_width_64,
e1000_bus_width_reserved
};
enum e1000_1000t_rx_status {
e1000_1000t_rx_status_not_ok = 0,
e1000_1000t_rx_status_ok,
e1000_1000t_rx_status_undefined = 0xFF
};
enum e1000_rev_polarity{
e1000_rev_polarity_normal = 0,
e1000_rev_polarity_reversed,
e1000_rev_polarity_undefined = 0xFF
};
enum e1000_fc_mode {
e1000_fc_none = 0,
e1000_fc_rx_pause,
e1000_fc_tx_pause,
e1000_fc_full,
e1000_fc_default = 0xFF
};
enum e1000_ms_type {
e1000_ms_hw_default = 0,
e1000_ms_force_master,
e1000_ms_force_slave,
e1000_ms_auto
};
enum e1000_smart_speed {
e1000_smart_speed_default = 0,
e1000_smart_speed_on,
e1000_smart_speed_off
};
enum e1000_serdes_link_state {
e1000_serdes_link_down = 0,
e1000_serdes_link_autoneg_progress,
e1000_serdes_link_autoneg_complete,
e1000_serdes_link_forced_up
};
/* Receive Descriptor */
struct e1000_rx_desc {
__le64 buffer_addr; /* Address of the descriptor's data buffer */
__le16 length; /* Length of data DMAed into data buffer */
__le16 csum; /* Packet checksum */
u8 status; /* Descriptor status */
u8 errors; /* Descriptor Errors */
__le16 special;
};
/* Receive Descriptor - Extended */
union e1000_rx_desc_extended {
struct {
__le64 buffer_addr;
__le64 reserved;
} read;
struct {
struct {
__le32 mrq; /* Multiple Rx Queues */
union {
__le32 rss; /* RSS Hash */
struct {
__le16 ip_id; /* IP id */
__le16 csum; /* Packet Checksum */
} csum_ip;
} hi_dword;
} lower;
struct {
__le32 status_error; /* ext status/error */
__le16 length;
__le16 vlan; /* VLAN tag */
} upper;
} wb; /* writeback */
};
#define MAX_PS_BUFFERS 4
/* Receive Descriptor - Packet Split */
union e1000_rx_desc_packet_split {
struct {
/* one buffer for protocol header(s), three data buffers */
__le64 buffer_addr[MAX_PS_BUFFERS];
} read;
struct {
struct {
__le32 mrq; /* Multiple Rx Queues */
union {
__le32 rss; /* RSS Hash */
struct {
__le16 ip_id; /* IP id */
__le16 csum; /* Packet Checksum */
} csum_ip;
} hi_dword;
} lower;
struct {
__le32 status_error; /* ext status/error */
__le16 length0; /* length of buffer 0 */
__le16 vlan; /* VLAN tag */
} middle;
struct {
__le16 header_status;
__le16 length[3]; /* length of buffers 1-3 */
} upper;
__le64 reserved;
} wb; /* writeback */
};
/* Transmit Descriptor */
struct e1000_tx_desc {
__le64 buffer_addr; /* Address of the descriptor's data buffer */
union {
__le32 data;
struct {
__le16 length; /* Data buffer length */
u8 cso; /* Checksum offset */
u8 cmd; /* Descriptor control */
} flags;
} lower;
union {
__le32 data;
struct {
u8 status; /* Descriptor status */
u8 css; /* Checksum start */
__le16 special;
} fields;
} upper;
};
/* Offload Context Descriptor */
struct e1000_context_desc {
union {
__le32 ip_config;
struct {
u8 ipcss; /* IP checksum start */
u8 ipcso; /* IP checksum offset */
__le16 ipcse; /* IP checksum end */
} ip_fields;
} lower_setup;
union {
__le32 tcp_config;
struct {
u8 tucss; /* TCP checksum start */
u8 tucso; /* TCP checksum offset */
__le16 tucse; /* TCP checksum end */
} tcp_fields;
} upper_setup;
__le32 cmd_and_length;
union {
__le32 data;
struct {
u8 status; /* Descriptor status */
u8 hdr_len; /* Header length */
__le16 mss; /* Maximum segment size */
} fields;
} tcp_seg_setup;
};
/* Offload data descriptor */
struct e1000_data_desc {
__le64 buffer_addr; /* Address of the descriptor's buffer address */
union {
__le32 data;
struct {
__le16 length; /* Data buffer length */
u8 typ_len_ext;
u8 cmd;
} flags;
} lower;
union {
__le32 data;
struct {
u8 status; /* Descriptor status */
u8 popts; /* Packet Options */
__le16 special; /* */
} fields;
} upper;
};
/* Statistics counters collected by the MAC */
struct e1000_hw_stats {
u64 crcerrs;
u64 algnerrc;
u64 symerrs;
u64 rxerrc;
u64 mpc;
u64 scc;
u64 ecol;
u64 mcc;
u64 latecol;
u64 colc;
u64 dc;
u64 tncrs;
u64 sec;
u64 cexterr;
u64 rlec;
u64 xonrxc;
u64 xontxc;
u64 xoffrxc;
u64 xofftxc;
u64 fcruc;
u64 prc64;
u64 prc127;
u64 prc255;
u64 prc511;
u64 prc1023;
u64 prc1522;
u64 gprc;
u64 bprc;
u64 mprc;
u64 gptc;
u64 gorc;
u64 gotc;
u64 rnbc;
u64 ruc;
u64 rfc;
u64 roc;
u64 rjc;
u64 mgprc;
u64 mgpdc;
u64 mgptc;
u64 tor;
u64 tot;
u64 tpr;
u64 tpt;
u64 ptc64;
u64 ptc127;
u64 ptc255;
u64 ptc511;
u64 ptc1023;
u64 ptc1522;
u64 mptc;
u64 bptc;
u64 tsctc;
u64 tsctfc;
u64 iac;
u64 icrxptc;
u64 icrxatc;
u64 ictxptc;
u64 ictxatc;
u64 ictxqec;
u64 ictxqmtc;
u64 icrxdmtc;
u64 icrxoc;
};
struct e1000_phy_stats {
u32 idle_errors;
u32 receive_errors;
};
struct e1000_host_mng_dhcp_cookie {
u32 signature;
u8 status;
u8 reserved0;
u16 vlan_id;
u32 reserved1;
u16 reserved2;
u8 reserved3;
u8 checksum;
};
/* Host Interface "Rev 1" */
struct e1000_host_command_header {
u8 command_id;
u8 command_length;
u8 command_options;
u8 checksum;
};
#define E1000_HI_MAX_DATA_LENGTH 252
struct e1000_host_command_info {
struct e1000_host_command_header command_header;
u8 command_data[E1000_HI_MAX_DATA_LENGTH];
};
/* Host Interface "Rev 2" */
struct e1000_host_mng_command_header {
u8 command_id;
u8 checksum;
u16 reserved1;
u16 reserved2;
u16 command_length;
};
#define E1000_HI_MAX_MNG_DATA_LENGTH 0x6F8
struct e1000_host_mng_command_info {
struct e1000_host_mng_command_header command_header;
u8 command_data[E1000_HI_MAX_MNG_DATA_LENGTH];
};
/* Function pointers and static data for the MAC. */
struct e1000_mac_operations {
s32 (*id_led_init)(struct e1000_hw *);
s32 (*blink_led)(struct e1000_hw *);
bool (*check_mng_mode)(struct e1000_hw *);
s32 (*check_for_link)(struct e1000_hw *);
s32 (*cleanup_led)(struct e1000_hw *);
void (*clear_hw_cntrs)(struct e1000_hw *);
void (*clear_vfta)(struct e1000_hw *);
s32 (*get_bus_info)(struct e1000_hw *);
void (*set_lan_id)(struct e1000_hw *);
s32 (*get_link_up_info)(struct e1000_hw *, u16 *, u16 *);
s32 (*led_on)(struct e1000_hw *);
s32 (*led_off)(struct e1000_hw *);
void (*update_mc_addr_list)(struct e1000_hw *, u8 *, u32);
s32 (*reset_hw)(struct e1000_hw *);
s32 (*init_hw)(struct e1000_hw *);
s32 (*setup_link)(struct e1000_hw *);
s32 (*setup_physical_interface)(struct e1000_hw *);
s32 (*setup_led)(struct e1000_hw *);
void (*write_vfta)(struct e1000_hw *, u32, u32);
s32 (*read_mac_addr)(struct e1000_hw *);
};
/*
* When to use various PHY register access functions:
*
* Func Caller
* Function Does Does When to use
* ~~~~~~~~~~~~ ~~~~~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* X_reg L,P,A n/a for simple PHY reg accesses
* X_reg_locked P,A L for multiple accesses of different regs
* on different pages
* X_reg_page A L,P for multiple accesses of different regs
* on the same page
*
* Where X=[read|write], L=locking, P=sets page, A=register access
*
*/
struct e1000_phy_operations {
s32 (*acquire)(struct e1000_hw *);
s32 (*cfg_on_link_up)(struct e1000_hw *);
s32 (*check_polarity)(struct e1000_hw *);
s32 (*check_reset_block)(struct e1000_hw *);
s32 (*commit)(struct e1000_hw *);
s32 (*force_speed_duplex)(struct e1000_hw *);
s32 (*get_cfg_done)(struct e1000_hw *hw);
s32 (*get_cable_length)(struct e1000_hw *);
s32 (*get_info)(struct e1000_hw *);
s32 (*set_page)(struct e1000_hw *, u16);
s32 (*read_reg)(struct e1000_hw *, u32, u16 *);
s32 (*read_reg_locked)(struct e1000_hw *, u32, u16 *);
s32 (*read_reg_page)(struct e1000_hw *, u32, u16 *);
void (*release)(struct e1000_hw *);
s32 (*reset)(struct e1000_hw *);
s32 (*set_d0_lplu_state)(struct e1000_hw *, bool);
s32 (*set_d3_lplu_state)(struct e1000_hw *, bool);
s32 (*write_reg)(struct e1000_hw *, u32, u16);
s32 (*write_reg_locked)(struct e1000_hw *, u32, u16);
s32 (*write_reg_page)(struct e1000_hw *, u32, u16);
void (*power_up)(struct e1000_hw *);
void (*power_down)(struct e1000_hw *);
};
/* Function pointers for the NVM. */
struct e1000_nvm_operations {
s32 (*acquire)(struct e1000_hw *);
s32 (*read)(struct e1000_hw *, u16, u16, u16 *);
void (*release)(struct e1000_hw *);
s32 (*update)(struct e1000_hw *);
s32 (*valid_led_default)(struct e1000_hw *, u16 *);
s32 (*validate)(struct e1000_hw *);
s32 (*write)(struct e1000_hw *, u16, u16, u16 *);
};
struct e1000_mac_info {
struct e1000_mac_operations ops;
u8 addr[ETH_ALEN];
u8 perm_addr[ETH_ALEN];
enum e1000_mac_type type;
u32 collision_delta;
u32 ledctl_default;
u32 ledctl_mode1;
u32 ledctl_mode2;
u32 mc_filter_type;
u32 tx_packet_delta;
u32 txcw;
u16 current_ifs_val;
u16 ifs_max_val;
u16 ifs_min_val;
u16 ifs_ratio;
u16 ifs_step_size;
u16 mta_reg_count;
/* Maximum size of the MTA register table in all supported adapters */
#define MAX_MTA_REG 128
u32 mta_shadow[MAX_MTA_REG];
u16 rar_entry_count;
u8 forced_speed_duplex;
bool adaptive_ifs;
bool has_fwsm;
bool arc_subsystem_valid;
bool autoneg;
bool autoneg_failed;
bool get_link_status;
bool in_ifs_mode;
bool serdes_has_link;
bool tx_pkt_filtering;
enum e1000_serdes_link_state serdes_link_state;
};
struct e1000_phy_info {
struct e1000_phy_operations ops;
enum e1000_phy_type type;
enum e1000_1000t_rx_status local_rx;
enum e1000_1000t_rx_status remote_rx;
enum e1000_ms_type ms_type;
enum e1000_ms_type original_ms_type;
enum e1000_rev_polarity cable_polarity;
enum e1000_smart_speed smart_speed;
u32 addr;
u32 id;
u32 reset_delay_us; /* in usec */
u32 revision;
enum e1000_media_type media_type;
u16 autoneg_advertised;
u16 autoneg_mask;
u16 cable_length;
u16 max_cable_length;
u16 min_cable_length;
u8 mdix;
bool disable_polarity_correction;
bool is_mdix;
bool polarity_correction;
bool speed_downgraded;
bool autoneg_wait_to_complete;
};
struct e1000_nvm_info {
struct e1000_nvm_operations ops;
enum e1000_nvm_type type;
enum e1000_nvm_override override;
u32 flash_bank_size;
u32 flash_base_addr;
u16 word_size;
u16 delay_usec;
u16 address_bits;
u16 opcode_bits;
u16 page_size;
};
struct e1000_bus_info {
enum e1000_bus_width width;
u16 func;
};
struct e1000_fc_info {
u32 high_water; /* Flow control high-water mark */
u32 low_water; /* Flow control low-water mark */
u16 pause_time; /* Flow control pause timer */
u16 refresh_time; /* Flow control refresh timer */
bool send_xon; /* Flow control send XON */
bool strict_ieee; /* Strict IEEE mode */
enum e1000_fc_mode current_mode; /* FC mode in effect */
enum e1000_fc_mode requested_mode; /* FC mode requested by caller */
};
struct e1000_dev_spec_82571 {
bool laa_is_present;
u32 smb_counter;
};
struct e1000_dev_spec_80003es2lan {
bool mdic_wa_enable;
};
struct e1000_shadow_ram {
u16 value;
bool modified;
};
#define E1000_ICH8_SHADOW_RAM_WORDS 2048
struct e1000_dev_spec_ich8lan {
bool kmrn_lock_loss_workaround_enabled;
struct e1000_shadow_ram shadow_ram[E1000_ICH8_SHADOW_RAM_WORDS];
bool nvm_k1_enabled;
bool eee_disable;
};
struct e1000_hw {
struct e1000_adapter *adapter;
u8 __iomem *hw_addr;
u8 __iomem *flash_address;
struct e1000_mac_info mac;
struct e1000_fc_info fc;
struct e1000_phy_info phy;
struct e1000_nvm_info nvm;
struct e1000_bus_info bus;
struct e1000_host_mng_dhcp_cookie mng_cookie;
union {
struct e1000_dev_spec_82571 e82571;
struct e1000_dev_spec_80003es2lan e80003es2lan;
struct e1000_dev_spec_ich8lan ich8lan;
} dev_spec;
};
#endif
-------------- n?chster Teil --------------
/*******************************************************************************
Intel PRO/1000 Linux driver
Copyright(c) 1999 - 2011 Intel Corporation.
This program is free software; you can redistribute it and/or modify it
under the terms and conditions of the GNU General Public License,
version 2, as published by the Free Software Foundation.
This program is distributed in the hope it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
The full GNU General Public License is included in this distribution in
the file called "COPYING".
Contact Information:
Linux NICS <linux.nics at intel.com>
e1000-devel Mailing List <e1000-devel at lists.sourceforge.net>
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*******************************************************************************/
#include <linux/netdevice.h>
#include <linux/module.h>
#include <linux/pci.h>
#include "e1000.h"
/*
* This is the only thing that needs to be changed to adjust the
* maximum number of ports that the driver can manage.
*/
#define E1000_MAX_NIC 32
#define OPTION_UNSET -1
#define OPTION_DISABLED 0
#define OPTION_ENABLED 1
#define COPYBREAK_DEFAULT 256
unsigned int copybreak = COPYBREAK_DEFAULT;
module_param(copybreak, uint, 0644);
MODULE_PARM_DESC(copybreak,
"Maximum size of packet that is copied to a new buffer on receive");
/*
* All parameters are treated the same, as an integer array of values.
* This macro just reduces the need to repeat the same declaration code
* over and over (plus this helps to avoid typo bugs).
*/
#define E1000_PARAM_INIT { [0 ... E1000_MAX_NIC] = OPTION_UNSET }
#define E1000_PARAM(X, desc) \
static int __devinitdata X[E1000_MAX_NIC+1] \
= E1000_PARAM_INIT; \
static unsigned int num_##X; \
module_param_array_named(X, X, int, &num_##X, 0); \
MODULE_PARM_DESC(X, desc);
/*
* Transmit Interrupt Delay in units of 1.024 microseconds
* Tx interrupt delay needs to typically be set to something non-zero
*
* Valid Range: 0-65535
*/
E1000_PARAM(TxIntDelay, "Transmit Interrupt Delay");
#define DEFAULT_TIDV 8
#define MAX_TXDELAY 0xFFFF
#define MIN_TXDELAY 0
/*
* Transmit Absolute Interrupt Delay in units of 1.024 microseconds
*
* Valid Range: 0-65535
*/
E1000_PARAM(TxAbsIntDelay, "Transmit Absolute Interrupt Delay");
#define DEFAULT_TADV 32
#define MAX_TXABSDELAY 0xFFFF
#define MIN_TXABSDELAY 0
/*
* Receive Interrupt Delay in units of 1.024 microseconds
* hardware will likely hang if you set this to anything but zero.
*
* Valid Range: 0-65535
*/
E1000_PARAM(RxIntDelay, "Receive Interrupt Delay");
#define MAX_RXDELAY 0xFFFF
#define MIN_RXDELAY 0
/*
* Receive Absolute Interrupt Delay in units of 1.024 microseconds
*
* Valid Range: 0-65535
*/
E1000_PARAM(RxAbsIntDelay, "Receive Absolute Interrupt Delay");
#define MAX_RXABSDELAY 0xFFFF
#define MIN_RXABSDELAY 0
/*
* Interrupt Throttle Rate (interrupts/sec)
*
* Valid Range: 100-100000 (0=off, 1=dynamic, 3=dynamic conservative)
*/
E1000_PARAM(InterruptThrottleRate, "Interrupt Throttling Rate");
#define DEFAULT_ITR 3
#define MAX_ITR 100000
#define MIN_ITR 100
/* IntMode (Interrupt Mode)
*
* Valid Range: 0 - 2
*
* Default Value: 2 (MSI-X)
*/
E1000_PARAM(IntMode, "Interrupt Mode");
#define MAX_INTMODE 2
#define MIN_INTMODE 0
/*
* Enable Smart Power Down of the PHY
*
* Valid Range: 0, 1
*
* Default Value: 0 (disabled)
*/
E1000_PARAM(SmartPowerDownEnable, "Enable PHY smart power down");
/*
* Enable Kumeran Lock Loss workaround
*
* Valid Range: 0, 1
*
* Default Value: 1 (enabled)
*/
E1000_PARAM(KumeranLockLoss, "Enable Kumeran lock loss workaround");
/*
* Write Protect NVM
*
* Valid Range: 0, 1
*
* Default Value: 1 (enabled)
*/
E1000_PARAM(WriteProtectNVM, "Write-protect NVM [WARNING: disabling this can lead to corrupted NVM]");
/*
* Enable CRC Stripping
*
* Valid Range: 0, 1
*
* Default Value: 1 (enabled)
*/
E1000_PARAM(CrcStripping, "Enable CRC Stripping, disable if your BMC needs " \
"the CRC");
struct e1000_option {
enum { enable_option, range_option, list_option } type;
const char *name;
const char *err;
int def;
union {
struct { /* range_option info */
int min;
int max;
} r;
struct { /* list_option info */
int nr;
struct e1000_opt_list { int i; char *str; } *p;
} l;
} arg;
};
static int __devinit e1000_validate_option(unsigned int *value,
const struct e1000_option *opt,
struct e1000_adapter *adapter)
{
if (*value == OPTION_UNSET) {
*value = opt->def;
return 0;
}
switch (opt->type) {
case enable_option:
switch (*value) {
case OPTION_ENABLED:
e_info("%s Enabled\n", opt->name);
return 0;
case OPTION_DISABLED:
e_info("%s Disabled\n", opt->name);
return 0;
}
break;
case range_option:
if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
e_info("%s set to %i\n", opt->name, *value);
return 0;
}
break;
case list_option: {
int i;
struct e1000_opt_list *ent;
for (i = 0; i < opt->arg.l.nr; i++) {
ent = &opt->arg.l.p[i];
if (*value == ent->i) {
if (ent->str[0] != '\0')
e_info("%s\n", ent->str);
return 0;
}
}
}
break;
default:
BUG();
}
e_info("Invalid %s value specified (%i) %s\n", opt->name, *value,
opt->err);
*value = opt->def;
return -1;
}
/**
* e1000e_check_options - Range Checking for Command Line Parameters
* @adapter: board private structure
*
* This routine checks all command line parameters for valid user
* input. If an invalid value is given, or if no user specified
* value exists, a default value is used. The final value is stored
* in a variable in the adapter structure.
**/
void __devinit e1000e_check_options(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
int bd = adapter->bd_number;
if (bd >= E1000_MAX_NIC) {
e_notice("Warning: no configuration for board #%i\n", bd);
e_notice("Using defaults for all values\n");
}
{ /* Transmit Interrupt Delay */
static const struct e1000_option opt = {
.type = range_option,
.name = "Transmit Interrupt Delay",
.err = "using default of "
__MODULE_STRING(DEFAULT_TIDV),
.def = DEFAULT_TIDV,
.arg = { .r = { .min = MIN_TXDELAY,
.max = MAX_TXDELAY } }
};
if (num_TxIntDelay > bd) {
adapter->tx_int_delay = TxIntDelay[bd];
e1000_validate_option(&adapter->tx_int_delay, &opt,
adapter);
} else {
adapter->tx_int_delay = opt.def;
}
}
{ /* Transmit Absolute Interrupt Delay */
static const struct e1000_option opt = {
.type = range_option,
.name = "Transmit Absolute Interrupt Delay",
.err = "using default of "
__MODULE_STRING(DEFAULT_TADV),
.def = DEFAULT_TADV,
.arg = { .r = { .min = MIN_TXABSDELAY,
.max = MAX_TXABSDELAY } }
};
if (num_TxAbsIntDelay > bd) {
adapter->tx_abs_int_delay = TxAbsIntDelay[bd];
e1000_validate_option(&adapter->tx_abs_int_delay, &opt,
adapter);
} else {
adapter->tx_abs_int_delay = opt.def;
}
}
{ /* Receive Interrupt Delay */
static struct e1000_option opt = {
.type = range_option,
.name = "Receive Interrupt Delay",
.err = "using default of "
__MODULE_STRING(DEFAULT_RDTR),
.def = DEFAULT_RDTR,
.arg = { .r = { .min = MIN_RXDELAY,
.max = MAX_RXDELAY } }
};
if (num_RxIntDelay > bd) {
adapter->rx_int_delay = RxIntDelay[bd];
e1000_validate_option(&adapter->rx_int_delay, &opt,
adapter);
} else {
adapter->rx_int_delay = opt.def;
}
}
{ /* Receive Absolute Interrupt Delay */
static const struct e1000_option opt = {
.type = range_option,
.name = "Receive Absolute Interrupt Delay",
.err = "using default of "
__MODULE_STRING(DEFAULT_RADV),
.def = DEFAULT_RADV,
.arg = { .r = { .min = MIN_RXABSDELAY,
.max = MAX_RXABSDELAY } }
};
if (num_RxAbsIntDelay > bd) {
adapter->rx_abs_int_delay = RxAbsIntDelay[bd];
e1000_validate_option(&adapter->rx_abs_int_delay, &opt,
adapter);
} else {
adapter->rx_abs_int_delay = opt.def;
}
}
{ /* Interrupt Throttling Rate */
static const struct e1000_option opt = {
.type = range_option,
.name = "Interrupt Throttling Rate (ints/sec)",
.err = "using default of "
__MODULE_STRING(DEFAULT_ITR),
.def = DEFAULT_ITR,
.arg = { .r = { .min = MIN_ITR,
.max = MAX_ITR } }
};
if (num_InterruptThrottleRate > bd) {
adapter->itr = InterruptThrottleRate[bd];
switch (adapter->itr) {
case 0:
e_info("%s turned off\n", opt.name);
break;
case 1:
e_info("%s set to dynamic mode\n", opt.name);
adapter->itr_setting = adapter->itr;
adapter->itr = 20000;
break;
case 3:
e_info("%s set to dynamic conservative mode\n",
opt.name);
adapter->itr_setting = adapter->itr;
adapter->itr = 20000;
break;
case 4:
e_info("%s set to simplified (2000-8000 ints) "
"mode\n", opt.name);
adapter->itr_setting = 4;
break;
default:
/*
* Save the setting, because the dynamic bits
* change itr.
*/
if (e1000_validate_option(&adapter->itr, &opt,
adapter) &&
(adapter->itr == 3)) {
/*
* In case of invalid user value,
* default to conservative mode.
*/
adapter->itr_setting = adapter->itr;
adapter->itr = 20000;
} else {
/*
* Clear the lower two bits because
* they are used as control.
*/
adapter->itr_setting =
adapter->itr & ~3;
}
break;
}
} else {
adapter->itr_setting = opt.def;
adapter->itr = 20000;
}
}
{ /* Interrupt Mode */
static struct e1000_option opt = {
.type = range_option,
.name = "Interrupt Mode",
.err = "defaulting to 2 (MSI-X)",
.def = E1000E_INT_MODE_MSIX,
.arg = { .r = { .min = MIN_INTMODE,
.max = MAX_INTMODE } }
};
if (num_IntMode > bd) {
unsigned int int_mode = IntMode[bd];
e1000_validate_option(&int_mode, &opt, adapter);
adapter->int_mode = int_mode;
} else {
adapter->int_mode = opt.def;
}
}
{ /* Smart Power Down */
static const struct e1000_option opt = {
.type = enable_option,
.name = "PHY Smart Power Down",
.err = "defaulting to Disabled",
.def = OPTION_DISABLED
};
if (num_SmartPowerDownEnable > bd) {
unsigned int spd = SmartPowerDownEnable[bd];
e1000_validate_option(&spd, &opt, adapter);
if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN)
&& spd)
adapter->flags |= FLAG_SMART_POWER_DOWN;
}
}
{ /* CRC Stripping */
static const struct e1000_option opt = {
.type = enable_option,
.name = "CRC Stripping",
.err = "defaulting to Enabled",
.def = OPTION_ENABLED
};
if (num_CrcStripping > bd) {
unsigned int crc_stripping = CrcStripping[bd];
e1000_validate_option(&crc_stripping, &opt, adapter);
if (crc_stripping == OPTION_ENABLED)
adapter->flags2 |= FLAG2_CRC_STRIPPING;
} else {
adapter->flags2 |= FLAG2_CRC_STRIPPING;
}
}
{ /* Kumeran Lock Loss Workaround */
static const struct e1000_option opt = {
.type = enable_option,
.name = "Kumeran Lock Loss Workaround",
.err = "defaulting to Enabled",
.def = OPTION_ENABLED
};
if (num_KumeranLockLoss > bd) {
unsigned int kmrn_lock_loss = KumeranLockLoss[bd];
e1000_validate_option(&kmrn_lock_loss, &opt, adapter);
if (hw->mac.type == e1000_ich8lan)
e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw,
kmrn_lock_loss);
} else {
if (hw->mac.type == e1000_ich8lan)
e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw,
opt.def);
}
}
{ /* Write-protect NVM */
static const struct e1000_option opt = {
.type = enable_option,
.name = "Write-protect NVM",
.err = "defaulting to Enabled",
.def = OPTION_ENABLED
};
if (adapter->flags & FLAG_IS_ICH) {
if (num_WriteProtectNVM > bd) {
unsigned int write_protect_nvm = WriteProtectNVM[bd];
e1000_validate_option(&write_protect_nvm, &opt,
adapter);
if (write_protect_nvm)
adapter->flags |= FLAG_READ_ONLY_NVM;
} else {
if (opt.def)
adapter->flags |= FLAG_READ_ONLY_NVM;
}
}
}
}
-------------- n?chster Teil --------------
/*******************************************************************************
Intel PRO/1000 Linux driver
Copyright(c) 1999 - 2011 Intel Corporation.
This program is free software; you can redistribute it and/or modify it
under the terms and conditions of the GNU General Public License,
version 2, as published by the Free Software Foundation.
This program is distributed in the hope it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
The full GNU General Public License is included in this distribution in
the file called "COPYING".
Contact Information:
Linux NICS <linux.nics at intel.com>
e1000-devel Mailing List <e1000-devel at lists.sourceforge.net>
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*******************************************************************************/
/*
* 82571EB Gigabit Ethernet Controller
* 82571EB Gigabit Ethernet Controller (Copper)
* 82571EB Gigabit Ethernet Controller (Fiber)
* 82571EB Dual Port Gigabit Mezzanine Adapter
* 82571EB Quad Port Gigabit Mezzanine Adapter
* 82571PT Gigabit PT Quad Port Server ExpressModule
* 82572EI Gigabit Ethernet Controller (Copper)
* 82572EI Gigabit Ethernet Controller (Fiber)
* 82572EI Gigabit Ethernet Controller
* 82573V Gigabit Ethernet Controller (Copper)
* 82573E Gigabit Ethernet Controller (Copper)
* 82573L Gigabit Ethernet Controller
* 82574L Gigabit Network Connection
* 82583V Gigabit Network Connection
*/
#include "e1000.h"
#define ID_LED_RESERVED_F746 0xF746
#define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
(ID_LED_OFF1_ON2 << 8) | \
(ID_LED_DEF1_DEF2 << 4) | \
(ID_LED_DEF1_DEF2))
#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
#define AN_RETRY_COUNT 5 /* Autoneg Retry Count value */
#define E1000_BASE1000T_STATUS 10
#define E1000_IDLE_ERROR_COUNT_MASK 0xFF
#define E1000_RECEIVE_ERROR_COUNTER 21
#define E1000_RECEIVE_ERROR_MAX 0xFFFF
#define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */
static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
u16 words, u16 *data);
static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
static s32 e1000_setup_link_82571(struct e1000_hw *hw);
static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
static void e1000_clear_vfta_82571(struct e1000_hw *hw);
static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
static s32 e1000_led_on_82574(struct e1000_hw *hw);
static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw);
static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw);
static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw);
static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active);
static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active);
/**
* e1000_init_phy_params_82571 - Init PHY func ptrs.
* @hw: pointer to the HW structure
**/
static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
if (hw->phy.media_type != e1000_media_type_copper) {
phy->type = e1000_phy_none;
return 0;
}
phy->addr = 1;
phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
phy->reset_delay_us = 100;
phy->ops.power_up = e1000_power_up_phy_copper;
phy->ops.power_down = e1000_power_down_phy_copper_82571;
switch (hw->mac.type) {
case e1000_82571:
case e1000_82572:
phy->type = e1000_phy_igp_2;
break;
case e1000_82573:
phy->type = e1000_phy_m88;
break;
case e1000_82574:
case e1000_82583:
phy->type = e1000_phy_bm;
phy->ops.acquire = e1000_get_hw_semaphore_82574;
phy->ops.release = e1000_put_hw_semaphore_82574;
phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574;
phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574;
break;
default:
return -E1000_ERR_PHY;
break;
}
/* This can only be done after all function pointers are setup. */
ret_val = e1000_get_phy_id_82571(hw);
if (ret_val) {
e_dbg("Error getting PHY ID\n");
return ret_val;
}
/* Verify phy id */
switch (hw->mac.type) {
case e1000_82571:
case e1000_82572:
if (phy->id != IGP01E1000_I_PHY_ID)
ret_val = -E1000_ERR_PHY;
break;
case e1000_82573:
if (phy->id != M88E1111_I_PHY_ID)
ret_val = -E1000_ERR_PHY;
break;
case e1000_82574:
case e1000_82583:
if (phy->id != BME1000_E_PHY_ID_R2)
ret_val = -E1000_ERR_PHY;
break;
default:
ret_val = -E1000_ERR_PHY;
break;
}
if (ret_val)
e_dbg("PHY ID unknown: type = 0x%08x\n", phy->id);
return ret_val;
}
/**
* e1000_init_nvm_params_82571 - Init NVM func ptrs.
* @hw: pointer to the HW structure
**/
static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
{
struct e1000_nvm_info *nvm = &hw->nvm;
u32 eecd = er32(EECD);
u16 size;
nvm->opcode_bits = 8;
nvm->delay_usec = 1;
switch (nvm->override) {
case e1000_nvm_override_spi_large:
nvm->page_size = 32;
nvm->address_bits = 16;
break;
case e1000_nvm_override_spi_small:
nvm->page_size = 8;
nvm->address_bits = 8;
break;
default:
nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
break;
}
switch (hw->mac.type) {
case e1000_82573:
case e1000_82574:
case e1000_82583:
if (((eecd >> 15) & 0x3) == 0x3) {
nvm->type = e1000_nvm_flash_hw;
nvm->word_size = 2048;
/*
* Autonomous Flash update bit must be cleared due
* to Flash update issue.
*/
eecd &= ~E1000_EECD_AUPDEN;
ew32(EECD, eecd);
break;
}
/* Fall Through */
default:
nvm->type = e1000_nvm_eeprom_spi;
size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
E1000_EECD_SIZE_EX_SHIFT);
/*
* Added to a constant, "size" becomes the left-shift value
* for setting word_size.
*/
size += NVM_WORD_SIZE_BASE_SHIFT;
/* EEPROM access above 16k is unsupported */
if (size > 14)
size = 14;
nvm->word_size = 1 << size;
break;
}
/* Function Pointers */
switch (hw->mac.type) {
case e1000_82574:
case e1000_82583:
nvm->ops.acquire = e1000_get_hw_semaphore_82574;
nvm->ops.release = e1000_put_hw_semaphore_82574;
break;
default:
break;
}
return 0;
}
/**
* e1000_init_mac_params_82571 - Init MAC func ptrs.
* @hw: pointer to the HW structure
**/
static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
struct e1000_mac_info *mac = &hw->mac;
struct e1000_mac_operations *func = &mac->ops;
u32 swsm = 0;
u32 swsm2 = 0;
bool force_clear_smbi = false;
/* Set media type */
switch (adapter->pdev->device) {
case E1000_DEV_ID_82571EB_FIBER:
case E1000_DEV_ID_82572EI_FIBER:
case E1000_DEV_ID_82571EB_QUAD_FIBER:
hw->phy.media_type = e1000_media_type_fiber;
break;
case E1000_DEV_ID_82571EB_SERDES:
case E1000_DEV_ID_82572EI_SERDES:
case E1000_DEV_ID_82571EB_SERDES_DUAL:
case E1000_DEV_ID_82571EB_SERDES_QUAD:
hw->phy.media_type = e1000_media_type_internal_serdes;
break;
default:
hw->phy.media_type = e1000_media_type_copper;
break;
}
/* Set mta register count */
mac->mta_reg_count = 128;
/* Set rar entry count */
mac->rar_entry_count = E1000_RAR_ENTRIES;
/* Adaptive IFS supported */
mac->adaptive_ifs = true;
/* check for link */
switch (hw->phy.media_type) {
case e1000_media_type_copper:
func->setup_physical_interface = e1000_setup_copper_link_82571;
func->check_for_link = e1000e_check_for_copper_link;
func->get_link_up_info = e1000e_get_speed_and_duplex_copper;
break;
case e1000_media_type_fiber:
func->setup_physical_interface =
e1000_setup_fiber_serdes_link_82571;
func->check_for_link = e1000e_check_for_fiber_link;
func->get_link_up_info =
e1000e_get_speed_and_duplex_fiber_serdes;
break;
case e1000_media_type_internal_serdes:
func->setup_physical_interface =
e1000_setup_fiber_serdes_link_82571;
func->check_for_link = e1000_check_for_serdes_link_82571;
func->get_link_up_info =
e1000e_get_speed_and_duplex_fiber_serdes;
break;
default:
return -E1000_ERR_CONFIG;
break;
}
switch (hw->mac.type) {
case e1000_82573:
func->set_lan_id = e1000_set_lan_id_single_port;
func->check_mng_mode = e1000e_check_mng_mode_generic;
func->led_on = e1000e_led_on_generic;
func->blink_led = e1000e_blink_led_generic;
/* FWSM register */
mac->has_fwsm = true;
/*
* ARC supported; valid only if manageability features are
* enabled.
*/
mac->arc_subsystem_valid =
(er32(FWSM) & E1000_FWSM_MODE_MASK)
? true : false;
break;
case e1000_82574:
case e1000_82583:
func->set_lan_id = e1000_set_lan_id_single_port;
func->check_mng_mode = e1000_check_mng_mode_82574;
func->led_on = e1000_led_on_82574;
break;
default:
func->check_mng_mode = e1000e_check_mng_mode_generic;
func->led_on = e1000e_led_on_generic;
func->blink_led = e1000e_blink_led_generic;
/* FWSM register */
mac->has_fwsm = true;
break;
}
/*
* Ensure that the inter-port SWSM.SMBI lock bit is clear before
* first NVM or PHY access. This should be done for single-port
* devices, and for one port only on dual-port devices so that
* for those devices we can still use the SMBI lock to synchronize
* inter-port accesses to the PHY & NVM.
*/
switch (hw->mac.type) {
case e1000_82571:
case e1000_82572:
swsm2 = er32(SWSM2);
if (!(swsm2 & E1000_SWSM2_LOCK)) {
/* Only do this for the first interface on this card */
ew32(SWSM2,
swsm2 | E1000_SWSM2_LOCK);
force_clear_smbi = true;
} else
force_clear_smbi = false;
break;
default:
force_clear_smbi = true;
break;
}
if (force_clear_smbi) {
/* Make sure SWSM.SMBI is clear */
swsm = er32(SWSM);
if (swsm & E1000_SWSM_SMBI) {
/* This bit should not be set on a first interface, and
* indicates that the bootagent or EFI code has
* improperly left this bit enabled
*/
e_dbg("Please update your 82571 Bootagent\n");
}
ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
}
/*
* Initialize device specific counter of SMBI acquisition
* timeouts.
*/
hw->dev_spec.e82571.smb_counter = 0;
return 0;
}
static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
static int global_quad_port_a; /* global port a indication */
struct pci_dev *pdev = adapter->pdev;
int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
s32 rc;
rc = e1000_init_mac_params_82571(adapter);
if (rc)
return rc;
rc = e1000_init_nvm_params_82571(hw);
if (rc)
return rc;
rc = e1000_init_phy_params_82571(hw);
if (rc)
return rc;
/* tag quad port adapters first, it's used below */
switch (pdev->device) {
case E1000_DEV_ID_82571EB_QUAD_COPPER:
case E1000_DEV_ID_82571EB_QUAD_FIBER:
case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
case E1000_DEV_ID_82571PT_QUAD_COPPER:
adapter->flags |= FLAG_IS_QUAD_PORT;
/* mark the first port */
if (global_quad_port_a == 0)
adapter->flags |= FLAG_IS_QUAD_PORT_A;
/* Reset for multiple quad port adapters */
global_quad_port_a++;
if (global_quad_port_a == 4)
global_quad_port_a = 0;
break;
default:
break;
}
switch (adapter->hw.mac.type) {
case e1000_82571:
/* these dual ports don't have WoL on port B at all */
if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
(pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
(pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
(is_port_b))
adapter->flags &= ~FLAG_HAS_WOL;
/* quad ports only support WoL on port A */
if (adapter->flags & FLAG_IS_QUAD_PORT &&
(!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
adapter->flags &= ~FLAG_HAS_WOL;
/* Does not support WoL on any port */
if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
adapter->flags &= ~FLAG_HAS_WOL;
break;
case e1000_82573:
if (pdev->device == E1000_DEV_ID_82573L) {
adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
adapter->max_hw_frame_size = DEFAULT_JUMBO;
}
break;
default:
break;
}
return 0;
}
/**
* e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
* @hw: pointer to the HW structure
*
* Reads the PHY registers and stores the PHY ID and possibly the PHY
* revision in the hardware structure.
**/
static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 phy_id = 0;
switch (hw->mac.type) {
case e1000_82571:
case e1000_82572:
/*
* The 82571 firmware may still be configuring the PHY.
* In this case, we cannot access the PHY until the
* configuration is done. So we explicitly set the
* PHY ID.
*/
phy->id = IGP01E1000_I_PHY_ID;
break;
case e1000_82573:
return e1000e_get_phy_id(hw);
break;
case e1000_82574:
case e1000_82583:
ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
if (ret_val)
return ret_val;
phy->id = (u32)(phy_id << 16);
udelay(20);
ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
if (ret_val)
return ret_val;
phy->id |= (u32)(phy_id);
phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
break;
default:
return -E1000_ERR_PHY;
break;
}
return 0;
}
/**
* e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
* @hw: pointer to the HW structure
*
* Acquire the HW semaphore to access the PHY or NVM
**/
static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
{
u32 swsm;
s32 sw_timeout = hw->nvm.word_size + 1;
s32 fw_timeout = hw->nvm.word_size + 1;
s32 i = 0;
/*
* If we have timedout 3 times on trying to acquire
* the inter-port SMBI semaphore, there is old code
* operating on the other port, and it is not
* releasing SMBI. Modify the number of times that
* we try for the semaphore to interwork with this
* older code.
*/
if (hw->dev_spec.e82571.smb_counter > 2)
sw_timeout = 1;
/* Get the SW semaphore */
while (i < sw_timeout) {
swsm = er32(SWSM);
if (!(swsm & E1000_SWSM_SMBI))
break;
udelay(50);
i++;
}
if (i == sw_timeout) {
e_dbg("Driver can't access device - SMBI bit is set.\n");
hw->dev_spec.e82571.smb_counter++;
}
/* Get the FW semaphore. */
for (i = 0; i < fw_timeout; i++) {
swsm = er32(SWSM);
ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
/* Semaphore acquired if bit latched */
if (er32(SWSM) & E1000_SWSM_SWESMBI)
break;
udelay(50);
}
if (i == fw_timeout) {
/* Release semaphores */
e1000_put_hw_semaphore_82571(hw);
e_dbg("Driver can't access the NVM\n");
return -E1000_ERR_NVM;
}
return 0;
}
/**
* e1000_put_hw_semaphore_82571 - Release hardware semaphore
* @hw: pointer to the HW structure
*
* Release hardware semaphore used to access the PHY or NVM
**/
static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
{
u32 swsm;
swsm = er32(SWSM);
swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
ew32(SWSM, swsm);
}
/**
* e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
* @hw: pointer to the HW structure
*
* Acquire the HW semaphore during reset.
*
**/
static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw)
{
u32 extcnf_ctrl;
s32 ret_val = 0;
s32 i = 0;
extcnf_ctrl = er32(EXTCNF_CTRL);
extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
do {
ew32(EXTCNF_CTRL, extcnf_ctrl);
extcnf_ctrl = er32(EXTCNF_CTRL);
if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
break;
extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
usleep_range(2000, 4000);
i++;
} while (i < MDIO_OWNERSHIP_TIMEOUT);
if (i == MDIO_OWNERSHIP_TIMEOUT) {
/* Release semaphores */
e1000_put_hw_semaphore_82573(hw);
e_dbg("Driver can't access the PHY\n");
ret_val = -E1000_ERR_PHY;
goto out;
}
out:
return ret_val;
}
/**
* e1000_put_hw_semaphore_82573 - Release hardware semaphore
* @hw: pointer to the HW structure
*
* Release hardware semaphore used during reset.
*
**/
static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw)
{
u32 extcnf_ctrl;
extcnf_ctrl = er32(EXTCNF_CTRL);
extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
ew32(EXTCNF_CTRL, extcnf_ctrl);
}
static DEFINE_MUTEX(swflag_mutex);
/**
* e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
* @hw: pointer to the HW structure
*
* Acquire the HW semaphore to access the PHY or NVM.
*
**/
static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw)
{
s32 ret_val;
mutex_lock(&swflag_mutex);
ret_val = e1000_get_hw_semaphore_82573(hw);
if (ret_val)
mutex_unlock(&swflag_mutex);
return ret_val;
}
/**
* e1000_put_hw_semaphore_82574 - Release hardware semaphore
* @hw: pointer to the HW structure
*
* Release hardware semaphore used to access the PHY or NVM
*
**/
static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw)
{
e1000_put_hw_semaphore_82573(hw);
mutex_unlock(&swflag_mutex);
}
/**
* e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
* @hw: pointer to the HW structure
* @active: true to enable LPLU, false to disable
*
* Sets the LPLU D0 state according to the active flag.
* LPLU will not be activated unless the
* device autonegotiation advertisement meets standards of
* either 10 or 10/100 or 10/100/1000 at all duplexes.
* This is a function pointer entry point only called by
* PHY setup routines.
**/
static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active)
{
u16 data = er32(POEMB);
if (active)
data |= E1000_PHY_CTRL_D0A_LPLU;
else
data &= ~E1000_PHY_CTRL_D0A_LPLU;
ew32(POEMB, data);
return 0;
}
/**
* e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
* @hw: pointer to the HW structure
* @active: boolean used to enable/disable lplu
*
* The low power link up (lplu) state is set to the power management level D3
* when active is true, else clear lplu for D3. LPLU
* is used during Dx states where the power conservation is most important.
* During driver activity, SmartSpeed should be enabled so performance is
* maintained.
**/
static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active)
{
u16 data = er32(POEMB);
if (!active) {
data &= ~E1000_PHY_CTRL_NOND0A_LPLU;
} else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
(hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) ||
(hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) {
data |= E1000_PHY_CTRL_NOND0A_LPLU;
}
ew32(POEMB, data);
return 0;
}
/**
* e1000_acquire_nvm_82571 - Request for access to the EEPROM
* @hw: pointer to the HW structure
*
* To gain access to the EEPROM, first we must obtain a hardware semaphore.
* Then for non-82573 hardware, set the EEPROM access request bit and wait
* for EEPROM access grant bit. If the access grant bit is not set, release
* hardware semaphore.
**/
static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
{
s32 ret_val;
ret_val = e1000_get_hw_semaphore_82571(hw);
if (ret_val)
return ret_val;
switch (hw->mac.type) {
case e1000_82573:
break;
default:
ret_val = e1000e_acquire_nvm(hw);
break;
}
if (ret_val)
e1000_put_hw_semaphore_82571(hw);
return ret_val;
}
/**
* e1000_release_nvm_82571 - Release exclusive access to EEPROM
* @hw: pointer to the HW structure
*
* Stop any current commands to the EEPROM and clear the EEPROM request bit.
**/
static void e1000_release_nvm_82571(struct e1000_hw *hw)
{
e1000e_release_nvm(hw);
e1000_put_hw_semaphore_82571(hw);
}
/**
* e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
* @hw: pointer to the HW structure
* @offset: offset within the EEPROM to be written to
* @words: number of words to write
* @data: 16 bit word(s) to be written to the EEPROM
*
* For non-82573 silicon, write data to EEPROM at offset using SPI interface.
*
* If e1000e_update_nvm_checksum is not called after this function, the
* EEPROM will most likely contain an invalid checksum.
**/
static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
u16 *data)
{
s32 ret_val;
switch (hw->mac.type) {
case e1000_82573:
case e1000_82574:
case e1000_82583:
ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
break;
case e1000_82571:
case e1000_82572:
ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
break;
default:
ret_val = -E1000_ERR_NVM;
break;
}
return ret_val;
}
/**
* e1000_update_nvm_checksum_82571 - Update EEPROM checksum
* @hw: pointer to the HW structure
*
* Updates the EEPROM checksum by reading/adding each word of the EEPROM
* up to the checksum. Then calculates the EEPROM checksum and writes the
* value to the EEPROM.
**/
static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
{
u32 eecd;
s32 ret_val;
u16 i;
ret_val = e1000e_update_nvm_checksum_generic(hw);
if (ret_val)
return ret_val;
/*
* If our nvm is an EEPROM, then we're done
* otherwise, commit the checksum to the flash NVM.
*/
if (hw->nvm.type != e1000_nvm_flash_hw)
return ret_val;
/* Check for pending operations. */
for (i = 0; i < E1000_FLASH_UPDATES; i++) {
usleep_range(1000, 2000);
if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
break;
}
if (i == E1000_FLASH_UPDATES)
return -E1000_ERR_NVM;
/* Reset the firmware if using STM opcode. */
if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
/*
* The enabling of and the actual reset must be done
* in two write cycles.
*/
ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
e1e_flush();
ew32(HICR, E1000_HICR_FW_RESET);
}
/* Commit the write to flash */
eecd = er32(EECD) | E1000_EECD_FLUPD;
ew32(EECD, eecd);
for (i = 0; i < E1000_FLASH_UPDATES; i++) {
usleep_range(1000, 2000);
if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
break;
}
if (i == E1000_FLASH_UPDATES)
return -E1000_ERR_NVM;
return 0;
}
/**
* e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
* @hw: pointer to the HW structure
*
* Calculates the EEPROM checksum by reading/adding each word of the EEPROM
* and then verifies that the sum of the EEPROM is equal to 0xBABA.
**/
static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
{
if (hw->nvm.type == e1000_nvm_flash_hw)
e1000_fix_nvm_checksum_82571(hw);
return e1000e_validate_nvm_checksum_generic(hw);
}
/**
* e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
* @hw: pointer to the HW structure
* @offset: offset within the EEPROM to be written to
* @words: number of words to write
* @data: 16 bit word(s) to be written to the EEPROM
*
* After checking for invalid values, poll the EEPROM to ensure the previous
* command has completed before trying to write the next word. After write
* poll for completion.
*
* If e1000e_update_nvm_checksum is not called after this function, the
* EEPROM will most likely contain an invalid checksum.
**/
static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
u16 words, u16 *data)
{
struct e1000_nvm_info *nvm = &hw->nvm;
u32 i, eewr = 0;
s32 ret_val = 0;
/*
* A check for invalid values: offset too large, too many words,
* and not enough words.
*/
if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
(words == 0)) {
e_dbg("nvm parameter(s) out of bounds\n");
return -E1000_ERR_NVM;
}
for (i = 0; i < words; i++) {
eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
E1000_NVM_RW_REG_START;
ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
if (ret_val)
break;
ew32(EEWR, eewr);
ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
if (ret_val)
break;
}
return ret_val;
}
/**
* e1000_get_cfg_done_82571 - Poll for configuration done
* @hw: pointer to the HW structure
*
* Reads the management control register for the config done bit to be set.
**/
static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
{
s32 timeout = PHY_CFG_TIMEOUT;
while (timeout) {
if (er32(EEMNGCTL) &
E1000_NVM_CFG_DONE_PORT_0)
break;
usleep_range(1000, 2000);
timeout--;
}
if (!timeout) {
e_dbg("MNG configuration cycle has not completed.\n");
return -E1000_ERR_RESET;
}
return 0;
}
/**
* e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
* @hw: pointer to the HW structure
* @active: true to enable LPLU, false to disable
*
* Sets the LPLU D0 state according to the active flag. When activating LPLU
* this function also disables smart speed and vice versa. LPLU will not be
* activated unless the device autonegotiation advertisement meets standards
* of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function
* pointer entry point only called by PHY setup routines.
**/
static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 data;
ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
if (ret_val)
return ret_val;
if (active) {
data |= IGP02E1000_PM_D0_LPLU;
ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
if (ret_val)
return ret_val;
/* When LPLU is enabled, we should disable SmartSpeed */
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
if (ret_val)
return ret_val;
} else {
data &= ~IGP02E1000_PM_D0_LPLU;
ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
/*
* LPLU and SmartSpeed are mutually exclusive. LPLU is used
* during Dx states where the power conservation is most
* important. During driver activity we should enable
* SmartSpeed, so performance is maintained.
*/
if (phy->smart_speed == e1000_smart_speed_on) {
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
&data);
if (ret_val)
return ret_val;
data |= IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
data);
if (ret_val)
return ret_val;
} else if (phy->smart_speed == e1000_smart_speed_off) {
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
&data);
if (ret_val)
return ret_val;
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
data);
if (ret_val)
return ret_val;
}
}
return 0;
}
/**
* e1000_reset_hw_82571 - Reset hardware
* @hw: pointer to the HW structure
*
* This resets the hardware into a known state.
**/
static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
{
u32 ctrl, ctrl_ext;
s32 ret_val;
/*
* Prevent the PCI-E bus from sticking if there is no TLP connection
* on the last TLP read/write transaction when MAC is reset.
*/
ret_val = e1000e_disable_pcie_master(hw);
if (ret_val)
e_dbg("PCI-E Master disable polling has failed.\n");
e_dbg("Masking off all interrupts\n");
ew32(IMC, 0xffffffff);
ew32(RCTL, 0);
ew32(TCTL, E1000_TCTL_PSP);
e1e_flush();
usleep_range(10000, 20000);
/*
* Must acquire the MDIO ownership before MAC reset.
* Ownership defaults to firmware after a reset.
*/
switch (hw->mac.type) {
case e1000_82573:
ret_val = e1000_get_hw_semaphore_82573(hw);
break;
case e1000_82574:
case e1000_82583:
ret_val = e1000_get_hw_semaphore_82574(hw);
break;
default:
break;
}
if (ret_val)
e_dbg("Cannot acquire MDIO ownership\n");
ctrl = er32(CTRL);
e_dbg("Issuing a global reset to MAC\n");
ew32(CTRL, ctrl | E1000_CTRL_RST);
/* Must release MDIO ownership and mutex after MAC reset. */
switch (hw->mac.type) {
case e1000_82574:
case e1000_82583:
e1000_put_hw_semaphore_82574(hw);
break;
default:
break;
}
if (hw->nvm.type == e1000_nvm_flash_hw) {
udelay(10);
ctrl_ext = er32(CTRL_EXT);
ctrl_ext |= E1000_CTRL_EXT_EE_RST;
ew32(CTRL_EXT, ctrl_ext);
e1e_flush();
}
ret_val = e1000e_get_auto_rd_done(hw);
if (ret_val)
/* We don't want to continue accessing MAC registers. */
return ret_val;
/*
* Phy configuration from NVM just starts after EECD_AUTO_RD is set.
* Need to wait for Phy configuration completion before accessing
* NVM and Phy.
*/
switch (hw->mac.type) {
case e1000_82573:
case e1000_82574:
case e1000_82583:
msleep(25);
break;
default:
break;
}
/* Clear any pending interrupt events. */
ew32(IMC, 0xffffffff);
er32(ICR);
if (hw->mac.type == e1000_82571) {
/* Install any alternate MAC address into RAR0 */
ret_val = e1000_check_alt_mac_addr_generic(hw);
if (ret_val)
return ret_val;
e1000e_set_laa_state_82571(hw, true);
}
/* Reinitialize the 82571 serdes link state machine */
if (hw->phy.media_type == e1000_media_type_internal_serdes)
hw->mac.serdes_link_state = e1000_serdes_link_down;
return 0;
}
/**
* e1000_init_hw_82571 - Initialize hardware
* @hw: pointer to the HW structure
*
* This inits the hardware readying it for operation.
**/
static s32 e1000_init_hw_82571(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
u32 reg_data;
s32 ret_val;
u16 i, rar_count = mac->rar_entry_count;
e1000_initialize_hw_bits_82571(hw);
/* Initialize identification LED */
ret_val = e1000e_id_led_init(hw);
if (ret_val)
e_dbg("Error initializing identification LED\n");
/* This is not fatal and we should not stop init due to this */
/* Disabling VLAN filtering */
e_dbg("Initializing the IEEE VLAN\n");
mac->ops.clear_vfta(hw);
/* Setup the receive address. */
/*
* If, however, a locally administered address was assigned to the
* 82571, we must reserve a RAR for it to work around an issue where
* resetting one port will reload the MAC on the other port.
*/
if (e1000e_get_laa_state_82571(hw))
rar_count--;
e1000e_init_rx_addrs(hw, rar_count);
/* Zero out the Multicast HASH table */
e_dbg("Zeroing the MTA\n");
for (i = 0; i < mac->mta_reg_count; i++)
E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
/* Setup link and flow control */
ret_val = e1000_setup_link_82571(hw);
/* Set the transmit descriptor write-back policy */
reg_data = er32(TXDCTL(0));
reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
E1000_TXDCTL_FULL_TX_DESC_WB |
E1000_TXDCTL_COUNT_DESC;
ew32(TXDCTL(0), reg_data);
/* ...for both queues. */
switch (mac->type) {
case e1000_82573:
e1000e_enable_tx_pkt_filtering(hw);
/* fall through */
case e1000_82574:
case e1000_82583:
reg_data = er32(GCR);
reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
ew32(GCR, reg_data);
break;
default:
reg_data = er32(TXDCTL(1));
reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
E1000_TXDCTL_FULL_TX_DESC_WB |
E1000_TXDCTL_COUNT_DESC;
ew32(TXDCTL(1), reg_data);
break;
}
/*
* Clear all of the statistics registers (clear on read). It is
* important that we do this after we have tried to establish link
* because the symbol error count will increment wildly if there
* is no link.
*/
e1000_clear_hw_cntrs_82571(hw);
return ret_val;
}
/**
* e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
* @hw: pointer to the HW structure
*
* Initializes required hardware-dependent bits needed for normal operation.
**/
static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
{
u32 reg;
/* Transmit Descriptor Control 0 */
reg = er32(TXDCTL(0));
reg |= (1 << 22);
ew32(TXDCTL(0), reg);
/* Transmit Descriptor Control 1 */
reg = er32(TXDCTL(1));
reg |= (1 << 22);
ew32(TXDCTL(1), reg);
/* Transmit Arbitration Control 0 */
reg = er32(TARC(0));
reg &= ~(0xF << 27); /* 30:27 */
switch (hw->mac.type) {
case e1000_82571:
case e1000_82572:
reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
break;
default:
break;
}
ew32(TARC(0), reg);
/* Transmit Arbitration Control 1 */
reg = er32(TARC(1));
switch (hw->mac.type) {
case e1000_82571:
case e1000_82572:
reg &= ~((1 << 29) | (1 << 30));
reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
if (er32(TCTL) & E1000_TCTL_MULR)
reg &= ~(1 << 28);
else
reg |= (1 << 28);
ew32(TARC(1), reg);
break;
default:
break;
}
/* Device Control */
switch (hw->mac.type) {
case e1000_82573:
case e1000_82574:
case e1000_82583:
reg = er32(CTRL);
reg &= ~(1 << 29);
ew32(CTRL, reg);
break;
default:
break;
}
/* Extended Device Control */
switch (hw->mac.type) {
case e1000_82573:
case e1000_82574:
case e1000_82583:
reg = er32(CTRL_EXT);
reg &= ~(1 << 23);
reg |= (1 << 22);
ew32(CTRL_EXT, reg);
break;
default:
break;
}
if (hw->mac.type == e1000_82571) {
reg = er32(PBA_ECC);
reg |= E1000_PBA_ECC_CORR_EN;
ew32(PBA_ECC, reg);
}
/*
* Workaround for hardware errata.
* Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
*/
if ((hw->mac.type == e1000_82571) ||
(hw->mac.type == e1000_82572)) {
reg = er32(CTRL_EXT);
reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
ew32(CTRL_EXT, reg);
}
/* PCI-Ex Control Registers */
switch (hw->mac.type) {
case e1000_82574:
case e1000_82583:
reg = er32(GCR);
reg |= (1 << 22);
ew32(GCR, reg);
/*
* Workaround for hardware errata.
* apply workaround for hardware errata documented in errata
* docs Fixes issue where some error prone or unreliable PCIe
* completions are occurring, particularly with ASPM enabled.
* Without fix, issue can cause Tx timeouts.
*/
reg = er32(GCR2);
reg |= 1;
ew32(GCR2, reg);
break;
default:
break;
}
}
/**
* e1000_clear_vfta_82571 - Clear VLAN filter table
* @hw: pointer to the HW structure
*
* Clears the register array which contains the VLAN filter table by
* setting all the values to 0.
**/
static void e1000_clear_vfta_82571(struct e1000_hw *hw)
{
u32 offset;
u32 vfta_value = 0;
u32 vfta_offset = 0;
u32 vfta_bit_in_reg = 0;
switch (hw->mac.type) {
case e1000_82573:
case e1000_82574:
case e1000_82583:
if (hw->mng_cookie.vlan_id != 0) {
/*
* The VFTA is a 4096b bit-field, each identifying
* a single VLAN ID. The following operations
* determine which 32b entry (i.e. offset) into the
* array we want to set the VLAN ID (i.e. bit) of
* the manageability unit.
*/
vfta_offset = (hw->mng_cookie.vlan_id >>
E1000_VFTA_ENTRY_SHIFT) &
E1000_VFTA_ENTRY_MASK;
vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
}
break;
default:
break;
}
for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
/*
* If the offset we want to clear is the same offset of the
* manageability VLAN ID, then clear all bits except that of
* the manageability unit.
*/
vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
e1e_flush();
}
}
/**
* e1000_check_mng_mode_82574 - Check manageability is enabled
* @hw: pointer to the HW structure
*
* Reads the NVM Initialization Control Word 2 and returns true
* (>0) if any manageability is enabled, else false (0).
**/
static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
{
u16 data;
e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
}
/**
* e1000_led_on_82574 - Turn LED on
* @hw: pointer to the HW structure
*
* Turn LED on.
**/
static s32 e1000_led_on_82574(struct e1000_hw *hw)
{
u32 ctrl;
u32 i;
ctrl = hw->mac.ledctl_mode2;
if (!(E1000_STATUS_LU & er32(STATUS))) {
/*
* If no link, then turn LED on by setting the invert bit
* for each LED that's "on" (0x0E) in ledctl_mode2.
*/
for (i = 0; i < 4; i++)
if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
E1000_LEDCTL_MODE_LED_ON)
ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
}
ew32(LEDCTL, ctrl);
return 0;
}
/**
* e1000_check_phy_82574 - check 82574 phy hung state
* @hw: pointer to the HW structure
*
* Returns whether phy is hung or not
**/
bool e1000_check_phy_82574(struct e1000_hw *hw)
{
u16 status_1kbt = 0;
u16 receive_errors = 0;
bool phy_hung = false;
s32 ret_val = 0;
/*
* Read PHY Receive Error counter first, if its is max - all F's then
* read the Base1000T status register If both are max then PHY is hung.
*/
ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors);
if (ret_val)
goto out;
if (receive_errors == E1000_RECEIVE_ERROR_MAX) {
ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt);
if (ret_val)
goto out;
if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
E1000_IDLE_ERROR_COUNT_MASK)
phy_hung = true;
}
out:
return phy_hung;
}
/**
* e1000_setup_link_82571 - Setup flow control and link settings
* @hw: pointer to the HW structure
*
* Determines which flow control settings to use, then configures flow
* control. Calls the appropriate media-specific link configuration
* function. Assuming the adapter has a valid link partner, a valid link
* should be established. Assumes the hardware has previously been reset
* and the transmitter and receiver are not enabled.
**/
static s32 e1000_setup_link_82571(struct e1000_hw *hw)
{
/*
* 82573 does not have a word in the NVM to determine
* the default flow control setting, so we explicitly
* set it to full.
*/
switch (hw->mac.type) {
case e1000_82573:
case e1000_82574:
case e1000_82583:
if (hw->fc.requested_mode == e1000_fc_default)
hw->fc.requested_mode = e1000_fc_full;
break;
default:
break;
}
return e1000e_setup_link(hw);
}
/**
* e1000_setup_copper_link_82571 - Configure copper link settings
* @hw: pointer to the HW structure
*
* Configures the link for auto-neg or forced speed and duplex. Then we check
* for link, once link is established calls to configure collision distance
* and flow control are called.
**/
static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
{
u32 ctrl;
s32 ret_val;
ctrl = er32(CTRL);
ctrl |= E1000_CTRL_SLU;
ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
ew32(CTRL, ctrl);
switch (hw->phy.type) {
case e1000_phy_m88:
case e1000_phy_bm:
ret_val = e1000e_copper_link_setup_m88(hw);
break;
case e1000_phy_igp_2:
ret_val = e1000e_copper_link_setup_igp(hw);
break;
default:
return -E1000_ERR_PHY;
break;
}
if (ret_val)
return ret_val;
ret_val = e1000e_setup_copper_link(hw);
return ret_val;
}
/**
* e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
* @hw: pointer to the HW structure
*
* Configures collision distance and flow control for fiber and serdes links.
* Upon successful setup, poll for link.
**/
static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
{
switch (hw->mac.type) {
case e1000_82571:
case e1000_82572:
/*
* If SerDes loopback mode is entered, there is no form
* of reset to take the adapter out of that mode. So we
* have to explicitly take the adapter out of loopback
* mode. This prevents drivers from twiddling their thumbs
* if another tool failed to take it out of loopback mode.
*/
ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
break;
default:
break;
}
return e1000e_setup_fiber_serdes_link(hw);
}
/**
* e1000_check_for_serdes_link_82571 - Check for link (Serdes)
* @hw: pointer to the HW structure
*
* Reports the link state as up or down.
*
* If autonegotiation is supported by the link partner, the link state is
* determined by the result of autonegotiation. This is the most likely case.
* If autonegotiation is not supported by the link partner, and the link
* has a valid signal, force the link up.
*
* The link state is represented internally here by 4 states:
*
* 1) down
* 2) autoneg_progress
* 3) autoneg_complete (the link successfully autonegotiated)
* 4) forced_up (the link has been forced up, it did not autonegotiate)
*
**/
static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
u32 rxcw;
u32 ctrl;
u32 status;
u32 txcw;
u32 i;
s32 ret_val = 0;
ctrl = er32(CTRL);
status = er32(STATUS);
rxcw = er32(RXCW);
if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
/* Receiver is synchronized with no invalid bits. */
switch (mac->serdes_link_state) {
case e1000_serdes_link_autoneg_complete:
if (!(status & E1000_STATUS_LU)) {
/*
* We have lost link, retry autoneg before
* reporting link failure
*/
mac->serdes_link_state =
e1000_serdes_link_autoneg_progress;
mac->serdes_has_link = false;
e_dbg("AN_UP -> AN_PROG\n");
} else {
mac->serdes_has_link = true;
}
break;
case e1000_serdes_link_forced_up:
/*
* If we are receiving /C/ ordered sets, re-enable
* auto-negotiation in the TXCW register and disable
* forced link in the Device Control register in an
* attempt to auto-negotiate with our link partner.
* If the partner code word is null, stop forcing
* and restart auto negotiation.
*/
if ((rxcw & E1000_RXCW_C) || !(rxcw & E1000_RXCW_CW)) {
/* Enable autoneg, and unforce link up */
ew32(TXCW, mac->txcw);
ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
mac->serdes_link_state =
e1000_serdes_link_autoneg_progress;
mac->serdes_has_link = false;
e_dbg("FORCED_UP -> AN_PROG\n");
} else {
mac->serdes_has_link = true;
}
break;
case e1000_serdes_link_autoneg_progress:
if (rxcw & E1000_RXCW_C) {
/*
* We received /C/ ordered sets, meaning the
* link partner has autonegotiated, and we can
* trust the Link Up (LU) status bit.
*/
if (status & E1000_STATUS_LU) {
mac->serdes_link_state =
e1000_serdes_link_autoneg_complete;
e_dbg("AN_PROG -> AN_UP\n");
mac->serdes_has_link = true;
} else {
/* Autoneg completed, but failed. */
mac->serdes_link_state =
e1000_serdes_link_down;
e_dbg("AN_PROG -> DOWN\n");
}
} else {
/*
* The link partner did not autoneg.
* Force link up and full duplex, and change
* state to forced.
*/
ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
ew32(CTRL, ctrl);
/* Configure Flow Control after link up. */
ret_val = e1000e_config_fc_after_link_up(hw);
if (ret_val) {
e_dbg("Error config flow control\n");
break;
}
mac->serdes_link_state =
e1000_serdes_link_forced_up;
mac->serdes_has_link = true;
e_dbg("AN_PROG -> FORCED_UP\n");
}
break;
case e1000_serdes_link_down:
default:
/*
* The link was down but the receiver has now gained
* valid sync, so lets see if we can bring the link
* up.
*/
ew32(TXCW, mac->txcw);
ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
mac->serdes_link_state =
e1000_serdes_link_autoneg_progress;
mac->serdes_has_link = false;
e_dbg("DOWN -> AN_PROG\n");
break;
}
} else {
if (!(rxcw & E1000_RXCW_SYNCH)) {
mac->serdes_has_link = false;
mac->serdes_link_state = e1000_serdes_link_down;
e_dbg("ANYSTATE -> DOWN\n");
} else {
/*
* Check several times, if Sync and Config
* both are consistently 1 then simply ignore
* the Invalid bit and restart Autoneg
*/
for (i = 0; i < AN_RETRY_COUNT; i++) {
udelay(10);
rxcw = er32(RXCW);
if ((rxcw & E1000_RXCW_IV) &&
!((rxcw & E1000_RXCW_SYNCH) &&
(rxcw & E1000_RXCW_C))) {
mac->serdes_has_link = false;
mac->serdes_link_state =
e1000_serdes_link_down;
e_dbg("ANYSTATE -> DOWN\n");
break;
}
}
if (i == AN_RETRY_COUNT) {
txcw = er32(TXCW);
txcw |= E1000_TXCW_ANE;
ew32(TXCW, txcw);
mac->serdes_link_state =
e1000_serdes_link_autoneg_progress;
mac->serdes_has_link = false;
e_dbg("ANYSTATE -> AN_PROG\n");
}
}
}
return ret_val;
}
/**
* e1000_valid_led_default_82571 - Verify a valid default LED config
* @hw: pointer to the HW structure
* @data: pointer to the NVM (EEPROM)
*
* Read the EEPROM for the current default LED configuration. If the
* LED configuration is not valid, set to a valid LED configuration.
**/
static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
{
s32 ret_val;
ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
if (ret_val) {
e_dbg("NVM Read Error\n");
return ret_val;
}
switch (hw->mac.type) {
case e1000_82573:
case e1000_82574:
case e1000_82583:
if (*data == ID_LED_RESERVED_F746)
*data = ID_LED_DEFAULT_82573;
break;
default:
if (*data == ID_LED_RESERVED_0000 ||
*data == ID_LED_RESERVED_FFFF)
*data = ID_LED_DEFAULT;
break;
}
return 0;
}
/**
* e1000e_get_laa_state_82571 - Get locally administered address state
* @hw: pointer to the HW structure
*
* Retrieve and return the current locally administered address state.
**/
bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
{
if (hw->mac.type != e1000_82571)
return false;
return hw->dev_spec.e82571.laa_is_present;
}
/**
* e1000e_set_laa_state_82571 - Set locally administered address state
* @hw: pointer to the HW structure
* @state: enable/disable locally administered address
*
* Enable/Disable the current locally administered address state.
**/
void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
{
if (hw->mac.type != e1000_82571)
return;
hw->dev_spec.e82571.laa_is_present = state;
/* If workaround is activated... */
if (state)
/*
* Hold a copy of the LAA in RAR[14] This is done so that
* between the time RAR[0] gets clobbered and the time it
* gets fixed, the actual LAA is in one of the RARs and no
* incoming packets directed to this port are dropped.
* Eventually the LAA will be in RAR[0] and RAR[14].
*/
e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1);
}
/**
* e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
* @hw: pointer to the HW structure
*
* Verifies that the EEPROM has completed the update. After updating the
* EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If
* the checksum fix is not implemented, we need to set the bit and update
* the checksum. Otherwise, if bit 15 is set and the checksum is incorrect,
* we need to return bad checksum.
**/
static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
{
struct e1000_nvm_info *nvm = &hw->nvm;
s32 ret_val;
u16 data;
if (nvm->type != e1000_nvm_flash_hw)
return 0;
/*
* Check bit 4 of word 10h. If it is 0, firmware is done updating
* 10h-12h. Checksum may need to be fixed.
*/
ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
if (ret_val)
return ret_val;
if (!(data & 0x10)) {
/*
* Read 0x23 and check bit 15. This bit is a 1
* when the checksum has already been fixed. If
* the checksum is still wrong and this bit is a
* 1, we need to return bad checksum. Otherwise,
* we need to set this bit to a 1 and update the
* checksum.
*/
ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
if (ret_val)
return ret_val;
if (!(data & 0x8000)) {
data |= 0x8000;
ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
if (ret_val)
return ret_val;
ret_val = e1000e_update_nvm_checksum(hw);
}
}
return 0;
}
/**
* e1000_read_mac_addr_82571 - Read device MAC address
* @hw: pointer to the HW structure
**/
static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
{
s32 ret_val = 0;
if (hw->mac.type == e1000_82571) {
/*
* If there's an alternate MAC address place it in RAR0
* so that it will override the Si installed default perm
* address.
*/
ret_val = e1000_check_alt_mac_addr_generic(hw);
if (ret_val)
goto out;
}
ret_val = e1000_read_mac_addr_generic(hw);
out:
return ret_val;
}
/**
* e1000_power_down_phy_copper_82571 - Remove link during PHY power down
* @hw: pointer to the HW structure
*
* In the case of a PHY power down to save power, or to turn off link during a
* driver unload, or wake on lan is not enabled, remove the link.
**/
static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
struct e1000_mac_info *mac = &hw->mac;
if (!(phy->ops.check_reset_block))
return;
/* If the management interface is not enabled, then power down */
if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
e1000_power_down_phy_copper(hw);
}
/**
* e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
* @hw: pointer to the HW structure
*
* Clears the hardware counters by reading the counter registers.
**/
static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
{
e1000e_clear_hw_cntrs_base(hw);
er32(PRC64);
er32(PRC127);
er32(PRC255);
er32(PRC511);
er32(PRC1023);
er32(PRC1522);
er32(PTC64);
er32(PTC127);
er32(PTC255);
er32(PTC511);
er32(PTC1023);
er32(PTC1522);
er32(ALGNERRC);
er32(RXERRC);
er32(TNCRS);
er32(CEXTERR);
er32(TSCTC);
er32(TSCTFC);
er32(MGTPRC);
er32(MGTPDC);
er32(MGTPTC);
er32(IAC);
er32(ICRXOC);
er32(ICRXPTC);
er32(ICRXATC);
er32(ICTXPTC);
er32(ICTXATC);
er32(ICTXQEC);
er32(ICTXQMTC);
er32(ICRXDMTC);
}
static const struct e1000_mac_operations e82571_mac_ops = {
/* .check_mng_mode: mac type dependent */
/* .check_for_link: media type dependent */
.id_led_init = e1000e_id_led_init,
.cleanup_led = e1000e_cleanup_led_generic,
.clear_hw_cntrs = e1000_clear_hw_cntrs_82571,
.get_bus_info = e1000e_get_bus_info_pcie,
.set_lan_id = e1000_set_lan_id_multi_port_pcie,
/* .get_link_up_info: media type dependent */
/* .led_on: mac type dependent */
.led_off = e1000e_led_off_generic,
.update_mc_addr_list = e1000e_update_mc_addr_list_generic,
.write_vfta = e1000_write_vfta_generic,
.clear_vfta = e1000_clear_vfta_82571,
.reset_hw = e1000_reset_hw_82571,
.init_hw = e1000_init_hw_82571,
.setup_link = e1000_setup_link_82571,
/* .setup_physical_interface: media type dependent */
.setup_led = e1000e_setup_led_generic,
.read_mac_addr = e1000_read_mac_addr_82571,
};
static const struct e1000_phy_operations e82_phy_ops_igp = {
.acquire = e1000_get_hw_semaphore_82571,
.check_polarity = e1000_check_polarity_igp,
.check_reset_block = e1000e_check_reset_block_generic,
.commit = NULL,
.force_speed_duplex = e1000e_phy_force_speed_duplex_igp,
.get_cfg_done = e1000_get_cfg_done_82571,
.get_cable_length = e1000e_get_cable_length_igp_2,
.get_info = e1000e_get_phy_info_igp,
.read_reg = e1000e_read_phy_reg_igp,
.release = e1000_put_hw_semaphore_82571,
.reset = e1000e_phy_hw_reset_generic,
.set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
.set_d3_lplu_state = e1000e_set_d3_lplu_state,
.write_reg = e1000e_write_phy_reg_igp,
.cfg_on_link_up = NULL,
};
static const struct e1000_phy_operations e82_phy_ops_m88 = {
.acquire = e1000_get_hw_semaphore_82571,
.check_polarity = e1000_check_polarity_m88,
.check_reset_block = e1000e_check_reset_block_generic,
.commit = e1000e_phy_sw_reset,
.force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
.get_cfg_done = e1000e_get_cfg_done,
.get_cable_length = e1000e_get_cable_length_m88,
.get_info = e1000e_get_phy_info_m88,
.read_reg = e1000e_read_phy_reg_m88,
.release = e1000_put_hw_semaphore_82571,
.reset = e1000e_phy_hw_reset_generic,
.set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
.set_d3_lplu_state = e1000e_set_d3_lplu_state,
.write_reg = e1000e_write_phy_reg_m88,
.cfg_on_link_up = NULL,
};
static const struct e1000_phy_operations e82_phy_ops_bm = {
.acquire = e1000_get_hw_semaphore_82571,
.check_polarity = e1000_check_polarity_m88,
.check_reset_block = e1000e_check_reset_block_generic,
.commit = e1000e_phy_sw_reset,
.force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
.get_cfg_done = e1000e_get_cfg_done,
.get_cable_length = e1000e_get_cable_length_m88,
.get_info = e1000e_get_phy_info_m88,
.read_reg = e1000e_read_phy_reg_bm2,
.release = e1000_put_hw_semaphore_82571,
.reset = e1000e_phy_hw_reset_generic,
.set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
.set_d3_lplu_state = e1000e_set_d3_lplu_state,
.write_reg = e1000e_write_phy_reg_bm2,
.cfg_on_link_up = NULL,
};
static const struct e1000_nvm_operations e82571_nvm_ops = {
.acquire = e1000_acquire_nvm_82571,
.read = e1000e_read_nvm_eerd,
.release = e1000_release_nvm_82571,
.update = e1000_update_nvm_checksum_82571,
.valid_led_default = e1000_valid_led_default_82571,
.validate = e1000_validate_nvm_checksum_82571,
.write = e1000_write_nvm_82571,
};
const struct e1000_info e1000_82571_info = {
.mac = e1000_82571,
.flags = FLAG_HAS_HW_VLAN_FILTER
| FLAG_HAS_JUMBO_FRAMES
| FLAG_HAS_WOL
| FLAG_APME_IN_CTRL3
| FLAG_HAS_CTRLEXT_ON_LOAD
| FLAG_HAS_SMART_POWER_DOWN
| FLAG_RESET_OVERWRITES_LAA /* errata */
| FLAG_TARC_SPEED_MODE_BIT /* errata */
| FLAG_APME_CHECK_PORT_B,
.flags2 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
| FLAG2_DMA_BURST,
.pba = 38,
.max_hw_frame_size = DEFAULT_JUMBO,
.get_variants = e1000_get_variants_82571,
.mac_ops = &e82571_mac_ops,
.phy_ops = &e82_phy_ops_igp,
.nvm_ops = &e82571_nvm_ops,
};
const struct e1000_info e1000_82572_info = {
.mac = e1000_82572,
.flags = FLAG_HAS_HW_VLAN_FILTER
| FLAG_HAS_JUMBO_FRAMES
| FLAG_HAS_WOL
| FLAG_APME_IN_CTRL3
| FLAG_HAS_CTRLEXT_ON_LOAD
| FLAG_TARC_SPEED_MODE_BIT, /* errata */
.flags2 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
| FLAG2_DMA_BURST,
.pba = 38,
.max_hw_frame_size = DEFAULT_JUMBO,
.get_variants = e1000_get_variants_82571,
.mac_ops = &e82571_mac_ops,
.phy_ops = &e82_phy_ops_igp,
.nvm_ops = &e82571_nvm_ops,
};
const struct e1000_info e1000_82573_info = {
.mac = e1000_82573,
.flags = FLAG_HAS_HW_VLAN_FILTER
| FLAG_HAS_WOL
| FLAG_APME_IN_CTRL3
| FLAG_HAS_SMART_POWER_DOWN
| FLAG_HAS_AMT
| FLAG_HAS_SWSM_ON_LOAD,
.flags2 = FLAG2_DISABLE_ASPM_L1
| FLAG2_DISABLE_ASPM_L0S,
.pba = 20,
.max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
.get_variants = e1000_get_variants_82571,
.mac_ops = &e82571_mac_ops,
.phy_ops = &e82_phy_ops_m88,
.nvm_ops = &e82571_nvm_ops,
};
const struct e1000_info e1000_82574_info = {
.mac = e1000_82574,
.flags = FLAG_HAS_HW_VLAN_FILTER
| FLAG_HAS_MSIX
| FLAG_HAS_JUMBO_FRAMES
| FLAG_HAS_WOL
| FLAG_APME_IN_CTRL3
| FLAG_HAS_SMART_POWER_DOWN
| FLAG_HAS_AMT
| FLAG_HAS_CTRLEXT_ON_LOAD,
.flags2 = FLAG2_CHECK_PHY_HANG
| FLAG2_DISABLE_ASPM_L0S
| FLAG2_NO_DISABLE_RX,
.pba = 32,
.max_hw_frame_size = DEFAULT_JUMBO,
.get_variants = e1000_get_variants_82571,
.mac_ops = &e82571_mac_ops,
.phy_ops = &e82_phy_ops_bm,
.nvm_ops = &e82571_nvm_ops,
};
const struct e1000_info e1000_82583_info = {
.mac = e1000_82583,
.flags = FLAG_HAS_HW_VLAN_FILTER
| FLAG_HAS_WOL
| FLAG_APME_IN_CTRL3
| FLAG_HAS_SMART_POWER_DOWN
| FLAG_HAS_AMT
| FLAG_HAS_JUMBO_FRAMES
| FLAG_HAS_CTRLEXT_ON_LOAD,
.flags2 = FLAG2_DISABLE_ASPM_L0S
| FLAG2_NO_DISABLE_RX,
.pba = 32,
.max_hw_frame_size = DEFAULT_JUMBO,
.get_variants = e1000_get_variants_82571,
.mac_ops = &e82571_mac_ops,
.phy_ops = &e82_phy_ops_bm,
.nvm_ops = &e82571_nvm_ops,
};
-------------- n?chster Teil --------------
/*******************************************************************************
Intel PRO/1000 Linux driver
Copyright(c) 1999 - 2011 Intel Corporation.
This program is free software; you can redistribute it and/or modify it
under the terms and conditions of the GNU General Public License,
version 2, as published by the Free Software Foundation.
This program is distributed in the hope it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
The full GNU General Public License is included in this distribution in
the file called "COPYING".
Contact Information:
Linux NICS <linux.nics at intel.com>
e1000-devel Mailing List <e1000-devel at lists.sourceforge.net>
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*******************************************************************************/
/*
* 80003ES2LAN Gigabit Ethernet Controller (Copper)
* 80003ES2LAN Gigabit Ethernet Controller (Serdes)
*/
#include "e1000.h"
#define E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL 0x00
#define E1000_KMRNCTRLSTA_OFFSET_INB_CTRL 0x02
#define E1000_KMRNCTRLSTA_OFFSET_HD_CTRL 0x10
#define E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE 0x1F
#define E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS 0x0008
#define E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS 0x0800
#define E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING 0x0010
#define E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT 0x0004
#define E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT 0x0000
#define E1000_KMRNCTRLSTA_OPMODE_E_IDLE 0x2000
#define E1000_KMRNCTRLSTA_OPMODE_MASK 0x000C
#define E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO 0x0004
#define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */
#define DEFAULT_TCTL_EXT_GCEX_80003ES2LAN 0x00010000
#define DEFAULT_TIPG_IPGT_1000_80003ES2LAN 0x8
#define DEFAULT_TIPG_IPGT_10_100_80003ES2LAN 0x9
/* GG82563 PHY Specific Status Register (Page 0, Register 16 */
#define GG82563_PSCR_POLARITY_REVERSAL_DISABLE 0x0002 /* 1=Reversal Disab. */
#define GG82563_PSCR_CROSSOVER_MODE_MASK 0x0060
#define GG82563_PSCR_CROSSOVER_MODE_MDI 0x0000 /* 00=Manual MDI */
#define GG82563_PSCR_CROSSOVER_MODE_MDIX 0x0020 /* 01=Manual MDIX */
#define GG82563_PSCR_CROSSOVER_MODE_AUTO 0x0060 /* 11=Auto crossover */
/* PHY Specific Control Register 2 (Page 0, Register 26) */
#define GG82563_PSCR2_REVERSE_AUTO_NEG 0x2000
/* 1=Reverse Auto-Negotiation */
/* MAC Specific Control Register (Page 2, Register 21) */
/* Tx clock speed for Link Down and 1000BASE-T for the following speeds */
#define GG82563_MSCR_TX_CLK_MASK 0x0007
#define GG82563_MSCR_TX_CLK_10MBPS_2_5 0x0004
#define GG82563_MSCR_TX_CLK_100MBPS_25 0x0005
#define GG82563_MSCR_TX_CLK_1000MBPS_25 0x0007
#define GG82563_MSCR_ASSERT_CRS_ON_TX 0x0010 /* 1=Assert */
/* DSP Distance Register (Page 5, Register 26) */
#define GG82563_DSPD_CABLE_LENGTH 0x0007 /* 0 = <50M
1 = 50-80M
2 = 80-110M
3 = 110-140M
4 = >140M */
/* Kumeran Mode Control Register (Page 193, Register 16) */
#define GG82563_KMCR_PASS_FALSE_CARRIER 0x0800
/* Max number of times Kumeran read/write should be validated */
#define GG82563_MAX_KMRN_RETRY 0x5
/* Power Management Control Register (Page 193, Register 20) */
#define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE 0x0001
/* 1=Enable SERDES Electrical Idle */
/* In-Band Control Register (Page 194, Register 18) */
#define GG82563_ICR_DIS_PADDING 0x0010 /* Disable Padding */
/*
* A table for the GG82563 cable length where the range is defined
* with a lower bound at "index" and the upper bound at
* "index + 5".
*/
static const u16 e1000_gg82563_cable_length_table[] = {
0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF };
#define GG82563_CABLE_LENGTH_TABLE_SIZE \
ARRAY_SIZE(e1000_gg82563_cable_length_table)
static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw);
static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
u16 *data);
static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
u16 data);
static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw);
/**
* e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
* @hw: pointer to the HW structure
**/
static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
if (hw->phy.media_type != e1000_media_type_copper) {
phy->type = e1000_phy_none;
return 0;
} else {
phy->ops.power_up = e1000_power_up_phy_copper;
phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan;
}
phy->addr = 1;
phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
phy->reset_delay_us = 100;
phy->type = e1000_phy_gg82563;
/* This can only be done after all function pointers are setup. */
ret_val = e1000e_get_phy_id(hw);
/* Verify phy id */
if (phy->id != GG82563_E_PHY_ID)
return -E1000_ERR_PHY;
return ret_val;
}
/**
* e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
* @hw: pointer to the HW structure
**/
static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
{
struct e1000_nvm_info *nvm = &hw->nvm;
u32 eecd = er32(EECD);
u16 size;
nvm->opcode_bits = 8;
nvm->delay_usec = 1;
switch (nvm->override) {
case e1000_nvm_override_spi_large:
nvm->page_size = 32;
nvm->address_bits = 16;
break;
case e1000_nvm_override_spi_small:
nvm->page_size = 8;
nvm->address_bits = 8;
break;
default:
nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
break;
}
nvm->type = e1000_nvm_eeprom_spi;
size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
E1000_EECD_SIZE_EX_SHIFT);
/*
* Added to a constant, "size" becomes the left-shift value
* for setting word_size.
*/
size += NVM_WORD_SIZE_BASE_SHIFT;
/* EEPROM access above 16k is unsupported */
if (size > 14)
size = 14;
nvm->word_size = 1 << size;
return 0;
}
/**
* e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
* @hw: pointer to the HW structure
**/
static s32 e1000_init_mac_params_80003es2lan(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
struct e1000_mac_info *mac = &hw->mac;
struct e1000_mac_operations *func = &mac->ops;
/* Set media type */
switch (adapter->pdev->device) {
case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
hw->phy.media_type = e1000_media_type_internal_serdes;
break;
default:
hw->phy.media_type = e1000_media_type_copper;
break;
}
/* Set mta register count */
mac->mta_reg_count = 128;
/* Set rar entry count */
mac->rar_entry_count = E1000_RAR_ENTRIES;
/* FWSM register */
mac->has_fwsm = true;
/* ARC supported; valid only if manageability features are enabled. */
mac->arc_subsystem_valid =
(er32(FWSM) & E1000_FWSM_MODE_MASK)
? true : false;
/* Adaptive IFS not supported */
mac->adaptive_ifs = false;
/* check for link */
switch (hw->phy.media_type) {
case e1000_media_type_copper:
func->setup_physical_interface = e1000_setup_copper_link_80003es2lan;
func->check_for_link = e1000e_check_for_copper_link;
break;
case e1000_media_type_fiber:
func->setup_physical_interface = e1000e_setup_fiber_serdes_link;
func->check_for_link = e1000e_check_for_fiber_link;
break;
case e1000_media_type_internal_serdes:
func->setup_physical_interface = e1000e_setup_fiber_serdes_link;
func->check_for_link = e1000e_check_for_serdes_link;
break;
default:
return -E1000_ERR_CONFIG;
break;
}
/* set lan id for port to determine which phy lock to use */
hw->mac.ops.set_lan_id(hw);
return 0;
}
static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
s32 rc;
rc = e1000_init_mac_params_80003es2lan(adapter);
if (rc)
return rc;
rc = e1000_init_nvm_params_80003es2lan(hw);
if (rc)
return rc;
rc = e1000_init_phy_params_80003es2lan(hw);
if (rc)
return rc;
return 0;
}
/**
* e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
* @hw: pointer to the HW structure
*
* A wrapper to acquire access rights to the correct PHY.
**/
static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
{
u16 mask;
mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
}
/**
* e1000_release_phy_80003es2lan - Release rights to access PHY
* @hw: pointer to the HW structure
*
* A wrapper to release access rights to the correct PHY.
**/
static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
{
u16 mask;
mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
e1000_release_swfw_sync_80003es2lan(hw, mask);
}
/**
* e1000_acquire_mac_csr_80003es2lan - Acquire rights to access Kumeran register
* @hw: pointer to the HW structure
*
* Acquire the semaphore to access the Kumeran interface.
*
**/
static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
{
u16 mask;
mask = E1000_SWFW_CSR_SM;
return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
}
/**
* e1000_release_mac_csr_80003es2lan - Release rights to access Kumeran Register
* @hw: pointer to the HW structure
*
* Release the semaphore used to access the Kumeran interface
**/
static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
{
u16 mask;
mask = E1000_SWFW_CSR_SM;
e1000_release_swfw_sync_80003es2lan(hw, mask);
}
/**
* e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
* @hw: pointer to the HW structure
*
* Acquire the semaphore to access the EEPROM.
**/
static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
{
s32 ret_val;
ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
if (ret_val)
return ret_val;
ret_val = e1000e_acquire_nvm(hw);
if (ret_val)
e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
return ret_val;
}
/**
* e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
* @hw: pointer to the HW structure
*
* Release the semaphore used to access the EEPROM.
**/
static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
{
e1000e_release_nvm(hw);
e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
}
/**
* e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
* @hw: pointer to the HW structure
* @mask: specifies which semaphore to acquire
*
* Acquire the SW/FW semaphore to access the PHY or NVM. The mask
* will also specify which port we're acquiring the lock for.
**/
static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
{
u32 swfw_sync;
u32 swmask = mask;
u32 fwmask = mask << 16;
s32 i = 0;
s32 timeout = 50;
while (i < timeout) {
if (e1000e_get_hw_semaphore(hw))
return -E1000_ERR_SWFW_SYNC;
swfw_sync = er32(SW_FW_SYNC);
if (!(swfw_sync & (fwmask | swmask)))
break;
/*
* Firmware currently using resource (fwmask)
* or other software thread using resource (swmask)
*/
e1000e_put_hw_semaphore(hw);
mdelay(5);
i++;
}
if (i == timeout) {
e_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
return -E1000_ERR_SWFW_SYNC;
}
swfw_sync |= swmask;
ew32(SW_FW_SYNC, swfw_sync);
e1000e_put_hw_semaphore(hw);
return 0;
}
/**
* e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
* @hw: pointer to the HW structure
* @mask: specifies which semaphore to acquire
*
* Release the SW/FW semaphore used to access the PHY or NVM. The mask
* will also specify which port we're releasing the lock for.
**/
static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
{
u32 swfw_sync;
while (e1000e_get_hw_semaphore(hw) != 0)
; /* Empty */
swfw_sync = er32(SW_FW_SYNC);
swfw_sync &= ~mask;
ew32(SW_FW_SYNC, swfw_sync);
e1000e_put_hw_semaphore(hw);
}
/**
* e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
* @hw: pointer to the HW structure
* @offset: offset of the register to read
* @data: pointer to the data returned from the operation
*
* Read the GG82563 PHY register.
**/
static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
u32 offset, u16 *data)
{
s32 ret_val;
u32 page_select;
u16 temp;
ret_val = e1000_acquire_phy_80003es2lan(hw);
if (ret_val)
return ret_val;
/* Select Configuration Page */
if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
page_select = GG82563_PHY_PAGE_SELECT;
} else {
/*
* Use Alternative Page Select register to access
* registers 30 and 31
*/
page_select = GG82563_PHY_PAGE_SELECT_ALT;
}
temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
if (ret_val) {
e1000_release_phy_80003es2lan(hw);
return ret_val;
}
if (hw->dev_spec.e80003es2lan.mdic_wa_enable == true) {
/*
* The "ready" bit in the MDIC register may be incorrectly set
* before the device has completed the "Page Select" MDI
* transaction. So we wait 200us after each MDI command...
*/
udelay(200);
/* ...and verify the command was successful. */
ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
ret_val = -E1000_ERR_PHY;
e1000_release_phy_80003es2lan(hw);
return ret_val;
}
udelay(200);
ret_val = e1000e_read_phy_reg_mdic(hw,
MAX_PHY_REG_ADDRESS & offset,
data);
udelay(200);
} else {
ret_val = e1000e_read_phy_reg_mdic(hw,
MAX_PHY_REG_ADDRESS & offset,
data);
}
e1000_release_phy_80003es2lan(hw);
return ret_val;
}
/**
* e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
* @hw: pointer to the HW structure
* @offset: offset of the register to read
* @data: value to write to the register
*
* Write to the GG82563 PHY register.
**/
static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
u32 offset, u16 data)
{
s32 ret_val;
u32 page_select;
u16 temp;
ret_val = e1000_acquire_phy_80003es2lan(hw);
if (ret_val)
return ret_val;
/* Select Configuration Page */
if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
page_select = GG82563_PHY_PAGE_SELECT;
} else {
/*
* Use Alternative Page Select register to access
* registers 30 and 31
*/
page_select = GG82563_PHY_PAGE_SELECT_ALT;
}
temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
if (ret_val) {
e1000_release_phy_80003es2lan(hw);
return ret_val;
}
if (hw->dev_spec.e80003es2lan.mdic_wa_enable == true) {
/*
* The "ready" bit in the MDIC register may be incorrectly set
* before the device has completed the "Page Select" MDI
* transaction. So we wait 200us after each MDI command...
*/
udelay(200);
/* ...and verify the command was successful. */
ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
e1000_release_phy_80003es2lan(hw);
return -E1000_ERR_PHY;
}
udelay(200);
ret_val = e1000e_write_phy_reg_mdic(hw,
MAX_PHY_REG_ADDRESS & offset,
data);
udelay(200);
} else {
ret_val = e1000e_write_phy_reg_mdic(hw,
MAX_PHY_REG_ADDRESS & offset,
data);
}
e1000_release_phy_80003es2lan(hw);
return ret_val;
}
/**
* e1000_write_nvm_80003es2lan - Write to ESB2 NVM
* @hw: pointer to the HW structure
* @offset: offset of the register to read
* @words: number of words to write
* @data: buffer of data to write to the NVM
*
* Write "words" of data to the ESB2 NVM.
**/
static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
u16 words, u16 *data)
{
return e1000e_write_nvm_spi(hw, offset, words, data);
}
/**
* e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
* @hw: pointer to the HW structure
*
* Wait a specific amount of time for manageability processes to complete.
* This is a function pointer entry point called by the phy module.
**/
static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
{
s32 timeout = PHY_CFG_TIMEOUT;
u32 mask = E1000_NVM_CFG_DONE_PORT_0;
if (hw->bus.func == 1)
mask = E1000_NVM_CFG_DONE_PORT_1;
while (timeout) {
if (er32(EEMNGCTL) & mask)
break;
usleep_range(1000, 2000);
timeout--;
}
if (!timeout) {
e_dbg("MNG configuration cycle has not completed.\n");
return -E1000_ERR_RESET;
}
return 0;
}
/**
* e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
* @hw: pointer to the HW structure
*
* Force the speed and duplex settings onto the PHY. This is a
* function pointer entry point called by the phy module.
**/
static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
{
s32 ret_val;
u16 phy_data;
bool link;
/*
* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
* forced whenever speed and duplex are forced.
*/
ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
if (ret_val)
return ret_val;
phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
if (ret_val)
return ret_val;
e_dbg("GG82563 PSCR: %X\n", phy_data);
ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
if (ret_val)
return ret_val;
e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
/* Reset the phy to commit changes. */
phy_data |= MII_CR_RESET;
ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
if (ret_val)
return ret_val;
udelay(1);
if (hw->phy.autoneg_wait_to_complete) {
e_dbg("Waiting for forced speed/duplex link "
"on GG82563 phy.\n");
ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
100000, &link);
if (ret_val)
return ret_val;
if (!link) {
/*
* We didn't get link.
* Reset the DSP and cross our fingers.
*/
ret_val = e1000e_phy_reset_dsp(hw);
if (ret_val)
return ret_val;
}
/* Try once more */
ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
100000, &link);
if (ret_val)
return ret_val;
}
ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
if (ret_val)
return ret_val;
/*
* Resetting the phy means we need to verify the TX_CLK corresponds
* to the link speed. 10Mbps -> 2.5MHz, else 25MHz.
*/
phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
else
phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
/*
* In addition, we must re-enable CRS on Tx for both half and full
* duplex.
*/
phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
return ret_val;
}
/**
* e1000_get_cable_length_80003es2lan - Set approximate cable length
* @hw: pointer to the HW structure
*
* Find the approximate cable length as measured by the GG82563 PHY.
* This is a function pointer entry point called by the phy module.
**/
static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val = 0;
u16 phy_data, index;
ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
if (ret_val)
goto out;
index = phy_data & GG82563_DSPD_CABLE_LENGTH;
if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5) {
ret_val = -E1000_ERR_PHY;
goto out;
}
phy->min_cable_length = e1000_gg82563_cable_length_table[index];
phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5];
phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
out:
return ret_val;
}
/**
* e1000_get_link_up_info_80003es2lan - Report speed and duplex
* @hw: pointer to the HW structure
* @speed: pointer to speed buffer
* @duplex: pointer to duplex buffer
*
* Retrieve the current speed and duplex configuration.
**/
static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
u16 *duplex)
{
s32 ret_val;
if (hw->phy.media_type == e1000_media_type_copper) {
ret_val = e1000e_get_speed_and_duplex_copper(hw,
speed,
duplex);
hw->phy.ops.cfg_on_link_up(hw);
} else {
ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
speed,
duplex);
}
return ret_val;
}
/**
* e1000_reset_hw_80003es2lan - Reset the ESB2 controller
* @hw: pointer to the HW structure
*
* Perform a global reset to the ESB2 controller.
**/
static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
{
u32 ctrl;
s32 ret_val;
/*
* Prevent the PCI-E bus from sticking if there is no TLP connection
* on the last TLP read/write transaction when MAC is reset.
*/
ret_val = e1000e_disable_pcie_master(hw);
if (ret_val)
e_dbg("PCI-E Master disable polling has failed.\n");
e_dbg("Masking off all interrupts\n");
ew32(IMC, 0xffffffff);
ew32(RCTL, 0);
ew32(TCTL, E1000_TCTL_PSP);
e1e_flush();
usleep_range(10000, 20000);
ctrl = er32(CTRL);
ret_val = e1000_acquire_phy_80003es2lan(hw);
e_dbg("Issuing a global reset to MAC\n");
ew32(CTRL, ctrl | E1000_CTRL_RST);
e1000_release_phy_80003es2lan(hw);
ret_val = e1000e_get_auto_rd_done(hw);
if (ret_val)
/* We don't want to continue accessing MAC registers. */
return ret_val;
/* Clear any pending interrupt events. */
ew32(IMC, 0xffffffff);
er32(ICR);
ret_val = e1000_check_alt_mac_addr_generic(hw);
return ret_val;
}
/**
* e1000_init_hw_80003es2lan - Initialize the ESB2 controller
* @hw: pointer to the HW structure
*
* Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
**/
static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
u32 reg_data;
s32 ret_val;
u16 kum_reg_data;
u16 i;
e1000_initialize_hw_bits_80003es2lan(hw);
/* Initialize identification LED */
ret_val = e1000e_id_led_init(hw);
if (ret_val)
e_dbg("Error initializing identification LED\n");
/* This is not fatal and we should not stop init due to this */
/* Disabling VLAN filtering */
e_dbg("Initializing the IEEE VLAN\n");
mac->ops.clear_vfta(hw);
/* Setup the receive address. */
e1000e_init_rx_addrs(hw, mac->rar_entry_count);
/* Zero out the Multicast HASH table */
e_dbg("Zeroing the MTA\n");
for (i = 0; i < mac->mta_reg_count; i++)
E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
/* Setup link and flow control */
ret_val = e1000e_setup_link(hw);
/* Disable IBIST slave mode (far-end loopback) */
e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
&kum_reg_data);
kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
kum_reg_data);
/* Set the transmit descriptor write-back policy */
reg_data = er32(TXDCTL(0));
reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
ew32(TXDCTL(0), reg_data);
/* ...for both queues. */
reg_data = er32(TXDCTL(1));
reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
ew32(TXDCTL(1), reg_data);
/* Enable retransmit on late collisions */
reg_data = er32(TCTL);
reg_data |= E1000_TCTL_RTLC;
ew32(TCTL, reg_data);
/* Configure Gigabit Carry Extend Padding */
reg_data = er32(TCTL_EXT);
reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
ew32(TCTL_EXT, reg_data);
/* Configure Transmit Inter-Packet Gap */
reg_data = er32(TIPG);
reg_data &= ~E1000_TIPG_IPGT_MASK;
reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
ew32(TIPG, reg_data);
reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
reg_data &= ~0x00100000;
E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
/* default to true to enable the MDIC W/A */
hw->dev_spec.e80003es2lan.mdic_wa_enable = true;
ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
E1000_KMRNCTRLSTA_OFFSET >>
E1000_KMRNCTRLSTA_OFFSET_SHIFT,
&i);
if (!ret_val) {
if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) ==
E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO)
hw->dev_spec.e80003es2lan.mdic_wa_enable = false;
}
/*
* Clear all of the statistics registers (clear on read). It is
* important that we do this after we have tried to establish link
* because the symbol error count will increment wildly if there
* is no link.
*/
e1000_clear_hw_cntrs_80003es2lan(hw);
return ret_val;
}
/**
* e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
* @hw: pointer to the HW structure
*
* Initializes required hardware-dependent bits needed for normal operation.
**/
static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
{
u32 reg;
/* Transmit Descriptor Control 0 */
reg = er32(TXDCTL(0));
reg |= (1 << 22);
ew32(TXDCTL(0), reg);
/* Transmit Descriptor Control 1 */
reg = er32(TXDCTL(1));
reg |= (1 << 22);
ew32(TXDCTL(1), reg);
/* Transmit Arbitration Control 0 */
reg = er32(TARC(0));
reg &= ~(0xF << 27); /* 30:27 */
if (hw->phy.media_type != e1000_media_type_copper)
reg &= ~(1 << 20);
ew32(TARC(0), reg);
/* Transmit Arbitration Control 1 */
reg = er32(TARC(1));
if (er32(TCTL) & E1000_TCTL_MULR)
reg &= ~(1 << 28);
else
reg |= (1 << 28);
ew32(TARC(1), reg);
}
/**
* e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
* @hw: pointer to the HW structure
*
* Setup some GG82563 PHY registers for obtaining link
**/
static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u32 ctrl_ext;
u16 data;
ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
if (ret_val)
return ret_val;
data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
/* Use 25MHz for both link down and 1000Base-T for Tx clock. */
data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
if (ret_val)
return ret_val;
/*
* Options:
* MDI/MDI-X = 0 (default)
* 0 - Auto for all speeds
* 1 - MDI mode
* 2 - MDI-X mode
* 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
*/
ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
if (ret_val)
return ret_val;
data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
switch (phy->mdix) {
case 1:
data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
break;
case 2:
data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
break;
case 0:
default:
data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
break;
}
/*
* Options:
* disable_polarity_correction = 0 (default)
* Automatic Correction for Reversed Cable Polarity
* 0 - Disabled
* 1 - Enabled
*/
data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
if (phy->disable_polarity_correction)
data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
if (ret_val)
return ret_val;
/* SW Reset the PHY so all changes take effect */
ret_val = e1000e_commit_phy(hw);
if (ret_val) {
e_dbg("Error Resetting the PHY\n");
return ret_val;
}
/* Bypass Rx and Tx FIFO's */
ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL,
E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
if (ret_val)
return ret_val;
ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
&data);
if (ret_val)
return ret_val;
data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
data);
if (ret_val)
return ret_val;
ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
if (ret_val)
return ret_val;
data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
if (ret_val)
return ret_val;
ctrl_ext = er32(CTRL_EXT);
ctrl_ext &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
ew32(CTRL_EXT, ctrl_ext);
ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
if (ret_val)
return ret_val;
/*
* Do not init these registers when the HW is in IAMT mode, since the
* firmware will have already initialized them. We only initialize
* them if the HW is not in IAMT mode.
*/
if (!e1000e_check_mng_mode(hw)) {
/* Enable Electrical Idle on the PHY */
data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
if (ret_val)
return ret_val;
ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
if (ret_val)
return ret_val;
data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
if (ret_val)
return ret_val;
}
/*
* Workaround: Disable padding in Kumeran interface in the MAC
* and in the PHY to avoid CRC errors.
*/
ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
if (ret_val)
return ret_val;
data |= GG82563_ICR_DIS_PADDING;
ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
if (ret_val)
return ret_val;
return 0;
}
/**
* e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
* @hw: pointer to the HW structure
*
* Essentially a wrapper for setting up all things "copper" related.
* This is a function pointer entry point called by the mac module.
**/
static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
{
u32 ctrl;
s32 ret_val;
u16 reg_data;
ctrl = er32(CTRL);
ctrl |= E1000_CTRL_SLU;
ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
ew32(CTRL, ctrl);
/*
* Set the mac to wait the maximum time between each
* iteration and increase the max iterations when
* polling the phy; this fixes erroneous timeouts at 10Mbps.
*/
ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4),
0xFFFF);
if (ret_val)
return ret_val;
ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
®_data);
if (ret_val)
return ret_val;
reg_data |= 0x3F;
ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
reg_data);
if (ret_val)
return ret_val;
ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
®_data);
if (ret_val)
return ret_val;
reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
reg_data);
if (ret_val)
return ret_val;
ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
if (ret_val)
return ret_val;
ret_val = e1000e_setup_copper_link(hw);
return 0;
}
/**
* e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
* @hw: pointer to the HW structure
* @duplex: current duplex setting
*
* Configure the KMRN interface by applying last minute quirks for
* 10/100 operation.
**/
static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
{
s32 ret_val = 0;
u16 speed;
u16 duplex;
if (hw->phy.media_type == e1000_media_type_copper) {
ret_val = e1000e_get_speed_and_duplex_copper(hw, &speed,
&duplex);
if (ret_val)
return ret_val;
if (speed == SPEED_1000)
ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
else
ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
}
return ret_val;
}
/**
* e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
* @hw: pointer to the HW structure
* @duplex: current duplex setting
*
* Configure the KMRN interface by applying last minute quirks for
* 10/100 operation.
**/
static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
{
s32 ret_val;
u32 tipg;
u32 i = 0;
u16 reg_data, reg_data2;
reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
reg_data);
if (ret_val)
return ret_val;
/* Configure Transmit Inter-Packet Gap */
tipg = er32(TIPG);
tipg &= ~E1000_TIPG_IPGT_MASK;
tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
ew32(TIPG, tipg);
do {
ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data);
if (ret_val)
return ret_val;
ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data2);
if (ret_val)
return ret_val;
i++;
} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
if (duplex == HALF_DUPLEX)
reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
else
reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
return 0;
}
/**
* e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
* @hw: pointer to the HW structure
*
* Configure the KMRN interface by applying last minute quirks for
* gigabit operation.
**/
static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
{
s32 ret_val;
u16 reg_data, reg_data2;
u32 tipg;
u32 i = 0;
reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
reg_data);
if (ret_val)
return ret_val;
/* Configure Transmit Inter-Packet Gap */
tipg = er32(TIPG);
tipg &= ~E1000_TIPG_IPGT_MASK;
tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
ew32(TIPG, tipg);
do {
ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data);
if (ret_val)
return ret_val;
ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data2);
if (ret_val)
return ret_val;
i++;
} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
return ret_val;
}
/**
* e1000_read_kmrn_reg_80003es2lan - Read kumeran register
* @hw: pointer to the HW structure
* @offset: register offset to be read
* @data: pointer to the read data
*
* Acquire semaphore, then read the PHY register at offset
* using the kumeran interface. The information retrieved is stored in data.
* Release the semaphore before exiting.
**/
static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
u16 *data)
{
u32 kmrnctrlsta;
s32 ret_val = 0;
ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
if (ret_val)
return ret_val;
kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
ew32(KMRNCTRLSTA, kmrnctrlsta);
e1e_flush();
udelay(2);
kmrnctrlsta = er32(KMRNCTRLSTA);
*data = (u16)kmrnctrlsta;
e1000_release_mac_csr_80003es2lan(hw);
return ret_val;
}
/**
* e1000_write_kmrn_reg_80003es2lan - Write kumeran register
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write at register offset
*
* Acquire semaphore, then write the data to PHY register
* at the offset using the kumeran interface. Release semaphore
* before exiting.
**/
static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
u16 data)
{
u32 kmrnctrlsta;
s32 ret_val = 0;
ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
if (ret_val)
return ret_val;
kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
E1000_KMRNCTRLSTA_OFFSET) | data;
ew32(KMRNCTRLSTA, kmrnctrlsta);
e1e_flush();
udelay(2);
e1000_release_mac_csr_80003es2lan(hw);
return ret_val;
}
/**
* e1000_read_mac_addr_80003es2lan - Read device MAC address
* @hw: pointer to the HW structure
**/
static s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw)
{
s32 ret_val = 0;
/*
* If there's an alternate MAC address place it in RAR0
* so that it will override the Si installed default perm
* address.
*/
ret_val = e1000_check_alt_mac_addr_generic(hw);
if (ret_val)
goto out;
ret_val = e1000_read_mac_addr_generic(hw);
out:
return ret_val;
}
/**
* e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down
* @hw: pointer to the HW structure
*
* In the case of a PHY power down to save power, or to turn off link during a
* driver unload, or wake on lan is not enabled, remove the link.
**/
static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw)
{
/* If the management interface is not enabled, then power down */
if (!(hw->mac.ops.check_mng_mode(hw) ||
hw->phy.ops.check_reset_block(hw)))
e1000_power_down_phy_copper(hw);
}
/**
* e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
* @hw: pointer to the HW structure
*
* Clears the hardware counters by reading the counter registers.
**/
static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
{
e1000e_clear_hw_cntrs_base(hw);
er32(PRC64);
er32(PRC127);
er32(PRC255);
er32(PRC511);
er32(PRC1023);
er32(PRC1522);
er32(PTC64);
er32(PTC127);
er32(PTC255);
er32(PTC511);
er32(PTC1023);
er32(PTC1522);
er32(ALGNERRC);
er32(RXERRC);
er32(TNCRS);
er32(CEXTERR);
er32(TSCTC);
er32(TSCTFC);
er32(MGTPRC);
er32(MGTPDC);
er32(MGTPTC);
er32(IAC);
er32(ICRXOC);
er32(ICRXPTC);
er32(ICRXATC);
er32(ICTXPTC);
er32(ICTXATC);
er32(ICTXQEC);
er32(ICTXQMTC);
er32(ICRXDMTC);
}
static const struct e1000_mac_operations es2_mac_ops = {
.read_mac_addr = e1000_read_mac_addr_80003es2lan,
.id_led_init = e1000e_id_led_init,
.blink_led = e1000e_blink_led_generic,
.check_mng_mode = e1000e_check_mng_mode_generic,
/* check_for_link dependent on media type */
.cleanup_led = e1000e_cleanup_led_generic,
.clear_hw_cntrs = e1000_clear_hw_cntrs_80003es2lan,
.get_bus_info = e1000e_get_bus_info_pcie,
.set_lan_id = e1000_set_lan_id_multi_port_pcie,
.get_link_up_info = e1000_get_link_up_info_80003es2lan,
.led_on = e1000e_led_on_generic,
.led_off = e1000e_led_off_generic,
.update_mc_addr_list = e1000e_update_mc_addr_list_generic,
.write_vfta = e1000_write_vfta_generic,
.clear_vfta = e1000_clear_vfta_generic,
.reset_hw = e1000_reset_hw_80003es2lan,
.init_hw = e1000_init_hw_80003es2lan,
.setup_link = e1000e_setup_link,
/* setup_physical_interface dependent on media type */
.setup_led = e1000e_setup_led_generic,
};
static const struct e1000_phy_operations es2_phy_ops = {
.acquire = e1000_acquire_phy_80003es2lan,
.check_polarity = e1000_check_polarity_m88,
.check_reset_block = e1000e_check_reset_block_generic,
.commit = e1000e_phy_sw_reset,
.force_speed_duplex = e1000_phy_force_speed_duplex_80003es2lan,
.get_cfg_done = e1000_get_cfg_done_80003es2lan,
.get_cable_length = e1000_get_cable_length_80003es2lan,
.get_info = e1000e_get_phy_info_m88,
.read_reg = e1000_read_phy_reg_gg82563_80003es2lan,
.release = e1000_release_phy_80003es2lan,
.reset = e1000e_phy_hw_reset_generic,
.set_d0_lplu_state = NULL,
.set_d3_lplu_state = e1000e_set_d3_lplu_state,
.write_reg = e1000_write_phy_reg_gg82563_80003es2lan,
.cfg_on_link_up = e1000_cfg_on_link_up_80003es2lan,
};
static const struct e1000_nvm_operations es2_nvm_ops = {
.acquire = e1000_acquire_nvm_80003es2lan,
.read = e1000e_read_nvm_eerd,
.release = e1000_release_nvm_80003es2lan,
.update = e1000e_update_nvm_checksum_generic,
.valid_led_default = e1000e_valid_led_default,
.validate = e1000e_validate_nvm_checksum_generic,
.write = e1000_write_nvm_80003es2lan,
};
const struct e1000_info e1000_es2_info = {
.mac = e1000_80003es2lan,
.flags = FLAG_HAS_HW_VLAN_FILTER
| FLAG_HAS_JUMBO_FRAMES
| FLAG_HAS_WOL
| FLAG_APME_IN_CTRL3
| FLAG_HAS_CTRLEXT_ON_LOAD
| FLAG_RX_NEEDS_RESTART /* errata */
| FLAG_TARC_SET_BIT_ZERO /* errata */
| FLAG_APME_CHECK_PORT_B
| FLAG_DISABLE_FC_PAUSE_TIME /* errata */
| FLAG_TIPG_MEDIUM_FOR_80003ESLAN,
.flags2 = FLAG2_DMA_BURST,
.pba = 38,
.max_hw_frame_size = DEFAULT_JUMBO,
.get_variants = e1000_get_variants_80003es2lan,
.mac_ops = &es2_mac_ops,
.phy_ops = &es2_phy_ops,
.nvm_ops = &es2_nvm_ops,
};
-------------- n?chster Teil --------------
/*******************************************************************************
Intel PRO/1000 Linux driver
Copyright(c) 1999 - 2011 Intel Corporation.
This program is free software; you can redistribute it and/or modify it
under the terms and conditions of the GNU General Public License,
version 2, as published by the Free Software Foundation.
This program is distributed in the hope it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
The full GNU General Public License is included in this distribution in
the file called "COPYING".
Contact Information:
Linux NICS <linux.nics at intel.com>
e1000-devel Mailing List <e1000-devel at lists.sourceforge.net>
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*******************************************************************************/
/* ethtool support for e1000 */
#include <linux/netdevice.h>
#include <linux/interrupt.h>
#include <linux/ethtool.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include "e1000.h"
enum {NETDEV_STATS, E1000_STATS};
struct e1000_stats {
char stat_string[ETH_GSTRING_LEN];
int type;
int sizeof_stat;
int stat_offset;
};
#define E1000_STAT(str, m) { \
.stat_string = str, \
.type = E1000_STATS, \
.sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
.stat_offset = offsetof(struct e1000_adapter, m) }
#define E1000_NETDEV_STAT(str, m) { \
.stat_string = str, \
.type = NETDEV_STATS, \
.sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
.stat_offset = offsetof(struct rtnl_link_stats64, m) }
static const struct e1000_stats e1000_gstrings_stats[] = {
E1000_STAT("rx_packets", stats.gprc),
E1000_STAT("tx_packets", stats.gptc),
E1000_STAT("rx_bytes", stats.gorc),
E1000_STAT("tx_bytes", stats.gotc),
E1000_STAT("rx_broadcast", stats.bprc),
E1000_STAT("tx_broadcast", stats.bptc),
E1000_STAT("rx_multicast", stats.mprc),
E1000_STAT("tx_multicast", stats.mptc),
E1000_NETDEV_STAT("rx_errors", rx_errors),
E1000_NETDEV_STAT("tx_errors", tx_errors),
E1000_NETDEV_STAT("tx_dropped", tx_dropped),
E1000_STAT("multicast", stats.mprc),
E1000_STAT("collisions", stats.colc),
E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
E1000_STAT("rx_crc_errors", stats.crcerrs),
E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
E1000_STAT("rx_no_buffer_count", stats.rnbc),
E1000_STAT("rx_missed_errors", stats.mpc),
E1000_STAT("tx_aborted_errors", stats.ecol),
E1000_STAT("tx_carrier_errors", stats.tncrs),
E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
E1000_STAT("tx_window_errors", stats.latecol),
E1000_STAT("tx_abort_late_coll", stats.latecol),
E1000_STAT("tx_deferred_ok", stats.dc),
E1000_STAT("tx_single_coll_ok", stats.scc),
E1000_STAT("tx_multi_coll_ok", stats.mcc),
E1000_STAT("tx_timeout_count", tx_timeout_count),
E1000_STAT("tx_restart_queue", restart_queue),
E1000_STAT("rx_long_length_errors", stats.roc),
E1000_STAT("rx_short_length_errors", stats.ruc),
E1000_STAT("rx_align_errors", stats.algnerrc),
E1000_STAT("tx_tcp_seg_good", stats.tsctc),
E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
E1000_STAT("rx_flow_control_xon", stats.xonrxc),
E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
E1000_STAT("tx_flow_control_xon", stats.xontxc),
E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
E1000_STAT("rx_long_byte_count", stats.gorc),
E1000_STAT("rx_csum_offload_good", hw_csum_good),
E1000_STAT("rx_csum_offload_errors", hw_csum_err),
E1000_STAT("rx_header_split", rx_hdr_split),
E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
E1000_STAT("tx_smbus", stats.mgptc),
E1000_STAT("rx_smbus", stats.mgprc),
E1000_STAT("dropped_smbus", stats.mgpdc),
E1000_STAT("rx_dma_failed", rx_dma_failed),
E1000_STAT("tx_dma_failed", tx_dma_failed),
};
#define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
"Register test (offline)", "Eeprom test (offline)",
"Interrupt test (offline)", "Loopback test (offline)",
"Link test (on/offline)"
};
#define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
static int e1000_get_settings(struct net_device *netdev,
struct ethtool_cmd *ecmd)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 speed;
if (hw->phy.media_type == e1000_media_type_copper) {
ecmd->supported = (SUPPORTED_10baseT_Half |
SUPPORTED_10baseT_Full |
SUPPORTED_100baseT_Half |
SUPPORTED_100baseT_Full |
SUPPORTED_1000baseT_Full |
SUPPORTED_Autoneg |
SUPPORTED_TP);
if (hw->phy.type == e1000_phy_ife)
ecmd->supported &= ~SUPPORTED_1000baseT_Full;
ecmd->advertising = ADVERTISED_TP;
if (hw->mac.autoneg == 1) {
ecmd->advertising |= ADVERTISED_Autoneg;
/* the e1000 autoneg seems to match ethtool nicely */
ecmd->advertising |= hw->phy.autoneg_advertised;
}
ecmd->port = PORT_TP;
ecmd->phy_address = hw->phy.addr;
ecmd->transceiver = XCVR_INTERNAL;
} else {
ecmd->supported = (SUPPORTED_1000baseT_Full |
SUPPORTED_FIBRE |
SUPPORTED_Autoneg);
ecmd->advertising = (ADVERTISED_1000baseT_Full |
ADVERTISED_FIBRE |
ADVERTISED_Autoneg);
ecmd->port = PORT_FIBRE;
ecmd->transceiver = XCVR_EXTERNAL;
}
speed = -1;
ecmd->duplex = -1;
if (netif_running(netdev)) {
if (netif_carrier_ok(netdev)) {
speed = adapter->link_speed;
ecmd->duplex = adapter->link_duplex - 1;
}
} else {
u32 status = er32(STATUS);
if (status & E1000_STATUS_LU) {
if (status & E1000_STATUS_SPEED_1000)
speed = SPEED_1000;
else if (status & E1000_STATUS_SPEED_100)
speed = SPEED_100;
else
speed = SPEED_10;
if (status & E1000_STATUS_FD)
ecmd->duplex = DUPLEX_FULL;
else
ecmd->duplex = DUPLEX_HALF;
}
}
ethtool_cmd_speed_set(ecmd, speed);
ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
/* MDI-X => 2; MDI =>1; Invalid =>0 */
if ((hw->phy.media_type == e1000_media_type_copper) &&
netif_carrier_ok(netdev))
ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
ETH_TP_MDI;
else
ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
return 0;
}
static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
{
struct e1000_mac_info *mac = &adapter->hw.mac;
mac->autoneg = 0;
/* Make sure dplx is at most 1 bit and lsb of speed is not set
* for the switch() below to work */
if ((spd & 1) || (dplx & ~1))
goto err_inval;
/* Fiber NICs only allow 1000 gbps Full duplex */
if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
spd != SPEED_1000 &&
dplx != DUPLEX_FULL) {
goto err_inval;
}
switch (spd + dplx) {
case SPEED_10 + DUPLEX_HALF:
mac->forced_speed_duplex = ADVERTISE_10_HALF;
break;
case SPEED_10 + DUPLEX_FULL:
mac->forced_speed_duplex = ADVERTISE_10_FULL;
break;
case SPEED_100 + DUPLEX_HALF:
mac->forced_speed_duplex = ADVERTISE_100_HALF;
break;
case SPEED_100 + DUPLEX_FULL:
mac->forced_speed_duplex = ADVERTISE_100_FULL;
break;
case SPEED_1000 + DUPLEX_FULL:
mac->autoneg = 1;
adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
break;
case SPEED_1000 + DUPLEX_HALF: /* not supported */
default:
goto err_inval;
}
return 0;
err_inval:
e_err("Unsupported Speed/Duplex configuration\n");
return -EINVAL;
}
static int e1000_set_settings(struct net_device *netdev,
struct ethtool_cmd *ecmd)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
/*
* When SoL/IDER sessions are active, autoneg/speed/duplex
* cannot be changed
*/
if (e1000_check_reset_block(hw)) {
e_err("Cannot change link characteristics when SoL/IDER is "
"active.\n");
return -EINVAL;
}
while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
usleep_range(1000, 2000);
if (ecmd->autoneg == AUTONEG_ENABLE) {
hw->mac.autoneg = 1;
if (hw->phy.media_type == e1000_media_type_fiber)
hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
ADVERTISED_FIBRE |
ADVERTISED_Autoneg;
else
hw->phy.autoneg_advertised = ecmd->advertising |
ADVERTISED_TP |
ADVERTISED_Autoneg;
ecmd->advertising = hw->phy.autoneg_advertised;
if (adapter->fc_autoneg)
hw->fc.requested_mode = e1000_fc_default;
} else {
u32 speed = ethtool_cmd_speed(ecmd);
if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
clear_bit(__E1000_RESETTING, &adapter->state);
return -EINVAL;
}
}
/* reset the link */
if (netif_running(adapter->netdev)) {
e1000e_down(adapter);
e1000e_up(adapter);
} else {
e1000e_reset(adapter);
}
clear_bit(__E1000_RESETTING, &adapter->state);
return 0;
}
static void e1000_get_pauseparam(struct net_device *netdev,
struct ethtool_pauseparam *pause)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
pause->autoneg =
(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
if (hw->fc.current_mode == e1000_fc_rx_pause) {
pause->rx_pause = 1;
} else if (hw->fc.current_mode == e1000_fc_tx_pause) {
pause->tx_pause = 1;
} else if (hw->fc.current_mode == e1000_fc_full) {
pause->rx_pause = 1;
pause->tx_pause = 1;
}
}
static int e1000_set_pauseparam(struct net_device *netdev,
struct ethtool_pauseparam *pause)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
int retval = 0;
adapter->fc_autoneg = pause->autoneg;
while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
usleep_range(1000, 2000);
if (adapter->fc_autoneg == AUTONEG_ENABLE) {
hw->fc.requested_mode = e1000_fc_default;
if (netif_running(adapter->netdev)) {
e1000e_down(adapter);
e1000e_up(adapter);
} else {
e1000e_reset(adapter);
}
} else {
if (pause->rx_pause && pause->tx_pause)
hw->fc.requested_mode = e1000_fc_full;
else if (pause->rx_pause && !pause->tx_pause)
hw->fc.requested_mode = e1000_fc_rx_pause;
else if (!pause->rx_pause && pause->tx_pause)
hw->fc.requested_mode = e1000_fc_tx_pause;
else if (!pause->rx_pause && !pause->tx_pause)
hw->fc.requested_mode = e1000_fc_none;
hw->fc.current_mode = hw->fc.requested_mode;
if (hw->phy.media_type == e1000_media_type_fiber) {
retval = hw->mac.ops.setup_link(hw);
/* implicit goto out */
} else {
retval = e1000e_force_mac_fc(hw);
if (retval)
goto out;
e1000e_set_fc_watermarks(hw);
}
}
out:
clear_bit(__E1000_RESETTING, &adapter->state);
return retval;
}
static u32 e1000_get_msglevel(struct net_device *netdev)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
return adapter->msg_enable;
}
static void e1000_set_msglevel(struct net_device *netdev, u32 data)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
adapter->msg_enable = data;
}
static int e1000_get_regs_len(struct net_device *netdev)
{
#define E1000_REGS_LEN 32 /* overestimate */
return E1000_REGS_LEN * sizeof(u32);
}
static void e1000_get_regs(struct net_device *netdev,
struct ethtool_regs *regs, void *p)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 *regs_buff = p;
u16 phy_data;
memset(p, 0, E1000_REGS_LEN * sizeof(u32));
regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
adapter->pdev->device;
regs_buff[0] = er32(CTRL);
regs_buff[1] = er32(STATUS);
regs_buff[2] = er32(RCTL);
regs_buff[3] = er32(RDLEN);
regs_buff[4] = er32(RDH);
regs_buff[5] = er32(RDT);
regs_buff[6] = er32(RDTR);
regs_buff[7] = er32(TCTL);
regs_buff[8] = er32(TDLEN);
regs_buff[9] = er32(TDH);
regs_buff[10] = er32(TDT);
regs_buff[11] = er32(TIDV);
regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */
/* ethtool doesn't use anything past this point, so all this
* code is likely legacy junk for apps that may or may not
* exist */
if (hw->phy.type == e1000_phy_m88) {
e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
regs_buff[13] = (u32)phy_data; /* cable length */
regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
regs_buff[18] = regs_buff[13]; /* cable polarity */
regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
regs_buff[20] = regs_buff[17]; /* polarity correction */
/* phy receive errors */
regs_buff[22] = adapter->phy_stats.receive_errors;
regs_buff[23] = regs_buff[13]; /* mdix mode */
}
regs_buff[21] = 0; /* was idle_errors */
e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
regs_buff[24] = (u32)phy_data; /* phy local receiver status */
regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
}
static int e1000_get_eeprom_len(struct net_device *netdev)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
return adapter->hw.nvm.word_size * 2;
}
static int e1000_get_eeprom(struct net_device *netdev,
struct ethtool_eeprom *eeprom, u8 *bytes)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u16 *eeprom_buff;
int first_word;
int last_word;
int ret_val = 0;
u16 i;
if (eeprom->len == 0)
return -EINVAL;
eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
first_word = eeprom->offset >> 1;
last_word = (eeprom->offset + eeprom->len - 1) >> 1;
eeprom_buff = kmalloc(sizeof(u16) *
(last_word - first_word + 1), GFP_KERNEL);
if (!eeprom_buff)
return -ENOMEM;
if (hw->nvm.type == e1000_nvm_eeprom_spi) {
ret_val = e1000_read_nvm(hw, first_word,
last_word - first_word + 1,
eeprom_buff);
} else {
for (i = 0; i < last_word - first_word + 1; i++) {
ret_val = e1000_read_nvm(hw, first_word + i, 1,
&eeprom_buff[i]);
if (ret_val)
break;
}
}
if (ret_val) {
/* a read error occurred, throw away the result */
memset(eeprom_buff, 0xff, sizeof(u16) *
(last_word - first_word + 1));
} else {
/* Device's eeprom is always little-endian, word addressable */
for (i = 0; i < last_word - first_word + 1; i++)
le16_to_cpus(&eeprom_buff[i]);
}
memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
kfree(eeprom_buff);
return ret_val;
}
static int e1000_set_eeprom(struct net_device *netdev,
struct ethtool_eeprom *eeprom, u8 *bytes)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u16 *eeprom_buff;
void *ptr;
int max_len;
int first_word;
int last_word;
int ret_val = 0;
u16 i;
if (eeprom->len == 0)
return -EOPNOTSUPP;
if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
return -EFAULT;
if (adapter->flags & FLAG_READ_ONLY_NVM)
return -EINVAL;
max_len = hw->nvm.word_size * 2;
first_word = eeprom->offset >> 1;
last_word = (eeprom->offset + eeprom->len - 1) >> 1;
eeprom_buff = kmalloc(max_len, GFP_KERNEL);
if (!eeprom_buff)
return -ENOMEM;
ptr = (void *)eeprom_buff;
if (eeprom->offset & 1) {
/* need read/modify/write of first changed EEPROM word */
/* only the second byte of the word is being modified */
ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
ptr++;
}
if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0))
/* need read/modify/write of last changed EEPROM word */
/* only the first byte of the word is being modified */
ret_val = e1000_read_nvm(hw, last_word, 1,
&eeprom_buff[last_word - first_word]);
if (ret_val)
goto out;
/* Device's eeprom is always little-endian, word addressable */
for (i = 0; i < last_word - first_word + 1; i++)
le16_to_cpus(&eeprom_buff[i]);
memcpy(ptr, bytes, eeprom->len);
for (i = 0; i < last_word - first_word + 1; i++)
eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
ret_val = e1000_write_nvm(hw, first_word,
last_word - first_word + 1, eeprom_buff);
if (ret_val)
goto out;
/*
* Update the checksum over the first part of the EEPROM if needed
* and flush shadow RAM for applicable controllers
*/
if ((first_word <= NVM_CHECKSUM_REG) ||
(hw->mac.type == e1000_82583) ||
(hw->mac.type == e1000_82574) ||
(hw->mac.type == e1000_82573))
ret_val = e1000e_update_nvm_checksum(hw);
out:
kfree(eeprom_buff);
return ret_val;
}
static void e1000_get_drvinfo(struct net_device *netdev,
struct ethtool_drvinfo *drvinfo)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
char firmware_version[32];
strncpy(drvinfo->driver, e1000e_driver_name,
sizeof(drvinfo->driver) - 1);
strncpy(drvinfo->version, e1000e_driver_version,
sizeof(drvinfo->version) - 1);
/*
* EEPROM image version # is reported as firmware version # for
* PCI-E controllers
*/
snprintf(firmware_version, sizeof(firmware_version), "%d.%d-%d",
(adapter->eeprom_vers & 0xF000) >> 12,
(adapter->eeprom_vers & 0x0FF0) >> 4,
(adapter->eeprom_vers & 0x000F));
strncpy(drvinfo->fw_version, firmware_version,
sizeof(drvinfo->fw_version) - 1);
strncpy(drvinfo->bus_info, pci_name(adapter->pdev),
sizeof(drvinfo->bus_info) - 1);
drvinfo->regdump_len = e1000_get_regs_len(netdev);
drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
}
static void e1000_get_ringparam(struct net_device *netdev,
struct ethtool_ringparam *ring)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_ring *tx_ring = adapter->tx_ring;
struct e1000_ring *rx_ring = adapter->rx_ring;
ring->rx_max_pending = E1000_MAX_RXD;
ring->tx_max_pending = E1000_MAX_TXD;
ring->rx_pending = rx_ring->count;
ring->tx_pending = tx_ring->count;
}
static int e1000_set_ringparam(struct net_device *netdev,
struct ethtool_ringparam *ring)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_ring *tx_ring, *tx_old;
struct e1000_ring *rx_ring, *rx_old;
int err;
if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
return -EINVAL;
while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
usleep_range(1000, 2000);
if (netif_running(adapter->netdev))
e1000e_down(adapter);
tx_old = adapter->tx_ring;
rx_old = adapter->rx_ring;
err = -ENOMEM;
tx_ring = kmemdup(tx_old, sizeof(struct e1000_ring), GFP_KERNEL);
if (!tx_ring)
goto err_alloc_tx;
rx_ring = kmemdup(rx_old, sizeof(struct e1000_ring), GFP_KERNEL);
if (!rx_ring)
goto err_alloc_rx;
adapter->tx_ring = tx_ring;
adapter->rx_ring = rx_ring;
rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD));
rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);
tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD));
tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);
if (netif_running(adapter->netdev)) {
/* Try to get new resources before deleting old */
err = e1000e_setup_rx_resources(adapter);
if (err)
goto err_setup_rx;
err = e1000e_setup_tx_resources(adapter);
if (err)
goto err_setup_tx;
/*
* restore the old in order to free it,
* then add in the new
*/
adapter->rx_ring = rx_old;
adapter->tx_ring = tx_old;
e1000e_free_rx_resources(adapter);
e1000e_free_tx_resources(adapter);
kfree(tx_old);
kfree(rx_old);
adapter->rx_ring = rx_ring;
adapter->tx_ring = tx_ring;
err = e1000e_up(adapter);
if (err)
goto err_setup;
}
clear_bit(__E1000_RESETTING, &adapter->state);
return 0;
err_setup_tx:
e1000e_free_rx_resources(adapter);
err_setup_rx:
adapter->rx_ring = rx_old;
adapter->tx_ring = tx_old;
kfree(rx_ring);
err_alloc_rx:
kfree(tx_ring);
err_alloc_tx:
e1000e_up(adapter);
err_setup:
clear_bit(__E1000_RESETTING, &adapter->state);
return err;
}
static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
int reg, int offset, u32 mask, u32 write)
{
u32 pat, val;
static const u32 test[] = {
0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
(test[pat] & write));
val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
if (val != (test[pat] & write & mask)) {
e_err("pattern test reg %04X failed: got 0x%08X "
"expected 0x%08X\n", reg + offset, val,
(test[pat] & write & mask));
*data = reg;
return 1;
}
}
return 0;
}
static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
int reg, u32 mask, u32 write)
{
u32 val;
__ew32(&adapter->hw, reg, write & mask);
val = __er32(&adapter->hw, reg);
if ((write & mask) != (val & mask)) {
e_err("set/check reg %04X test failed: got 0x%08X "
"expected 0x%08X\n", reg, (val & mask), (write & mask));
*data = reg;
return 1;
}
return 0;
}
#define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \
do { \
if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
return 1; \
} while (0)
#define REG_PATTERN_TEST(reg, mask, write) \
REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
#define REG_SET_AND_CHECK(reg, mask, write) \
do { \
if (reg_set_and_check(adapter, data, reg, mask, write)) \
return 1; \
} while (0)
static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
{
struct e1000_hw *hw = &adapter->hw;
struct e1000_mac_info *mac = &adapter->hw.mac;
u32 value;
u32 before;
u32 after;
u32 i;
u32 toggle;
u32 mask;
/*
* The status register is Read Only, so a write should fail.
* Some bits that get toggled are ignored.
*/
switch (mac->type) {
/* there are several bits on newer hardware that are r/w */
case e1000_82571:
case e1000_82572:
case e1000_80003es2lan:
toggle = 0x7FFFF3FF;
break;
default:
toggle = 0x7FFFF033;
break;
}
before = er32(STATUS);
value = (er32(STATUS) & toggle);
ew32(STATUS, toggle);
after = er32(STATUS) & toggle;
if (value != after) {
e_err("failed STATUS register test got: 0x%08X expected: "
"0x%08X\n", after, value);
*data = 1;
return 1;
}
/* restore previous status */
ew32(STATUS, before);
if (!(adapter->flags & FLAG_IS_ICH)) {
REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
}
REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);
REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
if (!(adapter->flags & FLAG_IS_ICH))
REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
mask = 0x8003FFFF;
switch (mac->type) {
case e1000_ich10lan:
case e1000_pchlan:
case e1000_pch2lan:
mask |= (1 << 18);
break;
default:
break;
}
for (i = 0; i < mac->rar_entry_count; i++)
REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
mask, 0xFFFFFFFF);
for (i = 0; i < mac->mta_reg_count; i++)
REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
*data = 0;
return 0;
}
static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
{
u16 temp;
u16 checksum = 0;
u16 i;
*data = 0;
/* Read and add up the contents of the EEPROM */
for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
*data = 1;
return *data;
}
checksum += temp;
}
/* If Checksum is not Correct return error else test passed */
if ((checksum != (u16) NVM_SUM) && !(*data))
*data = 2;
return *data;
}
static irqreturn_t e1000_test_intr(int irq, void *data)
{
struct net_device *netdev = (struct net_device *) data;
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
adapter->test_icr |= er32(ICR);
return IRQ_HANDLED;
}
static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
{
struct net_device *netdev = adapter->netdev;
struct e1000_hw *hw = &adapter->hw;
u32 mask;
u32 shared_int = 1;
u32 irq = adapter->pdev->irq;
int i;
int ret_val = 0;
int int_mode = E1000E_INT_MODE_LEGACY;
*data = 0;
/* NOTE: we don't test MSI/MSI-X interrupts here, yet */
if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
int_mode = adapter->int_mode;
e1000e_reset_interrupt_capability(adapter);
adapter->int_mode = E1000E_INT_MODE_LEGACY;
e1000e_set_interrupt_capability(adapter);
}
/* Hook up test interrupt handler just for this test */
if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
netdev)) {
shared_int = 0;
} else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
netdev->name, netdev)) {
*data = 1;
ret_val = -1;
goto out;
}
e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
/* Disable all the interrupts */
ew32(IMC, 0xFFFFFFFF);
e1e_flush();
usleep_range(10000, 20000);
/* Test each interrupt */
for (i = 0; i < 10; i++) {
/* Interrupt to test */
mask = 1 << i;
if (adapter->flags & FLAG_IS_ICH) {
switch (mask) {
case E1000_ICR_RXSEQ:
continue;
case 0x00000100:
if (adapter->hw.mac.type == e1000_ich8lan ||
adapter->hw.mac.type == e1000_ich9lan)
continue;
break;
default:
break;
}
}
if (!shared_int) {
/*
* Disable the interrupt to be reported in
* the cause register and then force the same
* interrupt and see if one gets posted. If
* an interrupt was posted to the bus, the
* test failed.
*/
adapter->test_icr = 0;
ew32(IMC, mask);
ew32(ICS, mask);
e1e_flush();
usleep_range(10000, 20000);
if (adapter->test_icr & mask) {
*data = 3;
break;
}
}
/*
* Enable the interrupt to be reported in
* the cause register and then force the same
* interrupt and see if one gets posted. If
* an interrupt was not posted to the bus, the
* test failed.
*/
adapter->test_icr = 0;
ew32(IMS, mask);
ew32(ICS, mask);
e1e_flush();
usleep_range(10000, 20000);
if (!(adapter->test_icr & mask)) {
*data = 4;
break;
}
if (!shared_int) {
/*
* Disable the other interrupts to be reported in
* the cause register and then force the other
* interrupts and see if any get posted. If
* an interrupt was posted to the bus, the
* test failed.
*/
adapter->test_icr = 0;
ew32(IMC, ~mask & 0x00007FFF);
ew32(ICS, ~mask & 0x00007FFF);
e1e_flush();
usleep_range(10000, 20000);
if (adapter->test_icr) {
*data = 5;
break;
}
}
}
/* Disable all the interrupts */
ew32(IMC, 0xFFFFFFFF);
e1e_flush();
usleep_range(10000, 20000);
/* Unhook test interrupt handler */
free_irq(irq, netdev);
out:
if (int_mode == E1000E_INT_MODE_MSIX) {
e1000e_reset_interrupt_capability(adapter);
adapter->int_mode = int_mode;
e1000e_set_interrupt_capability(adapter);
}
return ret_val;
}
static void e1000_free_desc_rings(struct e1000_adapter *adapter)
{
struct e1000_ring *tx_ring = &adapter->test_tx_ring;
struct e1000_ring *rx_ring = &adapter->test_rx_ring;
struct pci_dev *pdev = adapter->pdev;
int i;
if (tx_ring->desc && tx_ring->buffer_info) {
for (i = 0; i < tx_ring->count; i++) {
if (tx_ring->buffer_info[i].dma)
dma_unmap_single(&pdev->dev,
tx_ring->buffer_info[i].dma,
tx_ring->buffer_info[i].length,
DMA_TO_DEVICE);
if (tx_ring->buffer_info[i].skb)
dev_kfree_skb(tx_ring->buffer_info[i].skb);
}
}
if (rx_ring->desc && rx_ring->buffer_info) {
for (i = 0; i < rx_ring->count; i++) {
if (rx_ring->buffer_info[i].dma)
dma_unmap_single(&pdev->dev,
rx_ring->buffer_info[i].dma,
2048, DMA_FROM_DEVICE);
if (rx_ring->buffer_info[i].skb)
dev_kfree_skb(rx_ring->buffer_info[i].skb);
}
}
if (tx_ring->desc) {
dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
tx_ring->dma);
tx_ring->desc = NULL;
}
if (rx_ring->desc) {
dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
rx_ring->dma);
rx_ring->desc = NULL;
}
kfree(tx_ring->buffer_info);
tx_ring->buffer_info = NULL;
kfree(rx_ring->buffer_info);
rx_ring->buffer_info = NULL;
}
static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
{
struct e1000_ring *tx_ring = &adapter->test_tx_ring;
struct e1000_ring *rx_ring = &adapter->test_rx_ring;
struct pci_dev *pdev = adapter->pdev;
struct e1000_hw *hw = &adapter->hw;
u32 rctl;
int i;
int ret_val;
/* Setup Tx descriptor ring and Tx buffers */
if (!tx_ring->count)
tx_ring->count = E1000_DEFAULT_TXD;
tx_ring->buffer_info = kcalloc(tx_ring->count,
sizeof(struct e1000_buffer),
GFP_KERNEL);
if (!(tx_ring->buffer_info)) {
ret_val = 1;
goto err_nomem;
}
tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
tx_ring->size = ALIGN(tx_ring->size, 4096);
tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
&tx_ring->dma, GFP_KERNEL);
if (!tx_ring->desc) {
ret_val = 2;
goto err_nomem;
}
tx_ring->next_to_use = 0;
tx_ring->next_to_clean = 0;
ew32(TDBAL, ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
ew32(TDBAH, ((u64) tx_ring->dma >> 32));
ew32(TDLEN, tx_ring->count * sizeof(struct e1000_tx_desc));
ew32(TDH, 0);
ew32(TDT, 0);
ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
for (i = 0; i < tx_ring->count; i++) {
struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
struct sk_buff *skb;
unsigned int skb_size = 1024;
skb = alloc_skb(skb_size, GFP_KERNEL);
if (!skb) {
ret_val = 3;
goto err_nomem;
}
skb_put(skb, skb_size);
tx_ring->buffer_info[i].skb = skb;
tx_ring->buffer_info[i].length = skb->len;
tx_ring->buffer_info[i].dma =
dma_map_single(&pdev->dev, skb->data, skb->len,
DMA_TO_DEVICE);
if (dma_mapping_error(&pdev->dev,
tx_ring->buffer_info[i].dma)) {
ret_val = 4;
goto err_nomem;
}
tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
tx_desc->lower.data = cpu_to_le32(skb->len);
tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
E1000_TXD_CMD_IFCS |
E1000_TXD_CMD_RS);
tx_desc->upper.data = 0;
}
/* Setup Rx descriptor ring and Rx buffers */
if (!rx_ring->count)
rx_ring->count = E1000_DEFAULT_RXD;
rx_ring->buffer_info = kcalloc(rx_ring->count,
sizeof(struct e1000_buffer),
GFP_KERNEL);
if (!(rx_ring->buffer_info)) {
ret_val = 5;
goto err_nomem;
}
rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
&rx_ring->dma, GFP_KERNEL);
if (!rx_ring->desc) {
ret_val = 6;
goto err_nomem;
}
rx_ring->next_to_use = 0;
rx_ring->next_to_clean = 0;
rctl = er32(RCTL);
if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
ew32(RCTL, rctl & ~E1000_RCTL_EN);
ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
ew32(RDBAH, ((u64) rx_ring->dma >> 32));
ew32(RDLEN, rx_ring->size);
ew32(RDH, 0);
ew32(RDT, 0);
rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
E1000_RCTL_SBP | E1000_RCTL_SECRC |
E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
ew32(RCTL, rctl);
for (i = 0; i < rx_ring->count; i++) {
union e1000_rx_desc_extended *rx_desc;
struct sk_buff *skb;
skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
if (!skb) {
ret_val = 7;
goto err_nomem;
}
skb_reserve(skb, NET_IP_ALIGN);
rx_ring->buffer_info[i].skb = skb;
rx_ring->buffer_info[i].dma =
dma_map_single(&pdev->dev, skb->data, 2048,
DMA_FROM_DEVICE);
if (dma_mapping_error(&pdev->dev,
rx_ring->buffer_info[i].dma)) {
ret_val = 8;
goto err_nomem;
}
rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
rx_desc->read.buffer_addr =
cpu_to_le64(rx_ring->buffer_info[i].dma);
memset(skb->data, 0x00, skb->len);
}
return 0;
err_nomem:
e1000_free_desc_rings(adapter);
return ret_val;
}
static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
{
/* Write out to PHY registers 29 and 30 to disable the Receiver. */
e1e_wphy(&adapter->hw, 29, 0x001F);
e1e_wphy(&adapter->hw, 30, 0x8FFC);
e1e_wphy(&adapter->hw, 29, 0x001A);
e1e_wphy(&adapter->hw, 30, 0x8FF0);
}
static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 ctrl_reg = 0;
u16 phy_reg = 0;
s32 ret_val = 0;
hw->mac.autoneg = 0;
if (hw->phy.type == e1000_phy_ife) {
/* force 100, set loopback */
e1e_wphy(hw, PHY_CONTROL, 0x6100);
/* Now set up the MAC to the same speed/duplex as the PHY. */
ctrl_reg = er32(CTRL);
ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
E1000_CTRL_SPD_100 |/* Force Speed to 100 */
E1000_CTRL_FD); /* Force Duplex to FULL */
ew32(CTRL, ctrl_reg);
e1e_flush();
udelay(500);
return 0;
}
/* Specific PHY configuration for loopback */
switch (hw->phy.type) {
case e1000_phy_m88:
/* Auto-MDI/MDIX Off */
e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
/* reset to update Auto-MDI/MDIX */
e1e_wphy(hw, PHY_CONTROL, 0x9140);
/* autoneg off */
e1e_wphy(hw, PHY_CONTROL, 0x8140);
break;
case e1000_phy_gg82563:
e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
break;
case e1000_phy_bm:
/* Set Default MAC Interface speed to 1GB */
e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
phy_reg &= ~0x0007;
phy_reg |= 0x006;
e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
/* Assert SW reset for above settings to take effect */
e1000e_commit_phy(hw);
mdelay(1);
/* Force Full Duplex */
e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
/* Set Link Up (in force link) */
e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
/* Force Link */
e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
/* Set Early Link Enable */
e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
break;
case e1000_phy_82577:
case e1000_phy_82578:
/* Workaround: K1 must be disabled for stable 1Gbps operation */
ret_val = hw->phy.ops.acquire(hw);
if (ret_val) {
e_err("Cannot setup 1Gbps loopback.\n");
return ret_val;
}
e1000_configure_k1_ich8lan(hw, false);
hw->phy.ops.release(hw);
break;
case e1000_phy_82579:
/* Disable PHY energy detect power down */
e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3));
/* Disable full chip energy detect */
e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
/* Enable loopback on the PHY */
#define I82577_PHY_LBK_CTRL 19
e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
break;
default:
break;
}
/* force 1000, set loopback */
e1e_wphy(hw, PHY_CONTROL, 0x4140);
mdelay(250);
/* Now set up the MAC to the same speed/duplex as the PHY. */
ctrl_reg = er32(CTRL);
ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
E1000_CTRL_FD); /* Force Duplex to FULL */
if (adapter->flags & FLAG_IS_ICH)
ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */
if (hw->phy.media_type == e1000_media_type_copper &&
hw->phy.type == e1000_phy_m88) {
ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
} else {
/*
* Set the ILOS bit on the fiber Nic if half duplex link is
* detected.
*/
if ((er32(STATUS) & E1000_STATUS_FD) == 0)
ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
}
ew32(CTRL, ctrl_reg);
/*
* Disable the receiver on the PHY so when a cable is plugged in, the
* PHY does not begin to autoneg when a cable is reconnected to the NIC.
*/
if (hw->phy.type == e1000_phy_m88)
e1000_phy_disable_receiver(adapter);
udelay(500);
return 0;
}
static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 ctrl = er32(CTRL);
int link = 0;
/* special requirements for 82571/82572 fiber adapters */
/*
* jump through hoops to make sure link is up because serdes
* link is hardwired up
*/
ctrl |= E1000_CTRL_SLU;
ew32(CTRL, ctrl);
/* disable autoneg */
ctrl = er32(TXCW);
ctrl &= ~(1 << 31);
ew32(TXCW, ctrl);
link = (er32(STATUS) & E1000_STATUS_LU);
if (!link) {
/* set invert loss of signal */
ctrl = er32(CTRL);
ctrl |= E1000_CTRL_ILOS;
ew32(CTRL, ctrl);
}
/*
* special write to serdes control register to enable SerDes analog
* loopback
*/
#define E1000_SERDES_LB_ON 0x410
ew32(SCTL, E1000_SERDES_LB_ON);
e1e_flush();
usleep_range(10000, 20000);
return 0;
}
/* only call this for fiber/serdes connections to es2lan */
static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 ctrlext = er32(CTRL_EXT);
u32 ctrl = er32(CTRL);
/*
* save CTRL_EXT to restore later, reuse an empty variable (unused
* on mac_type 80003es2lan)
*/
adapter->tx_fifo_head = ctrlext;
/* clear the serdes mode bits, putting the device into mac loopback */
ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
ew32(CTRL_EXT, ctrlext);
/* force speed to 1000/FD, link up */
ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
ew32(CTRL, ctrl);
/* set mac loopback */
ctrl = er32(RCTL);
ctrl |= E1000_RCTL_LBM_MAC;
ew32(RCTL, ctrl);
/* set testing mode parameters (no need to reset later) */
#define KMRNCTRLSTA_OPMODE (0x1F << 16)
#define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
ew32(KMRNCTRLSTA,
(KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
return 0;
}
static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 rctl;
if (hw->phy.media_type == e1000_media_type_fiber ||
hw->phy.media_type == e1000_media_type_internal_serdes) {
switch (hw->mac.type) {
case e1000_80003es2lan:
return e1000_set_es2lan_mac_loopback(adapter);
break;
case e1000_82571:
case e1000_82572:
return e1000_set_82571_fiber_loopback(adapter);
break;
default:
rctl = er32(RCTL);
rctl |= E1000_RCTL_LBM_TCVR;
ew32(RCTL, rctl);
return 0;
}
} else if (hw->phy.media_type == e1000_media_type_copper) {
return e1000_integrated_phy_loopback(adapter);
}
return 7;
}
static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 rctl;
u16 phy_reg;
rctl = er32(RCTL);
rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
ew32(RCTL, rctl);
switch (hw->mac.type) {
case e1000_80003es2lan:
if (hw->phy.media_type == e1000_media_type_fiber ||
hw->phy.media_type == e1000_media_type_internal_serdes) {
/* restore CTRL_EXT, stealing space from tx_fifo_head */
ew32(CTRL_EXT, adapter->tx_fifo_head);
adapter->tx_fifo_head = 0;
}
/* fall through */
case e1000_82571:
case e1000_82572:
if (hw->phy.media_type == e1000_media_type_fiber ||
hw->phy.media_type == e1000_media_type_internal_serdes) {
#define E1000_SERDES_LB_OFF 0x400
ew32(SCTL, E1000_SERDES_LB_OFF);
e1e_flush();
usleep_range(10000, 20000);
break;
}
/* Fall Through */
default:
hw->mac.autoneg = 1;
if (hw->phy.type == e1000_phy_gg82563)
e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
e1e_rphy(hw, PHY_CONTROL, &phy_reg);
if (phy_reg & MII_CR_LOOPBACK) {
phy_reg &= ~MII_CR_LOOPBACK;
e1e_wphy(hw, PHY_CONTROL, phy_reg);
e1000e_commit_phy(hw);
}
break;
}
}
static void e1000_create_lbtest_frame(struct sk_buff *skb,
unsigned int frame_size)
{
memset(skb->data, 0xFF, frame_size);
frame_size &= ~1;
memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
}
static int e1000_check_lbtest_frame(struct sk_buff *skb,
unsigned int frame_size)
{
frame_size &= ~1;
if (*(skb->data + 3) == 0xFF)
if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
(*(skb->data + frame_size / 2 + 12) == 0xAF))
return 0;
return 13;
}
static int e1000_run_loopback_test(struct e1000_adapter *adapter)
{
struct e1000_ring *tx_ring = &adapter->test_tx_ring;
struct e1000_ring *rx_ring = &adapter->test_rx_ring;
struct pci_dev *pdev = adapter->pdev;
struct e1000_hw *hw = &adapter->hw;
int i, j, k, l;
int lc;
int good_cnt;
int ret_val = 0;
unsigned long time;
ew32(RDT, rx_ring->count - 1);
/*
* Calculate the loop count based on the largest descriptor ring
* The idea is to wrap the largest ring a number of times using 64
* send/receive pairs during each loop
*/
if (rx_ring->count <= tx_ring->count)
lc = ((tx_ring->count / 64) * 2) + 1;
else
lc = ((rx_ring->count / 64) * 2) + 1;
k = 0;
l = 0;
for (j = 0; j <= lc; j++) { /* loop count loop */
for (i = 0; i < 64; i++) { /* send the packets */
e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1024);
dma_sync_single_for_device(&pdev->dev,
tx_ring->buffer_info[k].dma,
tx_ring->buffer_info[k].length,
DMA_TO_DEVICE);
k++;
if (k == tx_ring->count)
k = 0;
}
ew32(TDT, k);
e1e_flush();
msleep(200);
time = jiffies; /* set the start time for the receive */
good_cnt = 0;
do { /* receive the sent packets */
dma_sync_single_for_cpu(&pdev->dev,
rx_ring->buffer_info[l].dma, 2048,
DMA_FROM_DEVICE);
ret_val = e1000_check_lbtest_frame(
rx_ring->buffer_info[l].skb, 1024);
if (!ret_val)
good_cnt++;
l++;
if (l == rx_ring->count)
l = 0;
/*
* time + 20 msecs (200 msecs on 2.4) is more than
* enough time to complete the receives, if it's
* exceeded, break and error off
*/
} while ((good_cnt < 64) && !time_after(jiffies, time + 20));
if (good_cnt != 64) {
ret_val = 13; /* ret_val is the same as mis-compare */
break;
}
if (jiffies >= (time + 20)) {
ret_val = 14; /* error code for time out error */
break;
}
} /* end loop count loop */
return ret_val;
}
static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
{
/*
* PHY loopback cannot be performed if SoL/IDER
* sessions are active
*/
if (e1000_check_reset_block(&adapter->hw)) {
e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
*data = 0;
goto out;
}
*data = e1000_setup_desc_rings(adapter);
if (*data)
goto out;
*data = e1000_setup_loopback_test(adapter);
if (*data)
goto err_loopback;
*data = e1000_run_loopback_test(adapter);
e1000_loopback_cleanup(adapter);
err_loopback:
e1000_free_desc_rings(adapter);
out:
return *data;
}
static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
{
struct e1000_hw *hw = &adapter->hw;
*data = 0;
if (hw->phy.media_type == e1000_media_type_internal_serdes) {
int i = 0;
hw->mac.serdes_has_link = false;
/*
* On some blade server designs, link establishment
* could take as long as 2-3 minutes
*/
do {
hw->mac.ops.check_for_link(hw);
if (hw->mac.serdes_has_link)
return *data;
msleep(20);
} while (i++ < 3750);
*data = 1;
} else {
hw->mac.ops.check_for_link(hw);
if (hw->mac.autoneg)
/*
* On some Phy/switch combinations, link establishment
* can take a few seconds more than expected.
*/
msleep(5000);
if (!(er32(STATUS) & E1000_STATUS_LU))
*data = 1;
}
return *data;
}
static int e1000e_get_sset_count(struct net_device *netdev, int sset)
{
switch (sset) {
case ETH_SS_TEST:
return E1000_TEST_LEN;
case ETH_SS_STATS:
return E1000_STATS_LEN;
default:
return -EOPNOTSUPP;
}
}
static void e1000_diag_test(struct net_device *netdev,
struct ethtool_test *eth_test, u64 *data)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
u16 autoneg_advertised;
u8 forced_speed_duplex;
u8 autoneg;
bool if_running = netif_running(netdev);
set_bit(__E1000_TESTING, &adapter->state);
if (!if_running) {
/* Get control of and reset hardware */
if (adapter->flags & FLAG_HAS_AMT)
e1000e_get_hw_control(adapter);
e1000e_power_up_phy(adapter);
adapter->hw.phy.autoneg_wait_to_complete = 1;
e1000e_reset(adapter);
adapter->hw.phy.autoneg_wait_to_complete = 0;
}
if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
/* Offline tests */
/* save speed, duplex, autoneg settings */
autoneg_advertised = adapter->hw.phy.autoneg_advertised;
forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
autoneg = adapter->hw.mac.autoneg;
e_info("offline testing starting\n");
if (if_running)
/* indicate we're in test mode */
dev_close(netdev);
if (e1000_reg_test(adapter, &data[0]))
eth_test->flags |= ETH_TEST_FL_FAILED;
e1000e_reset(adapter);
if (e1000_eeprom_test(adapter, &data[1]))
eth_test->flags |= ETH_TEST_FL_FAILED;
e1000e_reset(adapter);
if (e1000_intr_test(adapter, &data[2]))
eth_test->flags |= ETH_TEST_FL_FAILED;
e1000e_reset(adapter);
if (e1000_loopback_test(adapter, &data[3]))
eth_test->flags |= ETH_TEST_FL_FAILED;
/* force this routine to wait until autoneg complete/timeout */
adapter->hw.phy.autoneg_wait_to_complete = 1;
e1000e_reset(adapter);
adapter->hw.phy.autoneg_wait_to_complete = 0;
if (e1000_link_test(adapter, &data[4]))
eth_test->flags |= ETH_TEST_FL_FAILED;
/* restore speed, duplex, autoneg settings */
adapter->hw.phy.autoneg_advertised = autoneg_advertised;
adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
adapter->hw.mac.autoneg = autoneg;
e1000e_reset(adapter);
clear_bit(__E1000_TESTING, &adapter->state);
if (if_running)
dev_open(netdev);
} else {
/* Online tests */
e_info("online testing starting\n");
/* register, eeprom, intr and loopback tests not run online */
data[0] = 0;
data[1] = 0;
data[2] = 0;
data[3] = 0;
if (e1000_link_test(adapter, &data[4]))
eth_test->flags |= ETH_TEST_FL_FAILED;
clear_bit(__E1000_TESTING, &adapter->state);
}
if (!if_running) {
e1000e_reset(adapter);
if (adapter->flags & FLAG_HAS_AMT)
e1000e_release_hw_control(adapter);
}
msleep_interruptible(4 * 1000);
}
static void e1000_get_wol(struct net_device *netdev,
struct ethtool_wolinfo *wol)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
wol->supported = 0;
wol->wolopts = 0;
if (!(adapter->flags & FLAG_HAS_WOL) ||
!device_can_wakeup(&adapter->pdev->dev))
return;
wol->supported = WAKE_UCAST | WAKE_MCAST |
WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
/* apply any specific unsupported masks here */
if (adapter->flags & FLAG_NO_WAKE_UCAST) {
wol->supported &= ~WAKE_UCAST;
if (adapter->wol & E1000_WUFC_EX)
e_err("Interface does not support directed (unicast) "
"frame wake-up packets\n");
}
if (adapter->wol & E1000_WUFC_EX)
wol->wolopts |= WAKE_UCAST;
if (adapter->wol & E1000_WUFC_MC)
wol->wolopts |= WAKE_MCAST;
if (adapter->wol & E1000_WUFC_BC)
wol->wolopts |= WAKE_BCAST;
if (adapter->wol & E1000_WUFC_MAG)
wol->wolopts |= WAKE_MAGIC;
if (adapter->wol & E1000_WUFC_LNKC)
wol->wolopts |= WAKE_PHY;
}
static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
if (!(adapter->flags & FLAG_HAS_WOL) ||
!device_can_wakeup(&adapter->pdev->dev) ||
(wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
WAKE_MAGIC | WAKE_PHY)))
return -EOPNOTSUPP;
/* these settings will always override what we currently have */
adapter->wol = 0;
if (wol->wolopts & WAKE_UCAST)
adapter->wol |= E1000_WUFC_EX;
if (wol->wolopts & WAKE_MCAST)
adapter->wol |= E1000_WUFC_MC;
if (wol->wolopts & WAKE_BCAST)
adapter->wol |= E1000_WUFC_BC;
if (wol->wolopts & WAKE_MAGIC)
adapter->wol |= E1000_WUFC_MAG;
if (wol->wolopts & WAKE_PHY)
adapter->wol |= E1000_WUFC_LNKC;
device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
return 0;
}
static int e1000_set_phys_id(struct net_device *netdev,
enum ethtool_phys_id_state state)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
switch (state) {
case ETHTOOL_ID_ACTIVE:
if (!hw->mac.ops.blink_led)
return 2; /* cycle on/off twice per second */
hw->mac.ops.blink_led(hw);
break;
case ETHTOOL_ID_INACTIVE:
if (hw->phy.type == e1000_phy_ife)
e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
hw->mac.ops.led_off(hw);
hw->mac.ops.cleanup_led(hw);
break;
case ETHTOOL_ID_ON:
adapter->hw.mac.ops.led_on(&adapter->hw);
break;
case ETHTOOL_ID_OFF:
adapter->hw.mac.ops.led_off(&adapter->hw);
break;
}
return 0;
}
static int e1000_get_coalesce(struct net_device *netdev,
struct ethtool_coalesce *ec)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
if (adapter->itr_setting <= 4)
ec->rx_coalesce_usecs = adapter->itr_setting;
else
ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
return 0;
}
static int e1000_set_coalesce(struct net_device *netdev,
struct ethtool_coalesce *ec)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
((ec->rx_coalesce_usecs > 4) &&
(ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
(ec->rx_coalesce_usecs == 2))
return -EINVAL;
if (ec->rx_coalesce_usecs == 4) {
adapter->itr = adapter->itr_setting = 4;
} else if (ec->rx_coalesce_usecs <= 3) {
adapter->itr = 20000;
adapter->itr_setting = ec->rx_coalesce_usecs;
} else {
adapter->itr = (1000000 / ec->rx_coalesce_usecs);
adapter->itr_setting = adapter->itr & ~3;
}
if (adapter->itr_setting != 0)
ew32(ITR, 1000000000 / (adapter->itr * 256));
else
ew32(ITR, 0);
return 0;
}
static int e1000_nway_reset(struct net_device *netdev)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
if (!netif_running(netdev))
return -EAGAIN;
if (!adapter->hw.mac.autoneg)
return -EINVAL;
e1000e_reinit_locked(adapter);
return 0;
}
static void e1000_get_ethtool_stats(struct net_device *netdev,
struct ethtool_stats *stats,
u64 *data)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct rtnl_link_stats64 net_stats;
int i;
char *p = NULL;
e1000e_get_stats64(netdev, &net_stats);
for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
switch (e1000_gstrings_stats[i].type) {
case NETDEV_STATS:
p = (char *) &net_stats +
e1000_gstrings_stats[i].stat_offset;
break;
case E1000_STATS:
p = (char *) adapter +
e1000_gstrings_stats[i].stat_offset;
break;
default:
data[i] = 0;
continue;
}
data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
}
}
static void e1000_get_strings(struct net_device *netdev, u32 stringset,
u8 *data)
{
u8 *p = data;
int i;
switch (stringset) {
case ETH_SS_TEST:
memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
break;
case ETH_SS_STATS:
for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
memcpy(p, e1000_gstrings_stats[i].stat_string,
ETH_GSTRING_LEN);
p += ETH_GSTRING_LEN;
}
break;
}
}
static const struct ethtool_ops e1000_ethtool_ops = {
.get_settings = e1000_get_settings,
.set_settings = e1000_set_settings,
.get_drvinfo = e1000_get_drvinfo,
.get_regs_len = e1000_get_regs_len,
.get_regs = e1000_get_regs,
.get_wol = e1000_get_wol,
.set_wol = e1000_set_wol,
.get_msglevel = e1000_get_msglevel,
.set_msglevel = e1000_set_msglevel,
.nway_reset = e1000_nway_reset,
.get_link = ethtool_op_get_link,
.get_eeprom_len = e1000_get_eeprom_len,
.get_eeprom = e1000_get_eeprom,
.set_eeprom = e1000_set_eeprom,
.get_ringparam = e1000_get_ringparam,
.set_ringparam = e1000_set_ringparam,
.get_pauseparam = e1000_get_pauseparam,
.set_pauseparam = e1000_set_pauseparam,
.self_test = e1000_diag_test,
.get_strings = e1000_get_strings,
.set_phys_id = e1000_set_phys_id,
.get_ethtool_stats = e1000_get_ethtool_stats,
.get_sset_count = e1000e_get_sset_count,
.get_coalesce = e1000_get_coalesce,
.set_coalesce = e1000_set_coalesce,
};
void e1000e_set_ethtool_ops(struct net_device *netdev)
{
SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
}
-------------- n?chster Teil --------------
/*******************************************************************************
Intel PRO/1000 Linux driver
Copyright(c) 1999 - 2011 Intel Corporation.
This program is free software; you can redistribute it and/or modify it
under the terms and conditions of the GNU General Public License,
version 2, as published by the Free Software Foundation.
This program is distributed in the hope it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
The full GNU General Public License is included in this distribution in
the file called "COPYING".
Contact Information:
Linux NICS <linux.nics at intel.com>
e1000-devel Mailing List <e1000-devel at lists.sourceforge.net>
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*******************************************************************************/
/*
* 82562G 10/100 Network Connection
* 82562G-2 10/100 Network Connection
* 82562GT 10/100 Network Connection
* 82562GT-2 10/100 Network Connection
* 82562V 10/100 Network Connection
* 82562V-2 10/100 Network Connection
* 82566DC-2 Gigabit Network Connection
* 82566DC Gigabit Network Connection
* 82566DM-2 Gigabit Network Connection
* 82566DM Gigabit Network Connection
* 82566MC Gigabit Network Connection
* 82566MM Gigabit Network Connection
* 82567LM Gigabit Network Connection
* 82567LF Gigabit Network Connection
* 82567V Gigabit Network Connection
* 82567LM-2 Gigabit Network Connection
* 82567LF-2 Gigabit Network Connection
* 82567V-2 Gigabit Network Connection
* 82567LF-3 Gigabit Network Connection
* 82567LM-3 Gigabit Network Connection
* 82567LM-4 Gigabit Network Connection
* 82577LM Gigabit Network Connection
* 82577LC Gigabit Network Connection
* 82578DM Gigabit Network Connection
* 82578DC Gigabit Network Connection
* 82579LM Gigabit Network Connection
* 82579V Gigabit Network Connection
*/
#include "e1000.h"
#define ICH_FLASH_GFPREG 0x0000
#define ICH_FLASH_HSFSTS 0x0004
#define ICH_FLASH_HSFCTL 0x0006
#define ICH_FLASH_FADDR 0x0008
#define ICH_FLASH_FDATA0 0x0010
#define ICH_FLASH_PR0 0x0074
#define ICH_FLASH_READ_COMMAND_TIMEOUT 500
#define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
#define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
#define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
#define ICH_FLASH_CYCLE_REPEAT_COUNT 10
#define ICH_CYCLE_READ 0
#define ICH_CYCLE_WRITE 2
#define ICH_CYCLE_ERASE 3
#define FLASH_GFPREG_BASE_MASK 0x1FFF
#define FLASH_SECTOR_ADDR_SHIFT 12
#define ICH_FLASH_SEG_SIZE_256 256
#define ICH_FLASH_SEG_SIZE_4K 4096
#define ICH_FLASH_SEG_SIZE_8K 8192
#define ICH_FLASH_SEG_SIZE_64K 65536
#define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
/* FW established a valid mode */
#define E1000_ICH_FWSM_FW_VALID 0x00008000
#define E1000_ICH_MNG_IAMT_MODE 0x2
#define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
(ID_LED_DEF1_OFF2 << 8) | \
(ID_LED_DEF1_ON2 << 4) | \
(ID_LED_DEF1_DEF2))
#define E1000_ICH_NVM_SIG_WORD 0x13
#define E1000_ICH_NVM_SIG_MASK 0xC000
#define E1000_ICH_NVM_VALID_SIG_MASK 0xC0
#define E1000_ICH_NVM_SIG_VALUE 0x80
#define E1000_ICH8_LAN_INIT_TIMEOUT 1500
#define E1000_FEXTNVM_SW_CONFIG 1
#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
#define E1000_FEXTNVM4_BEACON_DURATION_MASK 0x7
#define E1000_FEXTNVM4_BEACON_DURATION_8USEC 0x7
#define E1000_FEXTNVM4_BEACON_DURATION_16USEC 0x3
#define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
#define E1000_ICH_RAR_ENTRIES 7
#define PHY_PAGE_SHIFT 5
#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
((reg) & MAX_PHY_REG_ADDRESS))
#define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
#define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
#define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
#define HV_LED_CONFIG PHY_REG(768, 30) /* LED Configuration */
#define SW_FLAG_TIMEOUT 1000 /* SW Semaphore flag timeout in milliseconds */
/* SMBus Address Phy Register */
#define HV_SMB_ADDR PHY_REG(768, 26)
#define HV_SMB_ADDR_MASK 0x007F
#define HV_SMB_ADDR_PEC_EN 0x0200
#define HV_SMB_ADDR_VALID 0x0080
/* PHY Power Management Control */
#define HV_PM_CTRL PHY_REG(770, 17)
/* PHY Low Power Idle Control */
#define I82579_LPI_CTRL PHY_REG(772, 20)
#define I82579_LPI_CTRL_ENABLE_MASK 0x6000
#define I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT 0x80
/* EMI Registers */
#define I82579_EMI_ADDR 0x10
#define I82579_EMI_DATA 0x11
#define I82579_LPI_UPDATE_TIMER 0x4805 /* in 40ns units + 40 ns base value */
/* Strapping Option Register - RO */
#define E1000_STRAP 0x0000C
#define E1000_STRAP_SMBUS_ADDRESS_MASK 0x00FE0000
#define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
/* OEM Bits Phy Register */
#define HV_OEM_BITS PHY_REG(768, 25)
#define HV_OEM_BITS_LPLU 0x0004 /* Low Power Link Up */
#define HV_OEM_BITS_GBE_DIS 0x0040 /* Gigabit Disable */
#define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
#define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
#define E1000_NVM_K1_ENABLE 0x1 /* NVM Enable K1 bit */
/* KMRN Mode Control */
#define HV_KMRN_MODE_CTRL PHY_REG(769, 16)
#define HV_KMRN_MDIO_SLOW 0x0400
/* KMRN FIFO Control and Status */
#define HV_KMRN_FIFO_CTRLSTA PHY_REG(770, 16)
#define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK 0x7000
#define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT 12
/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
/* Offset 04h HSFSTS */
union ich8_hws_flash_status {
struct ich8_hsfsts {
u16 flcdone :1; /* bit 0 Flash Cycle Done */
u16 flcerr :1; /* bit 1 Flash Cycle Error */
u16 dael :1; /* bit 2 Direct Access error Log */
u16 berasesz :2; /* bit 4:3 Sector Erase Size */
u16 flcinprog :1; /* bit 5 flash cycle in Progress */
u16 reserved1 :2; /* bit 13:6 Reserved */
u16 reserved2 :6; /* bit 13:6 Reserved */
u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
u16 flockdn :1; /* bit 15 Flash Config Lock-Down */
} hsf_status;
u16 regval;
};
/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
/* Offset 06h FLCTL */
union ich8_hws_flash_ctrl {
struct ich8_hsflctl {
u16 flcgo :1; /* 0 Flash Cycle Go */
u16 flcycle :2; /* 2:1 Flash Cycle */
u16 reserved :5; /* 7:3 Reserved */
u16 fldbcount :2; /* 9:8 Flash Data Byte Count */
u16 flockdn :6; /* 15:10 Reserved */
} hsf_ctrl;
u16 regval;
};
/* ICH Flash Region Access Permissions */
union ich8_hws_flash_regacc {
struct ich8_flracc {
u32 grra :8; /* 0:7 GbE region Read Access */
u32 grwa :8; /* 8:15 GbE region Write Access */
u32 gmrag :8; /* 23:16 GbE Master Read Access Grant */
u32 gmwag :8; /* 31:24 GbE Master Write Access Grant */
} hsf_flregacc;
u16 regval;
};
/* ICH Flash Protected Region */
union ich8_flash_protected_range {
struct ich8_pr {
u32 base:13; /* 0:12 Protected Range Base */
u32 reserved1:2; /* 13:14 Reserved */
u32 rpe:1; /* 15 Read Protection Enable */
u32 limit:13; /* 16:28 Protected Range Limit */
u32 reserved2:2; /* 29:30 Reserved */
u32 wpe:1; /* 31 Write Protection Enable */
} range;
u32 regval;
};
static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
u32 offset, u8 byte);
static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
u8 *data);
static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
u16 *data);
static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
u8 size, u16 *data);
static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
{
return readw(hw->flash_address + reg);
}
static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
{
return readl(hw->flash_address + reg);
}
static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
{
writew(val, hw->flash_address + reg);
}
static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
{
writel(val, hw->flash_address + reg);
}
#define er16flash(reg) __er16flash(hw, (reg))
#define er32flash(reg) __er32flash(hw, (reg))
#define ew16flash(reg,val) __ew16flash(hw, (reg), (val))
#define ew32flash(reg,val) __ew32flash(hw, (reg), (val))
static void e1000_toggle_lanphypc_value_ich8lan(struct e1000_hw *hw)
{
u32 ctrl;
ctrl = er32(CTRL);
ctrl |= E1000_CTRL_LANPHYPC_OVERRIDE;
ctrl &= ~E1000_CTRL_LANPHYPC_VALUE;
ew32(CTRL, ctrl);
e1e_flush();
udelay(10);
ctrl &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
ew32(CTRL, ctrl);
}
/**
* e1000_init_phy_params_pchlan - Initialize PHY function pointers
* @hw: pointer to the HW structure
*
* Initialize family-specific PHY parameters and function pointers.
**/
static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
u32 fwsm;
s32 ret_val = 0;
phy->addr = 1;
phy->reset_delay_us = 100;
phy->ops.set_page = e1000_set_page_igp;
phy->ops.read_reg = e1000_read_phy_reg_hv;
phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
phy->ops.write_reg = e1000_write_phy_reg_hv;
phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
phy->ops.power_up = e1000_power_up_phy_copper;
phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
/*
* The MAC-PHY interconnect may still be in SMBus mode
* after Sx->S0. If the manageability engine (ME) is
* disabled, then toggle the LANPHYPC Value bit to force
* the interconnect to PCIe mode.
*/
fwsm = er32(FWSM);
if (!(fwsm & E1000_ICH_FWSM_FW_VALID) && !e1000_check_reset_block(hw)) {
e1000_toggle_lanphypc_value_ich8lan(hw);
msleep(50);
/*
* Gate automatic PHY configuration by hardware on
* non-managed 82579
*/
if (hw->mac.type == e1000_pch2lan)
e1000_gate_hw_phy_config_ich8lan(hw, true);
}
/*
* Reset the PHY before any access to it. Doing so, ensures that
* the PHY is in a known good state before we read/write PHY registers.
* The generic reset is sufficient here, because we haven't determined
* the PHY type yet.
*/
ret_val = e1000e_phy_hw_reset_generic(hw);
if (ret_val)
goto out;
/* Ungate automatic PHY configuration on non-managed 82579 */
if ((hw->mac.type == e1000_pch2lan) &&
!(fwsm & E1000_ICH_FWSM_FW_VALID)) {
usleep_range(10000, 20000);
e1000_gate_hw_phy_config_ich8lan(hw, false);
}
phy->id = e1000_phy_unknown;
switch (hw->mac.type) {
default:
ret_val = e1000e_get_phy_id(hw);
if (ret_val)
goto out;
if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
break;
/* fall-through */
case e1000_pch2lan:
/*
* In case the PHY needs to be in mdio slow mode,
* set slow mode and try to get the PHY id again.
*/
ret_val = e1000_set_mdio_slow_mode_hv(hw);
if (ret_val)
goto out;
ret_val = e1000e_get_phy_id(hw);
if (ret_val)
goto out;
break;
}
phy->type = e1000e_get_phy_type_from_id(phy->id);
switch (phy->type) {
case e1000_phy_82577:
case e1000_phy_82579:
phy->ops.check_polarity = e1000_check_polarity_82577;
phy->ops.force_speed_duplex =
e1000_phy_force_speed_duplex_82577;
phy->ops.get_cable_length = e1000_get_cable_length_82577;
phy->ops.get_info = e1000_get_phy_info_82577;
phy->ops.commit = e1000e_phy_sw_reset;
break;
case e1000_phy_82578:
phy->ops.check_polarity = e1000_check_polarity_m88;
phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
phy->ops.get_cable_length = e1000e_get_cable_length_m88;
phy->ops.get_info = e1000e_get_phy_info_m88;
break;
default:
ret_val = -E1000_ERR_PHY;
break;
}
out:
return ret_val;
}
/**
* e1000_init_phy_params_ich8lan - Initialize PHY function pointers
* @hw: pointer to the HW structure
*
* Initialize family-specific PHY parameters and function pointers.
**/
static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 i = 0;
phy->addr = 1;
phy->reset_delay_us = 100;
phy->ops.power_up = e1000_power_up_phy_copper;
phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
/*
* We may need to do this twice - once for IGP and if that fails,
* we'll set BM func pointers and try again
*/
ret_val = e1000e_determine_phy_address(hw);
if (ret_val) {
phy->ops.write_reg = e1000e_write_phy_reg_bm;
phy->ops.read_reg = e1000e_read_phy_reg_bm;
ret_val = e1000e_determine_phy_address(hw);
if (ret_val) {
e_dbg("Cannot determine PHY addr. Erroring out\n");
return ret_val;
}
}
phy->id = 0;
while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
(i++ < 100)) {
usleep_range(1000, 2000);
ret_val = e1000e_get_phy_id(hw);
if (ret_val)
return ret_val;
}
/* Verify phy id */
switch (phy->id) {
case IGP03E1000_E_PHY_ID:
phy->type = e1000_phy_igp_3;
phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
phy->ops.get_info = e1000e_get_phy_info_igp;
phy->ops.check_polarity = e1000_check_polarity_igp;
phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
break;
case IFE_E_PHY_ID:
case IFE_PLUS_E_PHY_ID:
case IFE_C_E_PHY_ID:
phy->type = e1000_phy_ife;
phy->autoneg_mask = E1000_ALL_NOT_GIG;
phy->ops.get_info = e1000_get_phy_info_ife;
phy->ops.check_polarity = e1000_check_polarity_ife;
phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
break;
case BME1000_E_PHY_ID:
phy->type = e1000_phy_bm;
phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
phy->ops.read_reg = e1000e_read_phy_reg_bm;
phy->ops.write_reg = e1000e_write_phy_reg_bm;
phy->ops.commit = e1000e_phy_sw_reset;
phy->ops.get_info = e1000e_get_phy_info_m88;
phy->ops.check_polarity = e1000_check_polarity_m88;
phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
break;
default:
return -E1000_ERR_PHY;
break;
}
return 0;
}
/**
* e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
* @hw: pointer to the HW structure
*
* Initialize family-specific NVM parameters and function
* pointers.
**/
static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
{
struct e1000_nvm_info *nvm = &hw->nvm;
struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
u32 gfpreg, sector_base_addr, sector_end_addr;
u16 i;
/* Can't read flash registers if the register set isn't mapped. */
if (!hw->flash_address) {
e_dbg("ERROR: Flash registers not mapped\n");
return -E1000_ERR_CONFIG;
}
nvm->type = e1000_nvm_flash_sw;
gfpreg = er32flash(ICH_FLASH_GFPREG);
/*
* sector_X_addr is a "sector"-aligned address (4096 bytes)
* Add 1 to sector_end_addr since this sector is included in
* the overall size.
*/
sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
/* flash_base_addr is byte-aligned */
nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
/*
* find total size of the NVM, then cut in half since the total
* size represents two separate NVM banks.
*/
nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
<< FLASH_SECTOR_ADDR_SHIFT;
nvm->flash_bank_size /= 2;
/* Adjust to word count */
nvm->flash_bank_size /= sizeof(u16);
nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
/* Clear shadow ram */
for (i = 0; i < nvm->word_size; i++) {
dev_spec->shadow_ram[i].modified = false;
dev_spec->shadow_ram[i].value = 0xFFFF;
}
return 0;
}
/**
* e1000_init_mac_params_ich8lan - Initialize MAC function pointers
* @hw: pointer to the HW structure
*
* Initialize family-specific MAC parameters and function
* pointers.
**/
static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
struct e1000_mac_info *mac = &hw->mac;
/* Set media type function pointer */
hw->phy.media_type = e1000_media_type_copper;
/* Set mta register count */
mac->mta_reg_count = 32;
/* Set rar entry count */
mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
if (mac->type == e1000_ich8lan)
mac->rar_entry_count--;
/* FWSM register */
mac->has_fwsm = true;
/* ARC subsystem not supported */
mac->arc_subsystem_valid = false;
/* Adaptive IFS supported */
mac->adaptive_ifs = true;
/* LED operations */
switch (mac->type) {
case e1000_ich8lan:
case e1000_ich9lan:
case e1000_ich10lan:
/* check management mode */
mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
/* ID LED init */
mac->ops.id_led_init = e1000e_id_led_init;
/* blink LED */
mac->ops.blink_led = e1000e_blink_led_generic;
/* setup LED */
mac->ops.setup_led = e1000e_setup_led_generic;
/* cleanup LED */
mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
/* turn on/off LED */
mac->ops.led_on = e1000_led_on_ich8lan;
mac->ops.led_off = e1000_led_off_ich8lan;
break;
case e1000_pchlan:
case e1000_pch2lan:
/* check management mode */
mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
/* ID LED init */
mac->ops.id_led_init = e1000_id_led_init_pchlan;
/* setup LED */
mac->ops.setup_led = e1000_setup_led_pchlan;
/* cleanup LED */
mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
/* turn on/off LED */
mac->ops.led_on = e1000_led_on_pchlan;
mac->ops.led_off = e1000_led_off_pchlan;
break;
default:
break;
}
/* Enable PCS Lock-loss workaround for ICH8 */
if (mac->type == e1000_ich8lan)
e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
/* Gate automatic PHY configuration by hardware on managed 82579 */
if ((mac->type == e1000_pch2lan) &&
(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
e1000_gate_hw_phy_config_ich8lan(hw, true);
return 0;
}
/**
* e1000_set_eee_pchlan - Enable/disable EEE support
* @hw: pointer to the HW structure
*
* Enable/disable EEE based on setting in dev_spec structure. The bits in
* the LPI Control register will remain set only if/when link is up.
**/
static s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
{
s32 ret_val = 0;
u16 phy_reg;
if (hw->phy.type != e1000_phy_82579)
goto out;
ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
if (ret_val)
goto out;
if (hw->dev_spec.ich8lan.eee_disable)
phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK;
else
phy_reg |= I82579_LPI_CTRL_ENABLE_MASK;
ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
out:
return ret_val;
}
/**
* e1000_check_for_copper_link_ich8lan - Check for link (Copper)
* @hw: pointer to the HW structure
*
* Checks to see of the link status of the hardware has changed. If a
* change in link status has been detected, then we read the PHY registers
* to get the current speed/duplex if link exists.
**/
static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
s32 ret_val;
bool link;
u16 phy_reg;
/*
* We only want to go out to the PHY registers to see if Auto-Neg
* has completed and/or if our link status has changed. The
* get_link_status flag is set upon receiving a Link Status
* Change or Rx Sequence Error interrupt.
*/
if (!mac->get_link_status) {
ret_val = 0;
goto out;
}
/*
* First we want to see if the MII Status Register reports
* link. If so, then we want to get the current speed/duplex
* of the PHY.
*/
ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
if (ret_val)
goto out;
if (hw->mac.type == e1000_pchlan) {
ret_val = e1000_k1_gig_workaround_hv(hw, link);
if (ret_val)
goto out;
}
if (!link)
goto out; /* No link detected */
mac->get_link_status = false;
switch (hw->mac.type) {
case e1000_pch2lan:
ret_val = e1000_k1_workaround_lv(hw);
if (ret_val)
goto out;
/* fall-thru */
case e1000_pchlan:
if (hw->phy.type == e1000_phy_82578) {
ret_val = e1000_link_stall_workaround_hv(hw);
if (ret_val)
goto out;
}
/*
* Workaround for PCHx parts in half-duplex:
* Set the number of preambles removed from the packet
* when it is passed from the PHY to the MAC to prevent
* the MAC from misinterpreting the packet type.
*/
e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
break;
default:
break;
}
/*
* Check if there was DownShift, must be checked
* immediately after link-up
*/
e1000e_check_downshift(hw);
/* Enable/Disable EEE after link up */
ret_val = e1000_set_eee_pchlan(hw);
if (ret_val)
goto out;
/*
* If we are forcing speed/duplex, then we simply return since
* we have already determined whether we have link or not.
*/
if (!mac->autoneg) {
ret_val = -E1000_ERR_CONFIG;
goto out;
}
/*
* Auto-Neg is enabled. Auto Speed Detection takes care
* of MAC speed/duplex configuration. So we only need to
* configure Collision Distance in the MAC.
*/
e1000e_config_collision_dist(hw);
/*
* Configure Flow Control now that Auto-Neg has completed.
* First, we need to restore the desired flow control
* settings because we may have had to re-autoneg with a
* different link partner.
*/
ret_val = e1000e_config_fc_after_link_up(hw);
if (ret_val)
e_dbg("Error configuring flow control\n");
out:
return ret_val;
}
static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
s32 rc;
rc = e1000_init_mac_params_ich8lan(adapter);
if (rc)
return rc;
rc = e1000_init_nvm_params_ich8lan(hw);
if (rc)
return rc;
switch (hw->mac.type) {
case e1000_ich8lan:
case e1000_ich9lan:
case e1000_ich10lan:
rc = e1000_init_phy_params_ich8lan(hw);
break;
case e1000_pchlan:
case e1000_pch2lan:
rc = e1000_init_phy_params_pchlan(hw);
break;
default:
break;
}
if (rc)
return rc;
/*
* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
* on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
*/
if ((adapter->hw.phy.type == e1000_phy_ife) ||
((adapter->hw.mac.type >= e1000_pch2lan) &&
(!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
hw->mac.ops.blink_led = NULL;
}
if ((adapter->hw.mac.type == e1000_ich8lan) &&
(adapter->hw.phy.type != e1000_phy_ife))
adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
/* Enable workaround for 82579 w/ ME enabled */
if ((adapter->hw.mac.type == e1000_pch2lan) &&
(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
/* Disable EEE by default until IEEE802.3az spec is finalized */
if (adapter->flags2 & FLAG2_HAS_EEE)
adapter->hw.dev_spec.ich8lan.eee_disable = true;
return 0;
}
static DEFINE_MUTEX(nvm_mutex);
/**
* e1000_acquire_nvm_ich8lan - Acquire NVM mutex
* @hw: pointer to the HW structure
*
* Acquires the mutex for performing NVM operations.
**/
static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
{
mutex_lock(&nvm_mutex);
return 0;
}
/**
* e1000_release_nvm_ich8lan - Release NVM mutex
* @hw: pointer to the HW structure
*
* Releases the mutex used while performing NVM operations.
**/
static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
{
mutex_unlock(&nvm_mutex);
}
/**
* e1000_acquire_swflag_ich8lan - Acquire software control flag
* @hw: pointer to the HW structure
*
* Acquires the software control flag for performing PHY and select
* MAC CSR accesses.
**/
static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
{
u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
s32 ret_val = 0;
if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
&hw->adapter->state)) {
e_dbg("contention for Phy access\n");
return -E1000_ERR_PHY;
}
while (timeout) {
extcnf_ctrl = er32(EXTCNF_CTRL);
if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
break;
mdelay(1);
timeout--;
}
if (!timeout) {
e_dbg("SW has already locked the resource.\n");
ret_val = -E1000_ERR_CONFIG;
goto out;
}
timeout = SW_FLAG_TIMEOUT;
extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
ew32(EXTCNF_CTRL, extcnf_ctrl);
while (timeout) {
extcnf_ctrl = er32(EXTCNF_CTRL);
if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
break;
mdelay(1);
timeout--;
}
if (!timeout) {
e_dbg("Failed to acquire the semaphore, FW or HW has it: "
"FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
er32(FWSM), extcnf_ctrl);
extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
ew32(EXTCNF_CTRL, extcnf_ctrl);
ret_val = -E1000_ERR_CONFIG;
goto out;
}
out:
if (ret_val)
clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
return ret_val;
}
/**
* e1000_release_swflag_ich8lan - Release software control flag
* @hw: pointer to the HW structure
*
* Releases the software control flag for performing PHY and select
* MAC CSR accesses.
**/
static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
{
u32 extcnf_ctrl;
extcnf_ctrl = er32(EXTCNF_CTRL);
if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
ew32(EXTCNF_CTRL, extcnf_ctrl);
} else {
e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
}
clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
}
/**
* e1000_check_mng_mode_ich8lan - Checks management mode
* @hw: pointer to the HW structure
*
* This checks if the adapter has any manageability enabled.
* This is a function pointer entry point only called by read/write
* routines for the PHY and NVM parts.
**/
static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
{
u32 fwsm;
fwsm = er32(FWSM);
return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
((fwsm & E1000_FWSM_MODE_MASK) ==
(E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
}
/**
* e1000_check_mng_mode_pchlan - Checks management mode
* @hw: pointer to the HW structure
*
* This checks if the adapter has iAMT enabled.
* This is a function pointer entry point only called by read/write
* routines for the PHY and NVM parts.
**/
static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
{
u32 fwsm;
fwsm = er32(FWSM);
return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
(fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
}
/**
* e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
* @hw: pointer to the HW structure
*
* Checks if firmware is blocking the reset of the PHY.
* This is a function pointer entry point only called by
* reset routines.
**/
static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
{
u32 fwsm;
fwsm = er32(FWSM);
return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
}
/**
* e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
* @hw: pointer to the HW structure
*
* Assumes semaphore already acquired.
*
**/
static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
{
u16 phy_data;
u32 strap = er32(STRAP);
s32 ret_val = 0;
strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
if (ret_val)
goto out;
phy_data &= ~HV_SMB_ADDR_MASK;
phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
ret_val = e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
out:
return ret_val;
}
/**
* e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
* @hw: pointer to the HW structure
*
* SW should configure the LCD from the NVM extended configuration region
* as a workaround for certain parts.
**/
static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
s32 ret_val = 0;
u16 word_addr, reg_data, reg_addr, phy_page = 0;
/*
* Initialize the PHY from the NVM on ICH platforms. This
* is needed due to an issue where the NVM configuration is
* not properly autoloaded after power transitions.
* Therefore, after each PHY reset, we will load the
* configuration data out of the NVM manually.
*/
switch (hw->mac.type) {
case e1000_ich8lan:
if (phy->type != e1000_phy_igp_3)
return ret_val;
if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
(hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
break;
}
/* Fall-thru */
case e1000_pchlan:
case e1000_pch2lan:
sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
break;
default:
return ret_val;
}
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return ret_val;
data = er32(FEXTNVM);
if (!(data & sw_cfg_mask))
goto out;
/*
* Make sure HW does not configure LCD from PHY
* extended configuration before SW configuration
*/
data = er32(EXTCNF_CTRL);
if (!(hw->mac.type == e1000_pch2lan)) {
if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
goto out;
}
cnf_size = er32(EXTCNF_SIZE);
cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
if (!cnf_size)
goto out;
cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
if ((!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) &&
(hw->mac.type == e1000_pchlan)) ||
(hw->mac.type == e1000_pch2lan)) {
/*
* HW configures the SMBus address and LEDs when the
* OEM and LCD Write Enable bits are set in the NVM.
* When both NVM bits are cleared, SW will configure
* them instead.
*/
ret_val = e1000_write_smbus_addr(hw);
if (ret_val)
goto out;
data = er32(LEDCTL);
ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
(u16)data);
if (ret_val)
goto out;
}
/* Configure LCD from extended configuration region. */
/* cnf_base_addr is in DWORD */
word_addr = (u16)(cnf_base_addr << 1);
for (i = 0; i < cnf_size; i++) {
ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
®_data);
if (ret_val)
goto out;
ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
1, ®_addr);
if (ret_val)
goto out;
/* Save off the PHY page for future writes. */
if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
phy_page = reg_data;
continue;
}
reg_addr &= PHY_REG_MASK;
reg_addr |= phy_page;
ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
reg_data);
if (ret_val)
goto out;
}
out:
hw->phy.ops.release(hw);
return ret_val;
}
/**
* e1000_k1_gig_workaround_hv - K1 Si workaround
* @hw: pointer to the HW structure
* @link: link up bool flag
*
* If K1 is enabled for 1Gbps, the MAC might stall when transitioning
* from a lower speed. This workaround disables K1 whenever link is at 1Gig
* If link is down, the function will restore the default K1 setting located
* in the NVM.
**/
static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
{
s32 ret_val = 0;
u16 status_reg = 0;
bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
if (hw->mac.type != e1000_pchlan)
goto out;
/* Wrap the whole flow with the sw flag */
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
goto out;
/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
if (link) {
if (hw->phy.type == e1000_phy_82578) {
ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
&status_reg);
if (ret_val)
goto release;
status_reg &= BM_CS_STATUS_LINK_UP |
BM_CS_STATUS_RESOLVED |
BM_CS_STATUS_SPEED_MASK;
if (status_reg == (BM_CS_STATUS_LINK_UP |
BM_CS_STATUS_RESOLVED |
BM_CS_STATUS_SPEED_1000))
k1_enable = false;
}
if (hw->phy.type == e1000_phy_82577) {
ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
&status_reg);
if (ret_val)
goto release;
status_reg &= HV_M_STATUS_LINK_UP |
HV_M_STATUS_AUTONEG_COMPLETE |
HV_M_STATUS_SPEED_MASK;
if (status_reg == (HV_M_STATUS_LINK_UP |
HV_M_STATUS_AUTONEG_COMPLETE |
HV_M_STATUS_SPEED_1000))
k1_enable = false;
}
/* Link stall fix for link up */
ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
0x0100);
if (ret_val)
goto release;
} else {
/* Link stall fix for link down */
ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
0x4100);
if (ret_val)
goto release;
}
ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
release:
hw->phy.ops.release(hw);
out:
return ret_val;
}
/**
* e1000_configure_k1_ich8lan - Configure K1 power state
* @hw: pointer to the HW structure
* @enable: K1 state to configure
*
* Configure the K1 power state based on the provided parameter.
* Assumes semaphore already acquired.
*
* Success returns 0, Failure returns -E1000_ERR_PHY (-2)
**/
s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
{
s32 ret_val = 0;
u32 ctrl_reg = 0;
u32 ctrl_ext = 0;
u32 reg = 0;
u16 kmrn_reg = 0;
ret_val = e1000e_read_kmrn_reg_locked(hw,
E1000_KMRNCTRLSTA_K1_CONFIG,
&kmrn_reg);
if (ret_val)
goto out;
if (k1_enable)
kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
else
kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
ret_val = e1000e_write_kmrn_reg_locked(hw,
E1000_KMRNCTRLSTA_K1_CONFIG,
kmrn_reg);
if (ret_val)
goto out;
udelay(20);
ctrl_ext = er32(CTRL_EXT);
ctrl_reg = er32(CTRL);
reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
reg |= E1000_CTRL_FRCSPD;
ew32(CTRL, reg);
ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
e1e_flush();
udelay(20);
ew32(CTRL, ctrl_reg);
ew32(CTRL_EXT, ctrl_ext);
e1e_flush();
udelay(20);
out:
return ret_val;
}
/**
* e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
* @hw: pointer to the HW structure
* @d0_state: boolean if entering d0 or d3 device state
*
* SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
* collectively called OEM bits. The OEM Write Enable bit and SW Config bit
* in NVM determines whether HW should configure LPLU and Gbe Disable.
**/
static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
{
s32 ret_val = 0;
u32 mac_reg;
u16 oem_reg;
if ((hw->mac.type != e1000_pch2lan) && (hw->mac.type != e1000_pchlan))
return ret_val;
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return ret_val;
if (!(hw->mac.type == e1000_pch2lan)) {
mac_reg = er32(EXTCNF_CTRL);
if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
goto out;
}
mac_reg = er32(FEXTNVM);
if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
goto out;
mac_reg = er32(PHY_CTRL);
ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
if (ret_val)
goto out;
oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
if (d0_state) {
if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
oem_reg |= HV_OEM_BITS_GBE_DIS;
if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
oem_reg |= HV_OEM_BITS_LPLU;
/* Set Restart auto-neg to activate the bits */
if (!e1000_check_reset_block(hw))
oem_reg |= HV_OEM_BITS_RESTART_AN;
} else {
if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
oem_reg |= HV_OEM_BITS_GBE_DIS;
if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
E1000_PHY_CTRL_NOND0A_LPLU))
oem_reg |= HV_OEM_BITS_LPLU;
}
ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
out:
hw->phy.ops.release(hw);
return ret_val;
}
/**
* e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
* @hw: pointer to the HW structure
**/
static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
{
s32 ret_val;
u16 data;
ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
if (ret_val)
return ret_val;
data |= HV_KMRN_MDIO_SLOW;
ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
return ret_val;
}
/**
* e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
* done after every PHY reset.
**/
static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
{
s32 ret_val = 0;
u16 phy_data;
if (hw->mac.type != e1000_pchlan)
return ret_val;
/* Set MDIO slow mode before any other MDIO access */
if (hw->phy.type == e1000_phy_82577) {
ret_val = e1000_set_mdio_slow_mode_hv(hw);
if (ret_val)
goto out;
}
if (((hw->phy.type == e1000_phy_82577) &&
((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
/* Disable generation of early preamble */
ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
if (ret_val)
return ret_val;
/* Preamble tuning for SSC */
ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
if (ret_val)
return ret_val;
}
if (hw->phy.type == e1000_phy_82578) {
/*
* Return registers to default by doing a soft reset then
* writing 0x3140 to the control register.
*/
if (hw->phy.revision < 2) {
e1000e_phy_sw_reset(hw);
ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
}
}
/* Select page 0 */
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return ret_val;
hw->phy.addr = 1;
ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
hw->phy.ops.release(hw);
if (ret_val)
goto out;
/*
* Configure the K1 Si workaround during phy reset assuming there is
* link so that it disables K1 if link is in 1Gbps.
*/
ret_val = e1000_k1_gig_workaround_hv(hw, true);
if (ret_val)
goto out;
/* Workaround for link disconnects on a busy hub in half duplex */
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
goto out;
ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data);
if (ret_val)
goto release;
ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG,
phy_data & 0x00FF);
release:
hw->phy.ops.release(hw);
out:
return ret_val;
}
/**
* e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
* @hw: pointer to the HW structure
**/
void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
{
u32 mac_reg;
u16 i, phy_reg = 0;
s32 ret_val;
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return;
ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
if (ret_val)
goto release;
/* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
mac_reg = er32(RAL(i));
hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
(u16)(mac_reg & 0xFFFF));
hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
(u16)((mac_reg >> 16) & 0xFFFF));
mac_reg = er32(RAH(i));
hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
(u16)(mac_reg & 0xFFFF));
hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
(u16)((mac_reg & E1000_RAH_AV)
>> 16));
}
e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
release:
hw->phy.ops.release(hw);
}
/**
* e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
* with 82579 PHY
* @hw: pointer to the HW structure
* @enable: flag to enable/disable workaround when enabling/disabling jumbos
**/
s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
{
s32 ret_val = 0;
u16 phy_reg, data;
u32 mac_reg;
u16 i;
if (hw->mac.type != e1000_pch2lan)
goto out;
/* disable Rx path while enabling/disabling workaround */
e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
if (ret_val)
goto out;
if (enable) {
/*
* Write Rx addresses (rar_entry_count for RAL/H, +4 for
* SHRAL/H) and initial CRC values to the MAC
*/
for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
u8 mac_addr[ETH_ALEN] = {0};
u32 addr_high, addr_low;
addr_high = er32(RAH(i));
if (!(addr_high & E1000_RAH_AV))
continue;
addr_low = er32(RAL(i));
mac_addr[0] = (addr_low & 0xFF);
mac_addr[1] = ((addr_low >> 8) & 0xFF);
mac_addr[2] = ((addr_low >> 16) & 0xFF);
mac_addr[3] = ((addr_low >> 24) & 0xFF);
mac_addr[4] = (addr_high & 0xFF);
mac_addr[5] = ((addr_high >> 8) & 0xFF);
ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
}
/* Write Rx addresses to the PHY */
e1000_copy_rx_addrs_to_phy_ich8lan(hw);
/* Enable jumbo frame workaround in the MAC */
mac_reg = er32(FFLT_DBG);
mac_reg &= ~(1 << 14);
mac_reg |= (7 << 15);
ew32(FFLT_DBG, mac_reg);
mac_reg = er32(RCTL);
mac_reg |= E1000_RCTL_SECRC;
ew32(RCTL, mac_reg);
ret_val = e1000e_read_kmrn_reg(hw,
E1000_KMRNCTRLSTA_CTRL_OFFSET,
&data);
if (ret_val)
goto out;
ret_val = e1000e_write_kmrn_reg(hw,
E1000_KMRNCTRLSTA_CTRL_OFFSET,
data | (1 << 0));
if (ret_val)
goto out;
ret_val = e1000e_read_kmrn_reg(hw,
E1000_KMRNCTRLSTA_HD_CTRL,
&data);
if (ret_val)
goto out;
data &= ~(0xF << 8);
data |= (0xB << 8);
ret_val = e1000e_write_kmrn_reg(hw,
E1000_KMRNCTRLSTA_HD_CTRL,
data);
if (ret_val)
goto out;
/* Enable jumbo frame workaround in the PHY */
e1e_rphy(hw, PHY_REG(769, 23), &data);
data &= ~(0x7F << 5);
data |= (0x37 << 5);
ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
if (ret_val)
goto out;
e1e_rphy(hw, PHY_REG(769, 16), &data);
data &= ~(1 << 13);
ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
if (ret_val)
goto out;
e1e_rphy(hw, PHY_REG(776, 20), &data);
data &= ~(0x3FF << 2);
data |= (0x1A << 2);
ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
if (ret_val)
goto out;
ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
if (ret_val)
goto out;
e1e_rphy(hw, HV_PM_CTRL, &data);
ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
if (ret_val)
goto out;
} else {
/* Write MAC register values back to h/w defaults */
mac_reg = er32(FFLT_DBG);
mac_reg &= ~(0xF << 14);
ew32(FFLT_DBG, mac_reg);
mac_reg = er32(RCTL);
mac_reg &= ~E1000_RCTL_SECRC;
ew32(RCTL, mac_reg);
ret_val = e1000e_read_kmrn_reg(hw,
E1000_KMRNCTRLSTA_CTRL_OFFSET,
&data);
if (ret_val)
goto out;
ret_val = e1000e_write_kmrn_reg(hw,
E1000_KMRNCTRLSTA_CTRL_OFFSET,
data & ~(1 << 0));
if (ret_val)
goto out;
ret_val = e1000e_read_kmrn_reg(hw,
E1000_KMRNCTRLSTA_HD_CTRL,
&data);
if (ret_val)
goto out;
data &= ~(0xF << 8);
data |= (0xB << 8);
ret_val = e1000e_write_kmrn_reg(hw,
E1000_KMRNCTRLSTA_HD_CTRL,
data);
if (ret_val)
goto out;
/* Write PHY register values back to h/w defaults */
e1e_rphy(hw, PHY_REG(769, 23), &data);
data &= ~(0x7F << 5);
ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
if (ret_val)
goto out;
e1e_rphy(hw, PHY_REG(769, 16), &data);
data |= (1 << 13);
ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
if (ret_val)
goto out;
e1e_rphy(hw, PHY_REG(776, 20), &data);
data &= ~(0x3FF << 2);
data |= (0x8 << 2);
ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
if (ret_val)
goto out;
ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
if (ret_val)
goto out;
e1e_rphy(hw, HV_PM_CTRL, &data);
ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
if (ret_val)
goto out;
}
/* re-enable Rx path after enabling/disabling workaround */
ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
out:
return ret_val;
}
/**
* e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
* done after every PHY reset.
**/
static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
{
s32 ret_val = 0;
if (hw->mac.type != e1000_pch2lan)
goto out;
/* Set MDIO slow mode before any other MDIO access */
ret_val = e1000_set_mdio_slow_mode_hv(hw);
out:
return ret_val;
}
/**
* e1000_k1_gig_workaround_lv - K1 Si workaround
* @hw: pointer to the HW structure
*
* Workaround to set the K1 beacon duration for 82579 parts
**/
static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
{
s32 ret_val = 0;
u16 status_reg = 0;
u32 mac_reg;
u16 phy_reg;
if (hw->mac.type != e1000_pch2lan)
goto out;
/* Set K1 beacon duration based on 1Gbps speed or otherwise */
ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
if (ret_val)
goto out;
if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
== (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
mac_reg = er32(FEXTNVM4);
mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
if (ret_val)
goto out;
if (status_reg & HV_M_STATUS_SPEED_1000) {
mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
phy_reg &= ~I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
} else {
mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
phy_reg |= I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
}
ew32(FEXTNVM4, mac_reg);
ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
}
out:
return ret_val;
}
/**
* e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
* @hw: pointer to the HW structure
* @gate: boolean set to true to gate, false to ungate
*
* Gate/ungate the automatic PHY configuration via hardware; perform
* the configuration via software instead.
**/
static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
{
u32 extcnf_ctrl;
if (hw->mac.type != e1000_pch2lan)
return;
extcnf_ctrl = er32(EXTCNF_CTRL);
if (gate)
extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
else
extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
ew32(EXTCNF_CTRL, extcnf_ctrl);
return;
}
/**
* e1000_lan_init_done_ich8lan - Check for PHY config completion
* @hw: pointer to the HW structure
*
* Check the appropriate indication the MAC has finished configuring the
* PHY after a software reset.
**/
static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
{
u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
/* Wait for basic configuration completes before proceeding */
do {
data = er32(STATUS);
data &= E1000_STATUS_LAN_INIT_DONE;
udelay(100);
} while ((!data) && --loop);
/*
* If basic configuration is incomplete before the above loop
* count reaches 0, loading the configuration from NVM will
* leave the PHY in a bad state possibly resulting in no link.
*/
if (loop == 0)
e_dbg("LAN_INIT_DONE not set, increase timeout\n");
/* Clear the Init Done bit for the next init event */
data = er32(STATUS);
data &= ~E1000_STATUS_LAN_INIT_DONE;
ew32(STATUS, data);
}
/**
* e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
* @hw: pointer to the HW structure
**/
static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
{
s32 ret_val = 0;
u16 reg;
if (e1000_check_reset_block(hw))
goto out;
/* Allow time for h/w to get to quiescent state after reset */
usleep_range(10000, 20000);
/* Perform any necessary post-reset workarounds */
switch (hw->mac.type) {
case e1000_pchlan:
ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
if (ret_val)
goto out;
break;
case e1000_pch2lan:
ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
if (ret_val)
goto out;
break;
default:
break;
}
/* Clear the host wakeup bit after lcd reset */
if (hw->mac.type >= e1000_pchlan) {
e1e_rphy(hw, BM_PORT_GEN_CFG, ®);
reg &= ~BM_WUC_HOST_WU_BIT;
e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
}
/* Configure the LCD with the extended configuration region in NVM */
ret_val = e1000_sw_lcd_config_ich8lan(hw);
if (ret_val)
goto out;
/* Configure the LCD with the OEM bits in NVM */
ret_val = e1000_oem_bits_config_ich8lan(hw, true);
if (hw->mac.type == e1000_pch2lan) {
/* Ungate automatic PHY configuration on non-managed 82579 */
if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
usleep_range(10000, 20000);
e1000_gate_hw_phy_config_ich8lan(hw, false);
}
/* Set EEE LPI Update Timer to 200usec */
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
goto out;
ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR,
I82579_LPI_UPDATE_TIMER);
if (ret_val)
goto release;
ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA,
0x1387);
release:
hw->phy.ops.release(hw);
}
out:
return ret_val;
}
/**
* e1000_phy_hw_reset_ich8lan - Performs a PHY reset
* @hw: pointer to the HW structure
*
* Resets the PHY
* This is a function pointer entry point called by drivers
* or other shared routines.
**/
static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
{
s32 ret_val = 0;
/* Gate automatic PHY configuration by hardware on non-managed 82579 */
if ((hw->mac.type == e1000_pch2lan) &&
!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
e1000_gate_hw_phy_config_ich8lan(hw, true);
ret_val = e1000e_phy_hw_reset_generic(hw);
if (ret_val)
goto out;
ret_val = e1000_post_phy_reset_ich8lan(hw);
out:
return ret_val;
}
/**
* e1000_set_lplu_state_pchlan - Set Low Power Link Up state
* @hw: pointer to the HW structure
* @active: true to enable LPLU, false to disable
*
* Sets the LPLU state according to the active flag. For PCH, if OEM write
* bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
* the phy speed. This function will manually set the LPLU bit and restart
* auto-neg as hw would do. D3 and D0 LPLU will call the same function
* since it configures the same bit.
**/
static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
{
s32 ret_val = 0;
u16 oem_reg;
ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
if (ret_val)
goto out;
if (active)
oem_reg |= HV_OEM_BITS_LPLU;
else
oem_reg &= ~HV_OEM_BITS_LPLU;
oem_reg |= HV_OEM_BITS_RESTART_AN;
ret_val = e1e_wphy(hw, HV_OEM_BITS, oem_reg);
out:
return ret_val;
}
/**
* e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
* @hw: pointer to the HW structure
* @active: true to enable LPLU, false to disable
*
* Sets the LPLU D0 state according to the active flag. When
* activating LPLU this function also disables smart speed
* and vice versa. LPLU will not be activated unless the
* device autonegotiation advertisement meets standards of
* either 10 or 10/100 or 10/100/1000 at all duplexes.
* This is a function pointer entry point only called by
* PHY setup routines.
**/
static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
{
struct e1000_phy_info *phy = &hw->phy;
u32 phy_ctrl;
s32 ret_val = 0;
u16 data;
if (phy->type == e1000_phy_ife)
return ret_val;
phy_ctrl = er32(PHY_CTRL);
if (active) {
phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
ew32(PHY_CTRL, phy_ctrl);
if (phy->type != e1000_phy_igp_3)
return 0;
/*
* Call gig speed drop workaround on LPLU before accessing
* any PHY registers
*/
if (hw->mac.type == e1000_ich8lan)
e1000e_gig_downshift_workaround_ich8lan(hw);
/* When LPLU is enabled, we should disable SmartSpeed */
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
if (ret_val)
return ret_val;
} else {
phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
ew32(PHY_CTRL, phy_ctrl);
if (phy->type != e1000_phy_igp_3)
return 0;
/*
* LPLU and SmartSpeed are mutually exclusive. LPLU is used
* during Dx states where the power conservation is most
* important. During driver activity we should enable
* SmartSpeed, so performance is maintained.
*/
if (phy->smart_speed == e1000_smart_speed_on) {
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
&data);
if (ret_val)
return ret_val;
data |= IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
data);
if (ret_val)
return ret_val;
} else if (phy->smart_speed == e1000_smart_speed_off) {
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
&data);
if (ret_val)
return ret_val;
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
data);
if (ret_val)
return ret_val;
}
}
return 0;
}
/**
* e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
* @hw: pointer to the HW structure
* @active: true to enable LPLU, false to disable
*
* Sets the LPLU D3 state according to the active flag. When
* activating LPLU this function also disables smart speed
* and vice versa. LPLU will not be activated unless the
* device autonegotiation advertisement meets standards of
* either 10 or 10/100 or 10/100/1000 at all duplexes.
* This is a function pointer entry point only called by
* PHY setup routines.
**/
static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
{
struct e1000_phy_info *phy = &hw->phy;
u32 phy_ctrl;
s32 ret_val;
u16 data;
phy_ctrl = er32(PHY_CTRL);
if (!active) {
phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
ew32(PHY_CTRL, phy_ctrl);
if (phy->type != e1000_phy_igp_3)
return 0;
/*
* LPLU and SmartSpeed are mutually exclusive. LPLU is used
* during Dx states where the power conservation is most
* important. During driver activity we should enable
* SmartSpeed, so performance is maintained.
*/
if (phy->smart_speed == e1000_smart_speed_on) {
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
&data);
if (ret_val)
return ret_val;
data |= IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
data);
if (ret_val)
return ret_val;
} else if (phy->smart_speed == e1000_smart_speed_off) {
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
&data);
if (ret_val)
return ret_val;
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
data);
if (ret_val)
return ret_val;
}
} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
(phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
(phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
ew32(PHY_CTRL, phy_ctrl);
if (phy->type != e1000_phy_igp_3)
return 0;
/*
* Call gig speed drop workaround on LPLU before accessing
* any PHY registers
*/
if (hw->mac.type == e1000_ich8lan)
e1000e_gig_downshift_workaround_ich8lan(hw);
/* When LPLU is enabled, we should disable SmartSpeed */
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
if (ret_val)
return ret_val;
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
}
return 0;
}
/**
* e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
* @hw: pointer to the HW structure
* @bank: pointer to the variable that returns the active bank
*
* Reads signature byte from the NVM using the flash access registers.
* Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
**/
static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
{
u32 eecd;
struct e1000_nvm_info *nvm = &hw->nvm;
u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
u8 sig_byte = 0;
s32 ret_val = 0;
switch (hw->mac.type) {
case e1000_ich8lan:
case e1000_ich9lan:
eecd = er32(EECD);
if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
E1000_EECD_SEC1VAL_VALID_MASK) {
if (eecd & E1000_EECD_SEC1VAL)
*bank = 1;
else
*bank = 0;
return 0;
}
e_dbg("Unable to determine valid NVM bank via EEC - "
"reading flash signature\n");
/* fall-thru */
default:
/* set bank to 0 in case flash read fails */
*bank = 0;
/* Check bank 0 */
ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
&sig_byte);
if (ret_val)
return ret_val;
if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
E1000_ICH_NVM_SIG_VALUE) {
*bank = 0;
return 0;
}
/* Check bank 1 */
ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
bank1_offset,
&sig_byte);
if (ret_val)
return ret_val;
if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
E1000_ICH_NVM_SIG_VALUE) {
*bank = 1;
return 0;
}
e_dbg("ERROR: No valid NVM bank present\n");
return -E1000_ERR_NVM;
}
return 0;
}
/**
* e1000_read_nvm_ich8lan - Read word(s) from the NVM
* @hw: pointer to the HW structure
* @offset: The offset (in bytes) of the word(s) to read.
* @words: Size of data to read in words
* @data: Pointer to the word(s) to read at offset.
*
* Reads a word(s) from the NVM using the flash access registers.
**/
static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
u16 *data)
{
struct e1000_nvm_info *nvm = &hw->nvm;
struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
u32 act_offset;
s32 ret_val = 0;
u32 bank = 0;
u16 i, word;
if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
(words == 0)) {
e_dbg("nvm parameter(s) out of bounds\n");
ret_val = -E1000_ERR_NVM;
goto out;
}
nvm->ops.acquire(hw);
ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
if (ret_val) {
e_dbg("Could not detect valid bank, assuming bank 0\n");
bank = 0;
}
act_offset = (bank) ? nvm->flash_bank_size : 0;
act_offset += offset;
ret_val = 0;
for (i = 0; i < words; i++) {
if (dev_spec->shadow_ram[offset+i].modified) {
data[i] = dev_spec->shadow_ram[offset+i].value;
} else {
ret_val = e1000_read_flash_word_ich8lan(hw,
act_offset + i,
&word);
if (ret_val)
break;
data[i] = word;
}
}
nvm->ops.release(hw);
out:
if (ret_val)
e_dbg("NVM read error: %d\n", ret_val);
return ret_val;
}
/**
* e1000_flash_cycle_init_ich8lan - Initialize flash
* @hw: pointer to the HW structure
*
* This function does initial flash setup so that a new read/write/erase cycle
* can be started.
**/
static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
{
union ich8_hws_flash_status hsfsts;
s32 ret_val = -E1000_ERR_NVM;
hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
/* Check if the flash descriptor is valid */
if (hsfsts.hsf_status.fldesvalid == 0) {
e_dbg("Flash descriptor invalid. "
"SW Sequencing must be used.\n");
return -E1000_ERR_NVM;
}
/* Clear FCERR and DAEL in hw status by writing 1 */
hsfsts.hsf_status.flcerr = 1;
hsfsts.hsf_status.dael = 1;
ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
/*
* Either we should have a hardware SPI cycle in progress
* bit to check against, in order to start a new cycle or
* FDONE bit should be changed in the hardware so that it
* is 1 after hardware reset, which can then be used as an
* indication whether a cycle is in progress or has been
* completed.
*/
if (hsfsts.hsf_status.flcinprog == 0) {
/*
* There is no cycle running at present,
* so we can start a cycle.
* Begin by setting Flash Cycle Done.
*/
hsfsts.hsf_status.flcdone = 1;
ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
ret_val = 0;
} else {
s32 i = 0;
/*
* Otherwise poll for sometime so the current
* cycle has a chance to end before giving up.
*/
for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
if (hsfsts.hsf_status.flcinprog == 0) {
ret_val = 0;
break;
}
udelay(1);
}
if (ret_val == 0) {
/*
* Successful in waiting for previous cycle to timeout,
* now set the Flash Cycle Done.
*/
hsfsts.hsf_status.flcdone = 1;
ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
} else {
e_dbg("Flash controller busy, cannot get access\n");
}
}
return ret_val;
}
/**
* e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
* @hw: pointer to the HW structure
* @timeout: maximum time to wait for completion
*
* This function starts a flash cycle and waits for its completion.
**/
static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
{
union ich8_hws_flash_ctrl hsflctl;
union ich8_hws_flash_status hsfsts;
s32 ret_val = -E1000_ERR_NVM;
u32 i = 0;
/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
hsflctl.hsf_ctrl.flcgo = 1;
ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
/* wait till FDONE bit is set to 1 */
do {
hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
if (hsfsts.hsf_status.flcdone == 1)
break;
udelay(1);
} while (i++ < timeout);
if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
return 0;
return ret_val;
}
/**
* e1000_read_flash_word_ich8lan - Read word from flash
* @hw: pointer to the HW structure
* @offset: offset to data location
* @data: pointer to the location for storing the data
*
* Reads the flash word at offset into data. Offset is converted
* to bytes before read.
**/
static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
u16 *data)
{
/* Must convert offset into bytes. */
offset <<= 1;
return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
}
/**
* e1000_read_flash_byte_ich8lan - Read byte from flash
* @hw: pointer to the HW structure
* @offset: The offset of the byte to read.
* @data: Pointer to a byte to store the value read.
*
* Reads a single byte from the NVM using the flash access registers.
**/
static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
u8 *data)
{
s32 ret_val;
u16 word = 0;
ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
if (ret_val)
return ret_val;
*data = (u8)word;
return 0;
}
/**
* e1000_read_flash_data_ich8lan - Read byte or word from NVM
* @hw: pointer to the HW structure
* @offset: The offset (in bytes) of the byte or word to read.
* @size: Size of data to read, 1=byte 2=word
* @data: Pointer to the word to store the value read.
*
* Reads a byte or word from the NVM using the flash access registers.
**/
static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
u8 size, u16 *data)
{
union ich8_hws_flash_status hsfsts;
union ich8_hws_flash_ctrl hsflctl;
u32 flash_linear_addr;
u32 flash_data = 0;
s32 ret_val = -E1000_ERR_NVM;
u8 count = 0;
if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
return -E1000_ERR_NVM;
flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
hw->nvm.flash_base_addr;
do {
udelay(1);
/* Steps */
ret_val = e1000_flash_cycle_init_ich8lan(hw);
if (ret_val != 0)
break;
hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
hsflctl.hsf_ctrl.fldbcount = size - 1;
hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
ret_val = e1000_flash_cycle_ich8lan(hw,
ICH_FLASH_READ_COMMAND_TIMEOUT);
/*
* Check if FCERR is set to 1, if set to 1, clear it
* and try the whole sequence a few more times, else
* read in (shift in) the Flash Data0, the order is
* least significant byte first msb to lsb
*/
if (ret_val == 0) {
flash_data = er32flash(ICH_FLASH_FDATA0);
if (size == 1)
*data = (u8)(flash_data & 0x000000FF);
else if (size == 2)
*data = (u16)(flash_data & 0x0000FFFF);
break;
} else {
/*
* If we've gotten here, then things are probably
* completely hosed, but if the error condition is
* detected, it won't hurt to give it another try...
* ICH_FLASH_CYCLE_REPEAT_COUNT times.
*/
hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
if (hsfsts.hsf_status.flcerr == 1) {
/* Repeat for some time before giving up. */
continue;
} else if (hsfsts.hsf_status.flcdone == 0) {
e_dbg("Timeout error - flash cycle "
"did not complete.\n");
break;
}
}
} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
return ret_val;
}
/**
* e1000_write_nvm_ich8lan - Write word(s) to the NVM
* @hw: pointer to the HW structure
* @offset: The offset (in bytes) of the word(s) to write.
* @words: Size of data to write in words
* @data: Pointer to the word(s) to write at offset.
*
* Writes a byte or word to the NVM using the flash access registers.
**/
static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
u16 *data)
{
struct e1000_nvm_info *nvm = &hw->nvm;
struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
u16 i;
if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
(words == 0)) {
e_dbg("nvm parameter(s) out of bounds\n");
return -E1000_ERR_NVM;
}
nvm->ops.acquire(hw);
for (i = 0; i < words; i++) {
dev_spec->shadow_ram[offset+i].modified = true;
dev_spec->shadow_ram[offset+i].value = data[i];
}
nvm->ops.release(hw);
return 0;
}
/**
* e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
* @hw: pointer to the HW structure
*
* The NVM checksum is updated by calling the generic update_nvm_checksum,
* which writes the checksum to the shadow ram. The changes in the shadow
* ram are then committed to the EEPROM by processing each bank at a time
* checking for the modified bit and writing only the pending changes.
* After a successful commit, the shadow ram is cleared and is ready for
* future writes.
**/
static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
{
struct e1000_nvm_info *nvm = &hw->nvm;
struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
s32 ret_val;
u16 data;
ret_val = e1000e_update_nvm_checksum_generic(hw);
if (ret_val)
goto out;
if (nvm->type != e1000_nvm_flash_sw)
goto out;
nvm->ops.acquire(hw);
/*
* We're writing to the opposite bank so if we're on bank 1,
* write to bank 0 etc. We also need to erase the segment that
* is going to be written
*/
ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
if (ret_val) {
e_dbg("Could not detect valid bank, assuming bank 0\n");
bank = 0;
}
if (bank == 0) {
new_bank_offset = nvm->flash_bank_size;
old_bank_offset = 0;
ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
if (ret_val)
goto release;
} else {
old_bank_offset = nvm->flash_bank_size;
new_bank_offset = 0;
ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
if (ret_val)
goto release;
}
for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
/*
* Determine whether to write the value stored
* in the other NVM bank or a modified value stored
* in the shadow RAM
*/
if (dev_spec->shadow_ram[i].modified) {
data = dev_spec->shadow_ram[i].value;
} else {
ret_val = e1000_read_flash_word_ich8lan(hw, i +
old_bank_offset,
&data);
if (ret_val)
break;
}
/*
* If the word is 0x13, then make sure the signature bits
* (15:14) are 11b until the commit has completed.
* This will allow us to write 10b which indicates the
* signature is valid. We want to do this after the write
* has completed so that we don't mark the segment valid
* while the write is still in progress
*/
if (i == E1000_ICH_NVM_SIG_WORD)
data |= E1000_ICH_NVM_SIG_MASK;
/* Convert offset to bytes. */
act_offset = (i + new_bank_offset) << 1;
udelay(100);
/* Write the bytes to the new bank. */
ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
act_offset,
(u8)data);
if (ret_val)
break;
udelay(100);
ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
act_offset + 1,
(u8)(data >> 8));
if (ret_val)
break;
}
/*
* Don't bother writing the segment valid bits if sector
* programming failed.
*/
if (ret_val) {
/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
e_dbg("Flash commit failed.\n");
goto release;
}
/*
* Finally validate the new segment by setting bit 15:14
* to 10b in word 0x13 , this can be done without an
* erase as well since these bits are 11 to start with
* and we need to change bit 14 to 0b
*/
act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
if (ret_val)
goto release;
data &= 0xBFFF;
ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
act_offset * 2 + 1,
(u8)(data >> 8));
if (ret_val)
goto release;
/*
* And invalidate the previously valid segment by setting
* its signature word (0x13) high_byte to 0b. This can be
* done without an erase because flash erase sets all bits
* to 1's. We can write 1's to 0's without an erase
*/
act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
if (ret_val)
goto release;
/* Great! Everything worked, we can now clear the cached entries. */
for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
dev_spec->shadow_ram[i].modified = false;
dev_spec->shadow_ram[i].value = 0xFFFF;
}
release:
nvm->ops.release(hw);
/*
* Reload the EEPROM, or else modifications will not appear
* until after the next adapter reset.
*/
if (!ret_val) {
e1000e_reload_nvm(hw);
usleep_range(10000, 20000);
}
out:
if (ret_val)
e_dbg("NVM update error: %d\n", ret_val);
return ret_val;
}
/**
* e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
* @hw: pointer to the HW structure
*
* Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
* If the bit is 0, that the EEPROM had been modified, but the checksum was not
* calculated, in which case we need to calculate the checksum and set bit 6.
**/
static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
{
s32 ret_val;
u16 data;
/*
* Read 0x19 and check bit 6. If this bit is 0, the checksum
* needs to be fixed. This bit is an indication that the NVM
* was prepared by OEM software and did not calculate the
* checksum...a likely scenario.
*/
ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
if (ret_val)
return ret_val;
if ((data & 0x40) == 0) {
data |= 0x40;
ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
if (ret_val)
return ret_val;
ret_val = e1000e_update_nvm_checksum(hw);
if (ret_val)
return ret_val;
}
return e1000e_validate_nvm_checksum_generic(hw);
}
/**
* e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
* @hw: pointer to the HW structure
*
* To prevent malicious write/erase of the NVM, set it to be read-only
* so that the hardware ignores all write/erase cycles of the NVM via
* the flash control registers. The shadow-ram copy of the NVM will
* still be updated, however any updates to this copy will not stick
* across driver reloads.
**/
void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
{
struct e1000_nvm_info *nvm = &hw->nvm;
union ich8_flash_protected_range pr0;
union ich8_hws_flash_status hsfsts;
u32 gfpreg;
nvm->ops.acquire(hw);
gfpreg = er32flash(ICH_FLASH_GFPREG);
/* Write-protect GbE Sector of NVM */
pr0.regval = er32flash(ICH_FLASH_PR0);
pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
pr0.range.wpe = true;
ew32flash(ICH_FLASH_PR0, pr0.regval);
/*
* Lock down a subset of GbE Flash Control Registers, e.g.
* PR0 to prevent the write-protection from being lifted.
* Once FLOCKDN is set, the registers protected by it cannot
* be written until FLOCKDN is cleared by a hardware reset.
*/
hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
hsfsts.hsf_status.flockdn = true;
ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
nvm->ops.release(hw);
}
/**
* e1000_write_flash_data_ich8lan - Writes bytes to the NVM
* @hw: pointer to the HW structure
* @offset: The offset (in bytes) of the byte/word to read.
* @size: Size of data to read, 1=byte 2=word
* @data: The byte(s) to write to the NVM.
*
* Writes one/two bytes to the NVM using the flash access registers.
**/
static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
u8 size, u16 data)
{
union ich8_hws_flash_status hsfsts;
union ich8_hws_flash_ctrl hsflctl;
u32 flash_linear_addr;
u32 flash_data = 0;
s32 ret_val;
u8 count = 0;
if (size < 1 || size > 2 || data > size * 0xff ||
offset > ICH_FLASH_LINEAR_ADDR_MASK)
return -E1000_ERR_NVM;
flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
hw->nvm.flash_base_addr;
do {
udelay(1);
/* Steps */
ret_val = e1000_flash_cycle_init_ich8lan(hw);
if (ret_val)
break;
hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
hsflctl.hsf_ctrl.fldbcount = size -1;
hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
if (size == 1)
flash_data = (u32)data & 0x00FF;
else
flash_data = (u32)data;
ew32flash(ICH_FLASH_FDATA0, flash_data);
/*
* check if FCERR is set to 1 , if set to 1, clear it
* and try the whole sequence a few more times else done
*/
ret_val = e1000_flash_cycle_ich8lan(hw,
ICH_FLASH_WRITE_COMMAND_TIMEOUT);
if (!ret_val)
break;
/*
* If we're here, then things are most likely
* completely hosed, but if the error condition
* is detected, it won't hurt to give it another
* try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
*/
hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
if (hsfsts.hsf_status.flcerr == 1)
/* Repeat for some time before giving up. */
continue;
if (hsfsts.hsf_status.flcdone == 0) {
e_dbg("Timeout error - flash cycle "
"did not complete.");
break;
}
} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
return ret_val;
}
/**
* e1000_write_flash_byte_ich8lan - Write a single byte to NVM
* @hw: pointer to the HW structure
* @offset: The index of the byte to read.
* @data: The byte to write to the NVM.
*
* Writes a single byte to the NVM using the flash access registers.
**/
static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
u8 data)
{
u16 word = (u16)data;
return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
}
/**
* e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
* @hw: pointer to the HW structure
* @offset: The offset of the byte to write.
* @byte: The byte to write to the NVM.
*
* Writes a single byte to the NVM using the flash access registers.
* Goes through a retry algorithm before giving up.
**/
static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
u32 offset, u8 byte)
{
s32 ret_val;
u16 program_retries;
ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
if (!ret_val)
return ret_val;
for (program_retries = 0; program_retries < 100; program_retries++) {
e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
udelay(100);
ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
if (!ret_val)
break;
}
if (program_retries == 100)
return -E1000_ERR_NVM;
return 0;
}
/**
* e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
* @hw: pointer to the HW structure
* @bank: 0 for first bank, 1 for second bank, etc.
*
* Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
* bank N is 4096 * N + flash_reg_addr.
**/
static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
{
struct e1000_nvm_info *nvm = &hw->nvm;
union ich8_hws_flash_status hsfsts;
union ich8_hws_flash_ctrl hsflctl;
u32 flash_linear_addr;
/* bank size is in 16bit words - adjust to bytes */
u32 flash_bank_size = nvm->flash_bank_size * 2;
s32 ret_val;
s32 count = 0;
s32 j, iteration, sector_size;
hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
/*
* Determine HW Sector size: Read BERASE bits of hw flash status
* register
* 00: The Hw sector is 256 bytes, hence we need to erase 16
* consecutive sectors. The start index for the nth Hw sector
* can be calculated as = bank * 4096 + n * 256
* 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
* The start index for the nth Hw sector can be calculated
* as = bank * 4096
* 10: The Hw sector is 8K bytes, nth sector = bank * 8192
* (ich9 only, otherwise error condition)
* 11: The Hw sector is 64K bytes, nth sector = bank * 65536
*/
switch (hsfsts.hsf_status.berasesz) {
case 0:
/* Hw sector size 256 */
sector_size = ICH_FLASH_SEG_SIZE_256;
iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
break;
case 1:
sector_size = ICH_FLASH_SEG_SIZE_4K;
iteration = 1;
break;
case 2:
sector_size = ICH_FLASH_SEG_SIZE_8K;
iteration = 1;
break;
case 3:
sector_size = ICH_FLASH_SEG_SIZE_64K;
iteration = 1;
break;
default:
return -E1000_ERR_NVM;
}
/* Start with the base address, then add the sector offset. */
flash_linear_addr = hw->nvm.flash_base_addr;
flash_linear_addr += (bank) ? flash_bank_size : 0;
for (j = 0; j < iteration ; j++) {
do {
/* Steps */
ret_val = e1000_flash_cycle_init_ich8lan(hw);
if (ret_val)
return ret_val;
/*
* Write a value 11 (block Erase) in Flash
* Cycle field in hw flash control
*/
hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
/*
* Write the last 24 bits of an index within the
* block into Flash Linear address field in Flash
* Address.
*/
flash_linear_addr += (j * sector_size);
ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
ret_val = e1000_flash_cycle_ich8lan(hw,
ICH_FLASH_ERASE_COMMAND_TIMEOUT);
if (ret_val == 0)
break;
/*
* Check if FCERR is set to 1. If 1,
* clear it and try the whole sequence
* a few more times else Done
*/
hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
if (hsfsts.hsf_status.flcerr == 1)
/* repeat for some time before giving up */
continue;
else if (hsfsts.hsf_status.flcdone == 0)
return ret_val;
} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
}
return 0;
}
/**
* e1000_valid_led_default_ich8lan - Set the default LED settings
* @hw: pointer to the HW structure
* @data: Pointer to the LED settings
*
* Reads the LED default settings from the NVM to data. If the NVM LED
* settings is all 0's or F's, set the LED default to a valid LED default
* setting.
**/
static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
{
s32 ret_val;
ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
if (ret_val) {
e_dbg("NVM Read Error\n");
return ret_val;
}
if (*data == ID_LED_RESERVED_0000 ||
*data == ID_LED_RESERVED_FFFF)
*data = ID_LED_DEFAULT_ICH8LAN;
return 0;
}
/**
* e1000_id_led_init_pchlan - store LED configurations
* @hw: pointer to the HW structure
*
* PCH does not control LEDs via the LEDCTL register, rather it uses
* the PHY LED configuration register.
*
* PCH also does not have an "always on" or "always off" mode which
* complicates the ID feature. Instead of using the "on" mode to indicate
* in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
* use "link_up" mode. The LEDs will still ID on request if there is no
* link based on logic in e1000_led_[on|off]_pchlan().
**/
static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
s32 ret_val;
const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
u16 data, i, temp, shift;
/* Get default ID LED modes */
ret_val = hw->nvm.ops.valid_led_default(hw, &data);
if (ret_val)
goto out;
mac->ledctl_default = er32(LEDCTL);
mac->ledctl_mode1 = mac->ledctl_default;
mac->ledctl_mode2 = mac->ledctl_default;
for (i = 0; i < 4; i++) {
temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
shift = (i * 5);
switch (temp) {
case ID_LED_ON1_DEF2:
case ID_LED_ON1_ON2:
case ID_LED_ON1_OFF2:
mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
mac->ledctl_mode1 |= (ledctl_on << shift);
break;
case ID_LED_OFF1_DEF2:
case ID_LED_OFF1_ON2:
case ID_LED_OFF1_OFF2:
mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
mac->ledctl_mode1 |= (ledctl_off << shift);
break;
default:
/* Do nothing */
break;
}
switch (temp) {
case ID_LED_DEF1_ON2:
case ID_LED_ON1_ON2:
case ID_LED_OFF1_ON2:
mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
mac->ledctl_mode2 |= (ledctl_on << shift);
break;
case ID_LED_DEF1_OFF2:
case ID_LED_ON1_OFF2:
case ID_LED_OFF1_OFF2:
mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
mac->ledctl_mode2 |= (ledctl_off << shift);
break;
default:
/* Do nothing */
break;
}
}
out:
return ret_val;
}
/**
* e1000_get_bus_info_ich8lan - Get/Set the bus type and width
* @hw: pointer to the HW structure
*
* ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
* register, so the the bus width is hard coded.
**/
static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
{
struct e1000_bus_info *bus = &hw->bus;
s32 ret_val;
ret_val = e1000e_get_bus_info_pcie(hw);
/*
* ICH devices are "PCI Express"-ish. They have
* a configuration space, but do not contain
* PCI Express Capability registers, so bus width
* must be hardcoded.
*/
if (bus->width == e1000_bus_width_unknown)
bus->width = e1000_bus_width_pcie_x1;
return ret_val;
}
/**
* e1000_reset_hw_ich8lan - Reset the hardware
* @hw: pointer to the HW structure
*
* Does a full reset of the hardware which includes a reset of the PHY and
* MAC.
**/
static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
{
struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
u16 reg;
u32 ctrl, kab;
s32 ret_val;
/*
* Prevent the PCI-E bus from sticking if there is no TLP connection
* on the last TLP read/write transaction when MAC is reset.
*/
ret_val = e1000e_disable_pcie_master(hw);
if (ret_val)
e_dbg("PCI-E Master disable polling has failed.\n");
e_dbg("Masking off all interrupts\n");
ew32(IMC, 0xffffffff);
/*
* Disable the Transmit and Receive units. Then delay to allow
* any pending transactions to complete before we hit the MAC
* with the global reset.
*/
ew32(RCTL, 0);
ew32(TCTL, E1000_TCTL_PSP);
e1e_flush();
usleep_range(10000, 20000);
/* Workaround for ICH8 bit corruption issue in FIFO memory */
if (hw->mac.type == e1000_ich8lan) {
/* Set Tx and Rx buffer allocation to 8k apiece. */
ew32(PBA, E1000_PBA_8K);
/* Set Packet Buffer Size to 16k. */
ew32(PBS, E1000_PBS_16K);
}
if (hw->mac.type == e1000_pchlan) {
/* Save the NVM K1 bit setting*/
ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, ®);
if (ret_val)
return ret_val;
if (reg & E1000_NVM_K1_ENABLE)
dev_spec->nvm_k1_enabled = true;
else
dev_spec->nvm_k1_enabled = false;
}
ctrl = er32(CTRL);
if (!e1000_check_reset_block(hw)) {
/*
* Full-chip reset requires MAC and PHY reset at the same
* time to make sure the interface between MAC and the
* external PHY is reset.
*/
ctrl |= E1000_CTRL_PHY_RST;
/*
* Gate automatic PHY configuration by hardware on
* non-managed 82579
*/
if ((hw->mac.type == e1000_pch2lan) &&
!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
e1000_gate_hw_phy_config_ich8lan(hw, true);
}
ret_val = e1000_acquire_swflag_ich8lan(hw);
e_dbg("Issuing a global reset to ich8lan\n");
ew32(CTRL, (ctrl | E1000_CTRL_RST));
/* cannot issue a flush here because it hangs the hardware */
msleep(20);
if (!ret_val)
clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
if (ctrl & E1000_CTRL_PHY_RST) {
ret_val = hw->phy.ops.get_cfg_done(hw);
if (ret_val)
goto out;
ret_val = e1000_post_phy_reset_ich8lan(hw);
if (ret_val)
goto out;
}
/*
* For PCH, this write will make sure that any noise
* will be detected as a CRC error and be dropped rather than show up
* as a bad packet to the DMA engine.
*/
if (hw->mac.type == e1000_pchlan)
ew32(CRC_OFFSET, 0x65656565);
ew32(IMC, 0xffffffff);
er32(ICR);
kab = er32(KABGTXD);
kab |= E1000_KABGTXD_BGSQLBIAS;
ew32(KABGTXD, kab);
out:
return ret_val;
}
/**
* e1000_init_hw_ich8lan - Initialize the hardware
* @hw: pointer to the HW structure
*
* Prepares the hardware for transmit and receive by doing the following:
* - initialize hardware bits
* - initialize LED identification
* - setup receive address registers
* - setup flow control
* - setup transmit descriptors
* - clear statistics
**/
static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
u32 ctrl_ext, txdctl, snoop;
s32 ret_val;
u16 i;
e1000_initialize_hw_bits_ich8lan(hw);
/* Initialize identification LED */
ret_val = mac->ops.id_led_init(hw);
if (ret_val)
e_dbg("Error initializing identification LED\n");
/* This is not fatal and we should not stop init due to this */
/* Setup the receive address. */
e1000e_init_rx_addrs(hw, mac->rar_entry_count);
/* Zero out the Multicast HASH table */
e_dbg("Zeroing the MTA\n");
for (i = 0; i < mac->mta_reg_count; i++)
E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
/*
* The 82578 Rx buffer will stall if wakeup is enabled in host and
* the ME. Disable wakeup by clearing the host wakeup bit.
* Reset the phy after disabling host wakeup to reset the Rx buffer.
*/
if (hw->phy.type == e1000_phy_82578) {
e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
i &= ~BM_WUC_HOST_WU_BIT;
e1e_wphy(hw, BM_PORT_GEN_CFG, i);
ret_val = e1000_phy_hw_reset_ich8lan(hw);
if (ret_val)
return ret_val;
}
/* Setup link and flow control */
ret_val = e1000_setup_link_ich8lan(hw);
/* Set the transmit descriptor write-back policy for both queues */
txdctl = er32(TXDCTL(0));
txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
E1000_TXDCTL_FULL_TX_DESC_WB;
txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
ew32(TXDCTL(0), txdctl);
txdctl = er32(TXDCTL(1));
txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
E1000_TXDCTL_FULL_TX_DESC_WB;
txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
ew32(TXDCTL(1), txdctl);
/*
* ICH8 has opposite polarity of no_snoop bits.
* By default, we should use snoop behavior.
*/
if (mac->type == e1000_ich8lan)
snoop = PCIE_ICH8_SNOOP_ALL;
else
snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
e1000e_set_pcie_no_snoop(hw, snoop);
ctrl_ext = er32(CTRL_EXT);
ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
ew32(CTRL_EXT, ctrl_ext);
/*
* Clear all of the statistics registers (clear on read). It is
* important that we do this after we have tried to establish link
* because the symbol error count will increment wildly if there
* is no link.
*/
e1000_clear_hw_cntrs_ich8lan(hw);
return 0;
}
/**
* e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
* @hw: pointer to the HW structure
*
* Sets/Clears required hardware bits necessary for correctly setting up the
* hardware for transmit and receive.
**/
static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
{
u32 reg;
/* Extended Device Control */
reg = er32(CTRL_EXT);
reg |= (1 << 22);
/* Enable PHY low-power state when MAC is at D3 w/o WoL */
if (hw->mac.type >= e1000_pchlan)
reg |= E1000_CTRL_EXT_PHYPDEN;
ew32(CTRL_EXT, reg);
/* Transmit Descriptor Control 0 */
reg = er32(TXDCTL(0));
reg |= (1 << 22);
ew32(TXDCTL(0), reg);
/* Transmit Descriptor Control 1 */
reg = er32(TXDCTL(1));
reg |= (1 << 22);
ew32(TXDCTL(1), reg);
/* Transmit Arbitration Control 0 */
reg = er32(TARC(0));
if (hw->mac.type == e1000_ich8lan)
reg |= (1 << 28) | (1 << 29);
reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
ew32(TARC(0), reg);
/* Transmit Arbitration Control 1 */
reg = er32(TARC(1));
if (er32(TCTL) & E1000_TCTL_MULR)
reg &= ~(1 << 28);
else
reg |= (1 << 28);
reg |= (1 << 24) | (1 << 26) | (1 << 30);
ew32(TARC(1), reg);
/* Device Status */
if (hw->mac.type == e1000_ich8lan) {
reg = er32(STATUS);
reg &= ~(1 << 31);
ew32(STATUS, reg);
}
/*
* work-around descriptor data corruption issue during nfs v2 udp
* traffic, just disable the nfs filtering capability
*/
reg = er32(RFCTL);
reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
ew32(RFCTL, reg);
}
/**
* e1000_setup_link_ich8lan - Setup flow control and link settings
* @hw: pointer to the HW structure
*
* Determines which flow control settings to use, then configures flow
* control. Calls the appropriate media-specific link configuration
* function. Assuming the adapter has a valid link partner, a valid link
* should be established. Assumes the hardware has previously been reset
* and the transmitter and receiver are not enabled.
**/
static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
{
s32 ret_val;
if (e1000_check_reset_block(hw))
return 0;
/*
* ICH parts do not have a word in the NVM to determine
* the default flow control setting, so we explicitly
* set it to full.
*/
if (hw->fc.requested_mode == e1000_fc_default) {
/* Workaround h/w hang when Tx flow control enabled */
if (hw->mac.type == e1000_pchlan)
hw->fc.requested_mode = e1000_fc_rx_pause;
else
hw->fc.requested_mode = e1000_fc_full;
}
/*
* Save off the requested flow control mode for use later. Depending
* on the link partner's capabilities, we may or may not use this mode.
*/
hw->fc.current_mode = hw->fc.requested_mode;
e_dbg("After fix-ups FlowControl is now = %x\n",
hw->fc.current_mode);
/* Continue to configure the copper link. */
ret_val = e1000_setup_copper_link_ich8lan(hw);
if (ret_val)
return ret_val;
ew32(FCTTV, hw->fc.pause_time);
if ((hw->phy.type == e1000_phy_82578) ||
(hw->phy.type == e1000_phy_82579) ||
(hw->phy.type == e1000_phy_82577)) {
ew32(FCRTV_PCH, hw->fc.refresh_time);
ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
hw->fc.pause_time);
if (ret_val)
return ret_val;
}
return e1000e_set_fc_watermarks(hw);
}
/**
* e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
* @hw: pointer to the HW structure
*
* Configures the kumeran interface to the PHY to wait the appropriate time
* when polling the PHY, then call the generic setup_copper_link to finish
* configuring the copper link.
**/
static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
{
u32 ctrl;
s32 ret_val;
u16 reg_data;
ctrl = er32(CTRL);
ctrl |= E1000_CTRL_SLU;
ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
ew32(CTRL, ctrl);
/*
* Set the mac to wait the maximum time between each iteration
* and increase the max iterations when polling the phy;
* this fixes erroneous timeouts at 10Mbps.
*/
ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
if (ret_val)
return ret_val;
ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
®_data);
if (ret_val)
return ret_val;
reg_data |= 0x3F;
ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
reg_data);
if (ret_val)
return ret_val;
switch (hw->phy.type) {
case e1000_phy_igp_3:
ret_val = e1000e_copper_link_setup_igp(hw);
if (ret_val)
return ret_val;
break;
case e1000_phy_bm:
case e1000_phy_82578:
ret_val = e1000e_copper_link_setup_m88(hw);
if (ret_val)
return ret_val;
break;
case e1000_phy_82577:
case e1000_phy_82579:
ret_val = e1000_copper_link_setup_82577(hw);
if (ret_val)
return ret_val;
break;
case e1000_phy_ife:
ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, ®_data);
if (ret_val)
return ret_val;
reg_data &= ~IFE_PMC_AUTO_MDIX;
switch (hw->phy.mdix) {
case 1:
reg_data &= ~IFE_PMC_FORCE_MDIX;
break;
case 2:
reg_data |= IFE_PMC_FORCE_MDIX;
break;
case 0:
default:
reg_data |= IFE_PMC_AUTO_MDIX;
break;
}
ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
if (ret_val)
return ret_val;
break;
default:
break;
}
return e1000e_setup_copper_link(hw);
}
/**
* e1000_get_link_up_info_ich8lan - Get current link speed and duplex
* @hw: pointer to the HW structure
* @speed: pointer to store current link speed
* @duplex: pointer to store the current link duplex
*
* Calls the generic get_speed_and_duplex to retrieve the current link
* information and then calls the Kumeran lock loss workaround for links at
* gigabit speeds.
**/
static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
u16 *duplex)
{
s32 ret_val;
ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
if (ret_val)
return ret_val;
if ((hw->mac.type == e1000_ich8lan) &&
(hw->phy.type == e1000_phy_igp_3) &&
(*speed == SPEED_1000)) {
ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
}
return ret_val;
}
/**
* e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
* @hw: pointer to the HW structure
*
* Work-around for 82566 Kumeran PCS lock loss:
* On link status change (i.e. PCI reset, speed change) and link is up and
* speed is gigabit-
* 0) if workaround is optionally disabled do nothing
* 1) wait 1ms for Kumeran link to come up
* 2) check Kumeran Diagnostic register PCS lock loss bit
* 3) if not set the link is locked (all is good), otherwise...
* 4) reset the PHY
* 5) repeat up to 10 times
* Note: this is only called for IGP3 copper when speed is 1gb.
**/
static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
{
struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
u32 phy_ctrl;
s32 ret_val;
u16 i, data;
bool link;
if (!dev_spec->kmrn_lock_loss_workaround_enabled)
return 0;
/*
* Make sure link is up before proceeding. If not just return.
* Attempting this while link is negotiating fouled up link
* stability
*/
ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
if (!link)
return 0;
for (i = 0; i < 10; i++) {
/* read once to clear */
ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
if (ret_val)
return ret_val;
/* and again to get new status */
ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
if (ret_val)
return ret_val;
/* check for PCS lock */
if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
return 0;
/* Issue PHY reset */
e1000_phy_hw_reset(hw);
mdelay(5);
}
/* Disable GigE link negotiation */
phy_ctrl = er32(PHY_CTRL);
phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
ew32(PHY_CTRL, phy_ctrl);
/*
* Call gig speed drop workaround on Gig disable before accessing
* any PHY registers
*/
e1000e_gig_downshift_workaround_ich8lan(hw);
/* unable to acquire PCS lock */
return -E1000_ERR_PHY;
}
/**
* e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
* @hw: pointer to the HW structure
* @state: boolean value used to set the current Kumeran workaround state
*
* If ICH8, set the current Kumeran workaround state (enabled - true
* /disabled - false).
**/
void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
bool state)
{
struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
if (hw->mac.type != e1000_ich8lan) {
e_dbg("Workaround applies to ICH8 only.\n");
return;
}
dev_spec->kmrn_lock_loss_workaround_enabled = state;
}
/**
* e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
* @hw: pointer to the HW structure
*
* Workaround for 82566 power-down on D3 entry:
* 1) disable gigabit link
* 2) write VR power-down enable
* 3) read it back
* Continue if successful, else issue LCD reset and repeat
**/
void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
{
u32 reg;
u16 data;
u8 retry = 0;
if (hw->phy.type != e1000_phy_igp_3)
return;
/* Try the workaround twice (if needed) */
do {
/* Disable link */
reg = er32(PHY_CTRL);
reg |= (E1000_PHY_CTRL_GBE_DISABLE |
E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
ew32(PHY_CTRL, reg);
/*
* Call gig speed drop workaround on Gig disable before
* accessing any PHY registers
*/
if (hw->mac.type == e1000_ich8lan)
e1000e_gig_downshift_workaround_ich8lan(hw);
/* Write VR power-down enable */
e1e_rphy(hw, IGP3_VR_CTRL, &data);
data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
/* Read it back and test */
e1e_rphy(hw, IGP3_VR_CTRL, &data);
data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
break;
/* Issue PHY reset and repeat at most one more time */
reg = er32(CTRL);
ew32(CTRL, reg | E1000_CTRL_PHY_RST);
retry++;
} while (retry);
}
/**
* e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
* @hw: pointer to the HW structure
*
* Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
* LPLU, Gig disable, MDIC PHY reset):
* 1) Set Kumeran Near-end loopback
* 2) Clear Kumeran Near-end loopback
* Should only be called for ICH8[m] devices with any 1G Phy.
**/
void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
{
s32 ret_val;
u16 reg_data;
if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
return;
ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
®_data);
if (ret_val)
return;
reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
reg_data);
if (ret_val)
return;
reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
reg_data);
}
/**
* e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
* @hw: pointer to the HW structure
*
* During S0 to Sx transition, it is possible the link remains at gig
* instead of negotiating to a lower speed. Before going to Sx, set
* 'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
* to a lower speed. For PCH and newer parts, the OEM bits PHY register
* (LED, GbE disable and LPLU configurations) also needs to be written.
**/
void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
{
u32 phy_ctrl;
s32 ret_val;
phy_ctrl = er32(PHY_CTRL);
phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU | E1000_PHY_CTRL_GBE_DISABLE;
ew32(PHY_CTRL, phy_ctrl);
if (hw->mac.type == e1000_ich8lan)
e1000e_gig_downshift_workaround_ich8lan(hw);
if (hw->mac.type >= e1000_pchlan) {
e1000_oem_bits_config_ich8lan(hw, false);
e1000_phy_hw_reset_ich8lan(hw);
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return;
e1000_write_smbus_addr(hw);
hw->phy.ops.release(hw);
}
}
/**
* e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
* @hw: pointer to the HW structure
*
* During Sx to S0 transitions on non-managed devices or managed devices
* on which PHY resets are not blocked, if the PHY registers cannot be
* accessed properly by the s/w toggle the LANPHYPC value to power cycle
* the PHY.
**/
void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
{
u32 fwsm;
if (hw->mac.type != e1000_pch2lan)
return;
fwsm = er32(FWSM);
if (!(fwsm & E1000_ICH_FWSM_FW_VALID) || !e1000_check_reset_block(hw)) {
u16 phy_id1, phy_id2;
s32 ret_val;
ret_val = hw->phy.ops.acquire(hw);
if (ret_val) {
e_dbg("Failed to acquire PHY semaphore in resume\n");
return;
}
/* Test access to the PHY registers by reading the ID regs */
ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_id1);
if (ret_val)
goto release;
ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_id2);
if (ret_val)
goto release;
if (hw->phy.id == ((u32)(phy_id1 << 16) |
(u32)(phy_id2 & PHY_REVISION_MASK)))
goto release;
e1000_toggle_lanphypc_value_ich8lan(hw);
hw->phy.ops.release(hw);
msleep(50);
e1000_phy_hw_reset(hw);
msleep(50);
return;
}
release:
hw->phy.ops.release(hw);
return;
}
/**
* e1000_cleanup_led_ich8lan - Restore the default LED operation
* @hw: pointer to the HW structure
*
* Return the LED back to the default configuration.
**/
static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
{
if (hw->phy.type == e1000_phy_ife)
return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
ew32(LEDCTL, hw->mac.ledctl_default);
return 0;
}
/**
* e1000_led_on_ich8lan - Turn LEDs on
* @hw: pointer to the HW structure
*
* Turn on the LEDs.
**/
static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
{
if (hw->phy.type == e1000_phy_ife)
return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
ew32(LEDCTL, hw->mac.ledctl_mode2);
return 0;
}
/**
* e1000_led_off_ich8lan - Turn LEDs off
* @hw: pointer to the HW structure
*
* Turn off the LEDs.
**/
static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
{
if (hw->phy.type == e1000_phy_ife)
return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
(IFE_PSCL_PROBE_MODE |
IFE_PSCL_PROBE_LEDS_OFF));
ew32(LEDCTL, hw->mac.ledctl_mode1);
return 0;
}
/**
* e1000_setup_led_pchlan - Configures SW controllable LED
* @hw: pointer to the HW structure
*
* This prepares the SW controllable LED for use.
**/
static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
{
return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
}
/**
* e1000_cleanup_led_pchlan - Restore the default LED operation
* @hw: pointer to the HW structure
*
* Return the LED back to the default configuration.
**/
static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
{
return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
}
/**
* e1000_led_on_pchlan - Turn LEDs on
* @hw: pointer to the HW structure
*
* Turn on the LEDs.
**/
static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
{
u16 data = (u16)hw->mac.ledctl_mode2;
u32 i, led;
/*
* If no link, then turn LED on by setting the invert bit
* for each LED that's mode is "link_up" in ledctl_mode2.
*/
if (!(er32(STATUS) & E1000_STATUS_LU)) {
for (i = 0; i < 3; i++) {
led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
if ((led & E1000_PHY_LED0_MODE_MASK) !=
E1000_LEDCTL_MODE_LINK_UP)
continue;
if (led & E1000_PHY_LED0_IVRT)
data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
else
data |= (E1000_PHY_LED0_IVRT << (i * 5));
}
}
return e1e_wphy(hw, HV_LED_CONFIG, data);
}
/**
* e1000_led_off_pchlan - Turn LEDs off
* @hw: pointer to the HW structure
*
* Turn off the LEDs.
**/
static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
{
u16 data = (u16)hw->mac.ledctl_mode1;
u32 i, led;
/*
* If no link, then turn LED off by clearing the invert bit
* for each LED that's mode is "link_up" in ledctl_mode1.
*/
if (!(er32(STATUS) & E1000_STATUS_LU)) {
for (i = 0; i < 3; i++) {
led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
if ((led & E1000_PHY_LED0_MODE_MASK) !=
E1000_LEDCTL_MODE_LINK_UP)
continue;
if (led & E1000_PHY_LED0_IVRT)
data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
else
data |= (E1000_PHY_LED0_IVRT << (i * 5));
}
}
return e1e_wphy(hw, HV_LED_CONFIG, data);
}
/**
* e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
* @hw: pointer to the HW structure
*
* Read appropriate register for the config done bit for completion status
* and configure the PHY through s/w for EEPROM-less parts.
*
* NOTE: some silicon which is EEPROM-less will fail trying to read the
* config done bit, so only an error is logged and continues. If we were
* to return with error, EEPROM-less silicon would not be able to be reset
* or change link.
**/
static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
{
s32 ret_val = 0;
u32 bank = 0;
u32 status;
e1000e_get_cfg_done(hw);
/* Wait for indication from h/w that it has completed basic config */
if (hw->mac.type >= e1000_ich10lan) {
e1000_lan_init_done_ich8lan(hw);
} else {
ret_val = e1000e_get_auto_rd_done(hw);
if (ret_val) {
/*
* When auto config read does not complete, do not
* return with an error. This can happen in situations
* where there is no eeprom and prevents getting link.
*/
e_dbg("Auto Read Done did not complete\n");
ret_val = 0;
}
}
/* Clear PHY Reset Asserted bit */
status = er32(STATUS);
if (status & E1000_STATUS_PHYRA)
ew32(STATUS, status & ~E1000_STATUS_PHYRA);
else
e_dbg("PHY Reset Asserted not set - needs delay\n");
/* If EEPROM is not marked present, init the IGP 3 PHY manually */
if (hw->mac.type <= e1000_ich9lan) {
if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
(hw->phy.type == e1000_phy_igp_3)) {
e1000e_phy_init_script_igp3(hw);
}
} else {
if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
/* Maybe we should do a basic PHY config */
e_dbg("EEPROM not present\n");
ret_val = -E1000_ERR_CONFIG;
}
}
return ret_val;
}
/**
* e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
* @hw: pointer to the HW structure
*
* In the case of a PHY power down to save power, or to turn off link during a
* driver unload, or wake on lan is not enabled, remove the link.
**/
static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
{
/* If the management interface is not enabled, then power down */
if (!(hw->mac.ops.check_mng_mode(hw) ||
hw->phy.ops.check_reset_block(hw)))
e1000_power_down_phy_copper(hw);
}
/**
* e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
* @hw: pointer to the HW structure
*
* Clears hardware counters specific to the silicon family and calls
* clear_hw_cntrs_generic to clear all general purpose counters.
**/
static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
{
u16 phy_data;
s32 ret_val;
e1000e_clear_hw_cntrs_base(hw);
er32(ALGNERRC);
er32(RXERRC);
er32(TNCRS);
er32(CEXTERR);
er32(TSCTC);
er32(TSCTFC);
er32(MGTPRC);
er32(MGTPDC);
er32(MGTPTC);
er32(IAC);
er32(ICRXOC);
/* Clear PHY statistics registers */
if ((hw->phy.type == e1000_phy_82578) ||
(hw->phy.type == e1000_phy_82579) ||
(hw->phy.type == e1000_phy_82577)) {
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return;
ret_val = hw->phy.ops.set_page(hw,
HV_STATS_PAGE << IGP_PAGE_SHIFT);
if (ret_val)
goto release;
hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
release:
hw->phy.ops.release(hw);
}
}
static const struct e1000_mac_operations ich8_mac_ops = {
.id_led_init = e1000e_id_led_init,
/* check_mng_mode dependent on mac type */
.check_for_link = e1000_check_for_copper_link_ich8lan,
/* cleanup_led dependent on mac type */
.clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
.get_bus_info = e1000_get_bus_info_ich8lan,
.set_lan_id = e1000_set_lan_id_single_port,
.get_link_up_info = e1000_get_link_up_info_ich8lan,
/* led_on dependent on mac type */
/* led_off dependent on mac type */
.update_mc_addr_list = e1000e_update_mc_addr_list_generic,
.reset_hw = e1000_reset_hw_ich8lan,
.init_hw = e1000_init_hw_ich8lan,
.setup_link = e1000_setup_link_ich8lan,
.setup_physical_interface= e1000_setup_copper_link_ich8lan,
/* id_led_init dependent on mac type */
};
static const struct e1000_phy_operations ich8_phy_ops = {
.acquire = e1000_acquire_swflag_ich8lan,
.check_reset_block = e1000_check_reset_block_ich8lan,
.commit = NULL,
.get_cfg_done = e1000_get_cfg_done_ich8lan,
.get_cable_length = e1000e_get_cable_length_igp_2,
.read_reg = e1000e_read_phy_reg_igp,
.release = e1000_release_swflag_ich8lan,
.reset = e1000_phy_hw_reset_ich8lan,
.set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
.set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
.write_reg = e1000e_write_phy_reg_igp,
};
static const struct e1000_nvm_operations ich8_nvm_ops = {
.acquire = e1000_acquire_nvm_ich8lan,
.read = e1000_read_nvm_ich8lan,
.release = e1000_release_nvm_ich8lan,
.update = e1000_update_nvm_checksum_ich8lan,
.valid_led_default = e1000_valid_led_default_ich8lan,
.validate = e1000_validate_nvm_checksum_ich8lan,
.write = e1000_write_nvm_ich8lan,
};
const struct e1000_info e1000_ich8_info = {
.mac = e1000_ich8lan,
.flags = FLAG_HAS_WOL
| FLAG_IS_ICH
| FLAG_HAS_CTRLEXT_ON_LOAD
| FLAG_HAS_AMT
| FLAG_HAS_FLASH
| FLAG_APME_IN_WUC,
.pba = 8,
.max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
.get_variants = e1000_get_variants_ich8lan,
.mac_ops = &ich8_mac_ops,
.phy_ops = &ich8_phy_ops,
.nvm_ops = &ich8_nvm_ops,
};
const struct e1000_info e1000_ich9_info = {
.mac = e1000_ich9lan,
.flags = FLAG_HAS_JUMBO_FRAMES
| FLAG_IS_ICH
| FLAG_HAS_WOL
| FLAG_HAS_CTRLEXT_ON_LOAD
| FLAG_HAS_AMT
| FLAG_HAS_ERT
| FLAG_HAS_FLASH
| FLAG_APME_IN_WUC,
.pba = 10,
.max_hw_frame_size = DEFAULT_JUMBO,
.get_variants = e1000_get_variants_ich8lan,
.mac_ops = &ich8_mac_ops,
.phy_ops = &ich8_phy_ops,
.nvm_ops = &ich8_nvm_ops,
};
const struct e1000_info e1000_ich10_info = {
.mac = e1000_ich10lan,
.flags = FLAG_HAS_JUMBO_FRAMES
| FLAG_IS_ICH
| FLAG_HAS_WOL
| FLAG_HAS_CTRLEXT_ON_LOAD
| FLAG_HAS_AMT
| FLAG_HAS_ERT
| FLAG_HAS_FLASH
| FLAG_APME_IN_WUC,
.pba = 10,
.max_hw_frame_size = DEFAULT_JUMBO,
.get_variants = e1000_get_variants_ich8lan,
.mac_ops = &ich8_mac_ops,
.phy_ops = &ich8_phy_ops,
.nvm_ops = &ich8_nvm_ops,
};
const struct e1000_info e1000_pch_info = {
.mac = e1000_pchlan,
.flags = FLAG_IS_ICH
| FLAG_HAS_WOL
| FLAG_HAS_CTRLEXT_ON_LOAD
| FLAG_HAS_AMT
| FLAG_HAS_FLASH
| FLAG_HAS_JUMBO_FRAMES
| FLAG_DISABLE_FC_PAUSE_TIME /* errata */
| FLAG_APME_IN_WUC,
.flags2 = FLAG2_HAS_PHY_STATS,
.pba = 26,
.max_hw_frame_size = 4096,
.get_variants = e1000_get_variants_ich8lan,
.mac_ops = &ich8_mac_ops,
.phy_ops = &ich8_phy_ops,
.nvm_ops = &ich8_nvm_ops,
};
const struct e1000_info e1000_pch2_info = {
.mac = e1000_pch2lan,
.flags = FLAG_IS_ICH
| FLAG_HAS_WOL
| FLAG_HAS_CTRLEXT_ON_LOAD
| FLAG_HAS_AMT
| FLAG_HAS_FLASH
| FLAG_HAS_JUMBO_FRAMES
| FLAG_APME_IN_WUC,
.flags2 = FLAG2_HAS_PHY_STATS
| FLAG2_HAS_EEE,
.pba = 26,
.max_hw_frame_size = DEFAULT_JUMBO,
.get_variants = e1000_get_variants_ich8lan,
.mac_ops = &ich8_mac_ops,
.phy_ops = &ich8_phy_ops,
.nvm_ops = &ich8_nvm_ops,
};
-------------- n?chster Teil --------------
/*******************************************************************************
Intel PRO/1000 Linux driver
Copyright(c) 1999 - 2011 Intel Corporation.
This program is free software; you can redistribute it and/or modify it
under the terms and conditions of the GNU General Public License,
version 2, as published by the Free Software Foundation.
This program is distributed in the hope it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
The full GNU General Public License is included in this distribution in
the file called "COPYING".
Contact Information:
Linux NICS <linux.nics at intel.com>
e1000-devel Mailing List <e1000-devel at lists.sourceforge.net>
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*******************************************************************************/
#include "e1000.h"
enum e1000_mng_mode {
e1000_mng_mode_none = 0,
e1000_mng_mode_asf,
e1000_mng_mode_pt,
e1000_mng_mode_ipmi,
e1000_mng_mode_host_if_only
};
#define E1000_FACTPS_MNGCG 0x20000000
/* Intel(R) Active Management Technology signature */
#define E1000_IAMT_SIGNATURE 0x544D4149
/**
* e1000e_get_bus_info_pcie - Get PCIe bus information
* @hw: pointer to the HW structure
*
* Determines and stores the system bus information for a particular
* network interface. The following bus information is determined and stored:
* bus speed, bus width, type (PCIe), and PCIe function.
**/
s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
struct e1000_bus_info *bus = &hw->bus;
struct e1000_adapter *adapter = hw->adapter;
u16 pcie_link_status, cap_offset;
cap_offset = adapter->pdev->pcie_cap;
if (!cap_offset) {
bus->width = e1000_bus_width_unknown;
} else {
pci_read_config_word(adapter->pdev,
cap_offset + PCIE_LINK_STATUS,
&pcie_link_status);
bus->width = (enum e1000_bus_width)((pcie_link_status &
PCIE_LINK_WIDTH_MASK) >>
PCIE_LINK_WIDTH_SHIFT);
}
mac->ops.set_lan_id(hw);
return 0;
}
/**
* e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
*
* @hw: pointer to the HW structure
*
* Determines the LAN function id by reading memory-mapped registers
* and swaps the port value if requested.
**/
void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
{
struct e1000_bus_info *bus = &hw->bus;
u32 reg;
/*
* The status register reports the correct function number
* for the device regardless of function swap state.
*/
reg = er32(STATUS);
bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
}
/**
* e1000_set_lan_id_single_port - Set LAN id for a single port device
* @hw: pointer to the HW structure
*
* Sets the LAN function id to zero for a single port device.
**/
void e1000_set_lan_id_single_port(struct e1000_hw *hw)
{
struct e1000_bus_info *bus = &hw->bus;
bus->func = 0;
}
/**
* e1000_clear_vfta_generic - Clear VLAN filter table
* @hw: pointer to the HW structure
*
* Clears the register array which contains the VLAN filter table by
* setting all the values to 0.
**/
void e1000_clear_vfta_generic(struct e1000_hw *hw)
{
u32 offset;
for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
e1e_flush();
}
}
/**
* e1000_write_vfta_generic - Write value to VLAN filter table
* @hw: pointer to the HW structure
* @offset: register offset in VLAN filter table
* @value: register value written to VLAN filter table
*
* Writes value at the given offset in the register array which stores
* the VLAN filter table.
**/
void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
{
E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
e1e_flush();
}
/**
* e1000e_init_rx_addrs - Initialize receive address's
* @hw: pointer to the HW structure
* @rar_count: receive address registers
*
* Setup the receive address registers by setting the base receive address
* register to the devices MAC address and clearing all the other receive
* address registers to 0.
**/
void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
{
u32 i;
u8 mac_addr[ETH_ALEN] = {0};
/* Setup the receive address */
e_dbg("Programming MAC Address into RAR[0]\n");
e1000e_rar_set(hw, hw->mac.addr, 0);
/* Zero out the other (rar_entry_count - 1) receive addresses */
e_dbg("Clearing RAR[1-%u]\n", rar_count-1);
for (i = 1; i < rar_count; i++)
e1000e_rar_set(hw, mac_addr, i);
}
/**
* e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
* @hw: pointer to the HW structure
*
* Checks the nvm for an alternate MAC address. An alternate MAC address
* can be setup by pre-boot software and must be treated like a permanent
* address and must override the actual permanent MAC address. If an
* alternate MAC address is found it is programmed into RAR0, replacing
* the permanent address that was installed into RAR0 by the Si on reset.
* This function will return SUCCESS unless it encounters an error while
* reading the EEPROM.
**/
s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
{
u32 i;
s32 ret_val = 0;
u16 offset, nvm_alt_mac_addr_offset, nvm_data;
u8 alt_mac_addr[ETH_ALEN];
ret_val = e1000_read_nvm(hw, NVM_COMPAT, 1, &nvm_data);
if (ret_val)
goto out;
/* Check for LOM (vs. NIC) or one of two valid mezzanine cards */
if (!((nvm_data & NVM_COMPAT_LOM) ||
(hw->adapter->pdev->device == E1000_DEV_ID_82571EB_SERDES_DUAL) ||
(hw->adapter->pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD) ||
(hw->adapter->pdev->device == E1000_DEV_ID_82571EB_SERDES)))
goto out;
ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
&nvm_alt_mac_addr_offset);
if (ret_val) {
e_dbg("NVM Read Error\n");
goto out;
}
if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
(nvm_alt_mac_addr_offset == 0x0000))
/* There is no Alternate MAC Address */
goto out;
if (hw->bus.func == E1000_FUNC_1)
nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
for (i = 0; i < ETH_ALEN; i += 2) {
offset = nvm_alt_mac_addr_offset + (i >> 1);
ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
if (ret_val) {
e_dbg("NVM Read Error\n");
goto out;
}
alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
}
/* if multicast bit is set, the alternate address will not be used */
if (is_multicast_ether_addr(alt_mac_addr)) {
e_dbg("Ignoring Alternate Mac Address with MC bit set\n");
goto out;
}
/*
* We have a valid alternate MAC address, and we want to treat it the
* same as the normal permanent MAC address stored by the HW into the
* RAR. Do this by mapping this address into RAR0.
*/
e1000e_rar_set(hw, alt_mac_addr, 0);
out:
return ret_val;
}
/**
* e1000e_rar_set - Set receive address register
* @hw: pointer to the HW structure
* @addr: pointer to the receive address
* @index: receive address array register
*
* Sets the receive address array register at index to the address passed
* in by addr.
**/
void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
{
u32 rar_low, rar_high;
/*
* HW expects these in little endian so we reverse the byte order
* from network order (big endian) to little endian
*/
rar_low = ((u32) addr[0] |
((u32) addr[1] << 8) |
((u32) addr[2] << 16) | ((u32) addr[3] << 24));
rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
/* If MAC address zero, no need to set the AV bit */
if (rar_low || rar_high)
rar_high |= E1000_RAH_AV;
/*
* Some bridges will combine consecutive 32-bit writes into
* a single burst write, which will malfunction on some parts.
* The flushes avoid this.
*/
ew32(RAL(index), rar_low);
e1e_flush();
ew32(RAH(index), rar_high);
e1e_flush();
}
/**
* e1000_hash_mc_addr - Generate a multicast hash value
* @hw: pointer to the HW structure
* @mc_addr: pointer to a multicast address
*
* Generates a multicast address hash value which is used to determine
* the multicast filter table array address and new table value. See
* e1000_mta_set_generic()
**/
static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
{
u32 hash_value, hash_mask;
u8 bit_shift = 0;
/* Register count multiplied by bits per register */
hash_mask = (hw->mac.mta_reg_count * 32) - 1;
/*
* For a mc_filter_type of 0, bit_shift is the number of left-shifts
* where 0xFF would still fall within the hash mask.
*/
while (hash_mask >> bit_shift != 0xFF)
bit_shift++;
/*
* The portion of the address that is used for the hash table
* is determined by the mc_filter_type setting.
* The algorithm is such that there is a total of 8 bits of shifting.
* The bit_shift for a mc_filter_type of 0 represents the number of
* left-shifts where the MSB of mc_addr[5] would still fall within
* the hash_mask. Case 0 does this exactly. Since there are a total
* of 8 bits of shifting, then mc_addr[4] will shift right the
* remaining number of bits. Thus 8 - bit_shift. The rest of the
* cases are a variation of this algorithm...essentially raising the
* number of bits to shift mc_addr[5] left, while still keeping the
* 8-bit shifting total.
*
* For example, given the following Destination MAC Address and an
* mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
* we can see that the bit_shift for case 0 is 4. These are the hash
* values resulting from each mc_filter_type...
* [0] [1] [2] [3] [4] [5]
* 01 AA 00 12 34 56
* LSB MSB
*
* case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
* case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
* case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
* case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
*/
switch (hw->mac.mc_filter_type) {
default:
case 0:
break;
case 1:
bit_shift += 1;
break;
case 2:
bit_shift += 2;
break;
case 3:
bit_shift += 4;
break;
}
hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
(((u16) mc_addr[5]) << bit_shift)));
return hash_value;
}
/**
* e1000e_update_mc_addr_list_generic - Update Multicast addresses
* @hw: pointer to the HW structure
* @mc_addr_list: array of multicast addresses to program
* @mc_addr_count: number of multicast addresses to program
*
* Updates entire Multicast Table Array.
* The caller must have a packed mc_addr_list of multicast addresses.
**/
void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw,
u8 *mc_addr_list, u32 mc_addr_count)
{
u32 hash_value, hash_bit, hash_reg;
int i;
/* clear mta_shadow */
memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
/* update mta_shadow from mc_addr_list */
for (i = 0; (u32) i < mc_addr_count; i++) {
hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
hash_bit = hash_value & 0x1F;
hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
mc_addr_list += (ETH_ALEN);
}
/* replace the entire MTA table */
for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
e1e_flush();
}
/**
* e1000e_clear_hw_cntrs_base - Clear base hardware counters
* @hw: pointer to the HW structure
*
* Clears the base hardware counters by reading the counter registers.
**/
void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw)
{
er32(CRCERRS);
er32(SYMERRS);
er32(MPC);
er32(SCC);
er32(ECOL);
er32(MCC);
er32(LATECOL);
er32(COLC);
er32(DC);
er32(SEC);
er32(RLEC);
er32(XONRXC);
er32(XONTXC);
er32(XOFFRXC);
er32(XOFFTXC);
er32(FCRUC);
er32(GPRC);
er32(BPRC);
er32(MPRC);
er32(GPTC);
er32(GORCL);
er32(GORCH);
er32(GOTCL);
er32(GOTCH);
er32(RNBC);
er32(RUC);
er32(RFC);
er32(ROC);
er32(RJC);
er32(TORL);
er32(TORH);
er32(TOTL);
er32(TOTH);
er32(TPR);
er32(TPT);
er32(MPTC);
er32(BPTC);
}
/**
* e1000e_check_for_copper_link - Check for link (Copper)
* @hw: pointer to the HW structure
*
* Checks to see of the link status of the hardware has changed. If a
* change in link status has been detected, then we read the PHY registers
* to get the current speed/duplex if link exists.
**/
s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
s32 ret_val;
bool link;
/*
* We only want to go out to the PHY registers to see if Auto-Neg
* has completed and/or if our link status has changed. The
* get_link_status flag is set upon receiving a Link Status
* Change or Rx Sequence Error interrupt.
*/
if (!mac->get_link_status)
return 0;
/*
* First we want to see if the MII Status Register reports
* link. If so, then we want to get the current speed/duplex
* of the PHY.
*/
ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
if (ret_val)
return ret_val;
if (!link)
return ret_val; /* No link detected */
mac->get_link_status = false;
/*
* Check if there was DownShift, must be checked
* immediately after link-up
*/
e1000e_check_downshift(hw);
/*
* If we are forcing speed/duplex, then we simply return since
* we have already determined whether we have link or not.
*/
if (!mac->autoneg) {
ret_val = -E1000_ERR_CONFIG;
return ret_val;
}
/*
* Auto-Neg is enabled. Auto Speed Detection takes care
* of MAC speed/duplex configuration. So we only need to
* configure Collision Distance in the MAC.
*/
e1000e_config_collision_dist(hw);
/*
* Configure Flow Control now that Auto-Neg has completed.
* First, we need to restore the desired flow control
* settings because we may have had to re-autoneg with a
* different link partner.
*/
ret_val = e1000e_config_fc_after_link_up(hw);
if (ret_val)
e_dbg("Error configuring flow control\n");
return ret_val;
}
/**
* e1000e_check_for_fiber_link - Check for link (Fiber)
* @hw: pointer to the HW structure
*
* Checks for link up on the hardware. If link is not up and we have
* a signal, then we need to force link up.
**/
s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
u32 rxcw;
u32 ctrl;
u32 status;
s32 ret_val;
ctrl = er32(CTRL);
status = er32(STATUS);
rxcw = er32(RXCW);
/*
* If we don't have link (auto-negotiation failed or link partner
* cannot auto-negotiate), the cable is plugged in (we have signal),
* and our link partner is not trying to auto-negotiate with us (we
* are receiving idles or data), we need to force link up. We also
* need to give auto-negotiation time to complete, in case the cable
* was just plugged in. The autoneg_failed flag does this.
*/
/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
if ((ctrl & E1000_CTRL_SWDPIN1) && (!(status & E1000_STATUS_LU)) &&
(!(rxcw & E1000_RXCW_C))) {
if (mac->autoneg_failed == 0) {
mac->autoneg_failed = 1;
return 0;
}
e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
/* Disable auto-negotiation in the TXCW register */
ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
/* Force link-up and also force full-duplex. */
ctrl = er32(CTRL);
ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
ew32(CTRL, ctrl);
/* Configure Flow Control after forcing link up. */
ret_val = e1000e_config_fc_after_link_up(hw);
if (ret_val) {
e_dbg("Error configuring flow control\n");
return ret_val;
}
} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
/*
* If we are forcing link and we are receiving /C/ ordered
* sets, re-enable auto-negotiation in the TXCW register
* and disable forced link in the Device Control register
* in an attempt to auto-negotiate with our link partner.
*/
e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
ew32(TXCW, mac->txcw);
ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
mac->serdes_has_link = true;
}
return 0;
}
/**
* e1000e_check_for_serdes_link - Check for link (Serdes)
* @hw: pointer to the HW structure
*
* Checks for link up on the hardware. If link is not up and we have
* a signal, then we need to force link up.
**/
s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
u32 rxcw;
u32 ctrl;
u32 status;
s32 ret_val;
ctrl = er32(CTRL);
status = er32(STATUS);
rxcw = er32(RXCW);
/*
* If we don't have link (auto-negotiation failed or link partner
* cannot auto-negotiate), and our link partner is not trying to
* auto-negotiate with us (we are receiving idles or data),
* we need to force link up. We also need to give auto-negotiation
* time to complete.
*/
/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
if (mac->autoneg_failed == 0) {
mac->autoneg_failed = 1;
return 0;
}
e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
/* Disable auto-negotiation in the TXCW register */
ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
/* Force link-up and also force full-duplex. */
ctrl = er32(CTRL);
ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
ew32(CTRL, ctrl);
/* Configure Flow Control after forcing link up. */
ret_val = e1000e_config_fc_after_link_up(hw);
if (ret_val) {
e_dbg("Error configuring flow control\n");
return ret_val;
}
} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
/*
* If we are forcing link and we are receiving /C/ ordered
* sets, re-enable auto-negotiation in the TXCW register
* and disable forced link in the Device Control register
* in an attempt to auto-negotiate with our link partner.
*/
e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
ew32(TXCW, mac->txcw);
ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
mac->serdes_has_link = true;
} else if (!(E1000_TXCW_ANE & er32(TXCW))) {
/*
* If we force link for non-auto-negotiation switch, check
* link status based on MAC synchronization for internal
* serdes media type.
*/
/* SYNCH bit and IV bit are sticky. */
udelay(10);
rxcw = er32(RXCW);
if (rxcw & E1000_RXCW_SYNCH) {
if (!(rxcw & E1000_RXCW_IV)) {
mac->serdes_has_link = true;
e_dbg("SERDES: Link up - forced.\n");
}
} else {
mac->serdes_has_link = false;
e_dbg("SERDES: Link down - force failed.\n");
}
}
if (E1000_TXCW_ANE & er32(TXCW)) {
status = er32(STATUS);
if (status & E1000_STATUS_LU) {
/* SYNCH bit and IV bit are sticky, so reread rxcw. */
udelay(10);
rxcw = er32(RXCW);
if (rxcw & E1000_RXCW_SYNCH) {
if (!(rxcw & E1000_RXCW_IV)) {
mac->serdes_has_link = true;
e_dbg("SERDES: Link up - autoneg "
"completed successfully.\n");
} else {
mac->serdes_has_link = false;
e_dbg("SERDES: Link down - invalid"
"codewords detected in autoneg.\n");
}
} else {
mac->serdes_has_link = false;
e_dbg("SERDES: Link down - no sync.\n");
}
} else {
mac->serdes_has_link = false;
e_dbg("SERDES: Link down - autoneg failed\n");
}
}
return 0;
}
/**
* e1000_set_default_fc_generic - Set flow control default values
* @hw: pointer to the HW structure
*
* Read the EEPROM for the default values for flow control and store the
* values.
**/
static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
{
s32 ret_val;
u16 nvm_data;
/*
* Read and store word 0x0F of the EEPROM. This word contains bits
* that determine the hardware's default PAUSE (flow control) mode,
* a bit that determines whether the HW defaults to enabling or
* disabling auto-negotiation, and the direction of the
* SW defined pins. If there is no SW over-ride of the flow
* control setting, then the variable hw->fc will
* be initialized based on a value in the EEPROM.
*/
ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
if (ret_val) {
e_dbg("NVM Read Error\n");
return ret_val;
}
if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
hw->fc.requested_mode = e1000_fc_none;
else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
NVM_WORD0F_ASM_DIR)
hw->fc.requested_mode = e1000_fc_tx_pause;
else
hw->fc.requested_mode = e1000_fc_full;
return 0;
}
/**
* e1000e_setup_link - Setup flow control and link settings
* @hw: pointer to the HW structure
*
* Determines which flow control settings to use, then configures flow
* control. Calls the appropriate media-specific link configuration
* function. Assuming the adapter has a valid link partner, a valid link
* should be established. Assumes the hardware has previously been reset
* and the transmitter and receiver are not enabled.
**/
s32 e1000e_setup_link(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
s32 ret_val;
/*
* In the case of the phy reset being blocked, we already have a link.
* We do not need to set it up again.
*/
if (e1000_check_reset_block(hw))
return 0;
/*
* If requested flow control is set to default, set flow control
* based on the EEPROM flow control settings.
*/
if (hw->fc.requested_mode == e1000_fc_default) {
ret_val = e1000_set_default_fc_generic(hw);
if (ret_val)
return ret_val;
}
/*
* Save off the requested flow control mode for use later. Depending
* on the link partner's capabilities, we may or may not use this mode.
*/
hw->fc.current_mode = hw->fc.requested_mode;
e_dbg("After fix-ups FlowControl is now = %x\n",
hw->fc.current_mode);
/* Call the necessary media_type subroutine to configure the link. */
ret_val = mac->ops.setup_physical_interface(hw);
if (ret_val)
return ret_val;
/*
* Initialize the flow control address, type, and PAUSE timer
* registers to their default values. This is done even if flow
* control is disabled, because it does not hurt anything to
* initialize these registers.
*/
e_dbg("Initializing the Flow Control address, type and timer regs\n");
ew32(FCT, FLOW_CONTROL_TYPE);
ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
ew32(FCTTV, hw->fc.pause_time);
return e1000e_set_fc_watermarks(hw);
}
/**
* e1000_commit_fc_settings_generic - Configure flow control
* @hw: pointer to the HW structure
*
* Write the flow control settings to the Transmit Config Word Register (TXCW)
* base on the flow control settings in e1000_mac_info.
**/
static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
u32 txcw;
/*
* Check for a software override of the flow control settings, and
* setup the device accordingly. If auto-negotiation is enabled, then
* software will have to set the "PAUSE" bits to the correct value in
* the Transmit Config Word Register (TXCW) and re-start auto-
* negotiation. However, if auto-negotiation is disabled, then
* software will have to manually configure the two flow control enable
* bits in the CTRL register.
*
* The possible values of the "fc" parameter are:
* 0: Flow control is completely disabled
* 1: Rx flow control is enabled (we can receive pause frames,
* but not send pause frames).
* 2: Tx flow control is enabled (we can send pause frames but we
* do not support receiving pause frames).
* 3: Both Rx and Tx flow control (symmetric) are enabled.
*/
switch (hw->fc.current_mode) {
case e1000_fc_none:
/* Flow control completely disabled by a software over-ride. */
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
break;
case e1000_fc_rx_pause:
/*
* Rx Flow control is enabled and Tx Flow control is disabled
* by a software over-ride. Since there really isn't a way to
* advertise that we are capable of Rx Pause ONLY, we will
* advertise that we support both symmetric and asymmetric Rx
* PAUSE. Later, we will disable the adapter's ability to send
* PAUSE frames.
*/
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
break;
case e1000_fc_tx_pause:
/*
* Tx Flow control is enabled, and Rx Flow control is disabled,
* by a software over-ride.
*/
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
break;
case e1000_fc_full:
/*
* Flow control (both Rx and Tx) is enabled by a software
* over-ride.
*/
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
break;
default:
e_dbg("Flow control param set incorrectly\n");
return -E1000_ERR_CONFIG;
break;
}
ew32(TXCW, txcw);
mac->txcw = txcw;
return 0;
}
/**
* e1000_poll_fiber_serdes_link_generic - Poll for link up
* @hw: pointer to the HW structure
*
* Polls for link up by reading the status register, if link fails to come
* up with auto-negotiation, then the link is forced if a signal is detected.
**/
static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
u32 i, status;
s32 ret_val;
/*
* If we have a signal (the cable is plugged in, or assumed true for
* serdes media) then poll for a "Link-Up" indication in the Device
* Status Register. Time-out if a link isn't seen in 500 milliseconds
* seconds (Auto-negotiation should complete in less than 500
* milliseconds even if the other end is doing it in SW).
*/
for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
usleep_range(10000, 20000);
status = er32(STATUS);
if (status & E1000_STATUS_LU)
break;
}
if (i == FIBER_LINK_UP_LIMIT) {
e_dbg("Never got a valid link from auto-neg!!!\n");
mac->autoneg_failed = 1;
/*
* AutoNeg failed to achieve a link, so we'll call
* mac->check_for_link. This routine will force the
* link up if we detect a signal. This will allow us to
* communicate with non-autonegotiating link partners.
*/
ret_val = mac->ops.check_for_link(hw);
if (ret_val) {
e_dbg("Error while checking for link\n");
return ret_val;
}
mac->autoneg_failed = 0;
} else {
mac->autoneg_failed = 0;
e_dbg("Valid Link Found\n");
}
return 0;
}
/**
* e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
* @hw: pointer to the HW structure
*
* Configures collision distance and flow control for fiber and serdes
* links. Upon successful setup, poll for link.
**/
s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
{
u32 ctrl;
s32 ret_val;
ctrl = er32(CTRL);
/* Take the link out of reset */
ctrl &= ~E1000_CTRL_LRST;
e1000e_config_collision_dist(hw);
ret_val = e1000_commit_fc_settings_generic(hw);
if (ret_val)
return ret_val;
/*
* Since auto-negotiation is enabled, take the link out of reset (the
* link will be in reset, because we previously reset the chip). This
* will restart auto-negotiation. If auto-negotiation is successful
* then the link-up status bit will be set and the flow control enable
* bits (RFCE and TFCE) will be set according to their negotiated value.
*/
e_dbg("Auto-negotiation enabled\n");
ew32(CTRL, ctrl);
e1e_flush();
usleep_range(1000, 2000);
/*
* For these adapters, the SW definable pin 1 is set when the optics
* detect a signal. If we have a signal, then poll for a "Link-Up"
* indication.
*/
if (hw->phy.media_type == e1000_media_type_internal_serdes ||
(er32(CTRL) & E1000_CTRL_SWDPIN1)) {
ret_val = e1000_poll_fiber_serdes_link_generic(hw);
} else {
e_dbg("No signal detected\n");
}
return 0;
}
/**
* e1000e_config_collision_dist - Configure collision distance
* @hw: pointer to the HW structure
*
* Configures the collision distance to the default value and is used
* during link setup. Currently no func pointer exists and all
* implementations are handled in the generic version of this function.
**/
void e1000e_config_collision_dist(struct e1000_hw *hw)
{
u32 tctl;
tctl = er32(TCTL);
tctl &= ~E1000_TCTL_COLD;
tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
ew32(TCTL, tctl);
e1e_flush();
}
/**
* e1000e_set_fc_watermarks - Set flow control high/low watermarks
* @hw: pointer to the HW structure
*
* Sets the flow control high/low threshold (watermark) registers. If
* flow control XON frame transmission is enabled, then set XON frame
* transmission as well.
**/
s32 e1000e_set_fc_watermarks(struct e1000_hw *hw)
{
u32 fcrtl = 0, fcrth = 0;
/*
* Set the flow control receive threshold registers. Normally,
* these registers will be set to a default threshold that may be
* adjusted later by the driver's runtime code. However, if the
* ability to transmit pause frames is not enabled, then these
* registers will be set to 0.
*/
if (hw->fc.current_mode & e1000_fc_tx_pause) {
/*
* We need to set up the Receive Threshold high and low water
* marks as well as (optionally) enabling the transmission of
* XON frames.
*/
fcrtl = hw->fc.low_water;
fcrtl |= E1000_FCRTL_XONE;
fcrth = hw->fc.high_water;
}
ew32(FCRTL, fcrtl);
ew32(FCRTH, fcrth);
return 0;
}
/**
* e1000e_force_mac_fc - Force the MAC's flow control settings
* @hw: pointer to the HW structure
*
* Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
* device control register to reflect the adapter settings. TFCE and RFCE
* need to be explicitly set by software when a copper PHY is used because
* autonegotiation is managed by the PHY rather than the MAC. Software must
* also configure these bits when link is forced on a fiber connection.
**/
s32 e1000e_force_mac_fc(struct e1000_hw *hw)
{
u32 ctrl;
ctrl = er32(CTRL);
/*
* Because we didn't get link via the internal auto-negotiation
* mechanism (we either forced link or we got link via PHY
* auto-neg), we have to manually enable/disable transmit an
* receive flow control.
*
* The "Case" statement below enables/disable flow control
* according to the "hw->fc.current_mode" parameter.
*
* The possible values of the "fc" parameter are:
* 0: Flow control is completely disabled
* 1: Rx flow control is enabled (we can receive pause
* frames but not send pause frames).
* 2: Tx flow control is enabled (we can send pause frames
* frames but we do not receive pause frames).
* 3: Both Rx and Tx flow control (symmetric) is enabled.
* other: No other values should be possible at this point.
*/
e_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
switch (hw->fc.current_mode) {
case e1000_fc_none:
ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
break;
case e1000_fc_rx_pause:
ctrl &= (~E1000_CTRL_TFCE);
ctrl |= E1000_CTRL_RFCE;
break;
case e1000_fc_tx_pause:
ctrl &= (~E1000_CTRL_RFCE);
ctrl |= E1000_CTRL_TFCE;
break;
case e1000_fc_full:
ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
break;
default:
e_dbg("Flow control param set incorrectly\n");
return -E1000_ERR_CONFIG;
}
ew32(CTRL, ctrl);
return 0;
}
/**
* e1000e_config_fc_after_link_up - Configures flow control after link
* @hw: pointer to the HW structure
*
* Checks the status of auto-negotiation after link up to ensure that the
* speed and duplex were not forced. If the link needed to be forced, then
* flow control needs to be forced also. If auto-negotiation is enabled
* and did not fail, then we configure flow control based on our link
* partner.
**/
s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
s32 ret_val = 0;
u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
u16 speed, duplex;
/*
* Check for the case where we have fiber media and auto-neg failed
* so we had to force link. In this case, we need to force the
* configuration of the MAC to match the "fc" parameter.
*/
if (mac->autoneg_failed) {
if (hw->phy.media_type == e1000_media_type_fiber ||
hw->phy.media_type == e1000_media_type_internal_serdes)
ret_val = e1000e_force_mac_fc(hw);
} else {
if (hw->phy.media_type == e1000_media_type_copper)
ret_val = e1000e_force_mac_fc(hw);
}
if (ret_val) {
e_dbg("Error forcing flow control settings\n");
return ret_val;
}
/*
* Check for the case where we have copper media and auto-neg is
* enabled. In this case, we need to check and see if Auto-Neg
* has completed, and if so, how the PHY and link partner has
* flow control configured.
*/
if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
/*
* Read the MII Status Register and check to see if AutoNeg
* has completed. We read this twice because this reg has
* some "sticky" (latched) bits.
*/
ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
if (ret_val)
return ret_val;
ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
if (ret_val)
return ret_val;
if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
e_dbg("Copper PHY and Auto Neg "
"has not completed.\n");
return ret_val;
}
/*
* The AutoNeg process has completed, so we now need to
* read both the Auto Negotiation Advertisement
* Register (Address 4) and the Auto_Negotiation Base
* Page Ability Register (Address 5) to determine how
* flow control was negotiated.
*/
ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg);
if (ret_val)
return ret_val;
ret_val =
e1e_rphy(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg);
if (ret_val)
return ret_val;
/*
* Two bits in the Auto Negotiation Advertisement Register
* (Address 4) and two bits in the Auto Negotiation Base
* Page Ability Register (Address 5) determine flow control
* for both the PHY and the link partner. The following
* table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
* 1999, describes these PAUSE resolution bits and how flow
* control is determined based upon these settings.
* NOTE: DC = Don't Care
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
*-------|---------|-------|---------|--------------------
* 0 | 0 | DC | DC | e1000_fc_none
* 0 | 1 | 0 | DC | e1000_fc_none
* 0 | 1 | 1 | 0 | e1000_fc_none
* 0 | 1 | 1 | 1 | e1000_fc_tx_pause
* 1 | 0 | 0 | DC | e1000_fc_none
* 1 | DC | 1 | DC | e1000_fc_full
* 1 | 1 | 0 | 0 | e1000_fc_none
* 1 | 1 | 0 | 1 | e1000_fc_rx_pause
*
* Are both PAUSE bits set to 1? If so, this implies
* Symmetric Flow Control is enabled at both ends. The
* ASM_DIR bits are irrelevant per the spec.
*
* For Symmetric Flow Control:
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
*-------|---------|-------|---------|--------------------
* 1 | DC | 1 | DC | E1000_fc_full
*
*/
if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
/*
* Now we need to check if the user selected Rx ONLY
* of pause frames. In this case, we had to advertise
* FULL flow control because we could not advertise Rx
* ONLY. Hence, we must now check to see if we need to
* turn OFF the TRANSMISSION of PAUSE frames.
*/
if (hw->fc.requested_mode == e1000_fc_full) {
hw->fc.current_mode = e1000_fc_full;
e_dbg("Flow Control = FULL.\r\n");
} else {
hw->fc.current_mode = e1000_fc_rx_pause;
e_dbg("Flow Control = "
"Rx PAUSE frames only.\r\n");
}
}
/*
* For receiving PAUSE frames ONLY.
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
*-------|---------|-------|---------|--------------------
* 0 | 1 | 1 | 1 | e1000_fc_tx_pause
*/
else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
(mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
hw->fc.current_mode = e1000_fc_tx_pause;
e_dbg("Flow Control = Tx PAUSE frames only.\r\n");
}
/*
* For transmitting PAUSE frames ONLY.
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
*-------|---------|-------|---------|--------------------
* 1 | 1 | 0 | 1 | e1000_fc_rx_pause
*/
else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
(mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
!(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
hw->fc.current_mode = e1000_fc_rx_pause;
e_dbg("Flow Control = Rx PAUSE frames only.\r\n");
} else {
/*
* Per the IEEE spec, at this point flow control
* should be disabled.
*/
hw->fc.current_mode = e1000_fc_none;
e_dbg("Flow Control = NONE.\r\n");
}
/*
* Now we need to do one last check... If we auto-
* negotiated to HALF DUPLEX, flow control should not be
* enabled per IEEE 802.3 spec.
*/
ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
if (ret_val) {
e_dbg("Error getting link speed and duplex\n");
return ret_val;
}
if (duplex == HALF_DUPLEX)
hw->fc.current_mode = e1000_fc_none;
/*
* Now we call a subroutine to actually force the MAC
* controller to use the correct flow control settings.
*/
ret_val = e1000e_force_mac_fc(hw);
if (ret_val) {
e_dbg("Error forcing flow control settings\n");
return ret_val;
}
}
return 0;
}
/**
* e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex
* @hw: pointer to the HW structure
* @speed: stores the current speed
* @duplex: stores the current duplex
*
* Read the status register for the current speed/duplex and store the current
* speed and duplex for copper connections.
**/
s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, u16 *duplex)
{
u32 status;
status = er32(STATUS);
if (status & E1000_STATUS_SPEED_1000)
*speed = SPEED_1000;
else if (status & E1000_STATUS_SPEED_100)
*speed = SPEED_100;
else
*speed = SPEED_10;
if (status & E1000_STATUS_FD)
*duplex = FULL_DUPLEX;
else
*duplex = HALF_DUPLEX;
e_dbg("%u Mbps, %s Duplex\n",
*speed == SPEED_1000 ? 1000 : *speed == SPEED_100 ? 100 : 10,
*duplex == FULL_DUPLEX ? "Full" : "Half");
return 0;
}
/**
* e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex
* @hw: pointer to the HW structure
* @speed: stores the current speed
* @duplex: stores the current duplex
*
* Sets the speed and duplex to gigabit full duplex (the only possible option)
* for fiber/serdes links.
**/
s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed, u16 *duplex)
{
*speed = SPEED_1000;
*duplex = FULL_DUPLEX;
return 0;
}
/**
* e1000e_get_hw_semaphore - Acquire hardware semaphore
* @hw: pointer to the HW structure
*
* Acquire the HW semaphore to access the PHY or NVM
**/
s32 e1000e_get_hw_semaphore(struct e1000_hw *hw)
{
u32 swsm;
s32 timeout = hw->nvm.word_size + 1;
s32 i = 0;
/* Get the SW semaphore */
while (i < timeout) {
swsm = er32(SWSM);
if (!(swsm & E1000_SWSM_SMBI))
break;
udelay(50);
i++;
}
if (i == timeout) {
e_dbg("Driver can't access device - SMBI bit is set.\n");
return -E1000_ERR_NVM;
}
/* Get the FW semaphore. */
for (i = 0; i < timeout; i++) {
swsm = er32(SWSM);
ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
/* Semaphore acquired if bit latched */
if (er32(SWSM) & E1000_SWSM_SWESMBI)
break;
udelay(50);
}
if (i == timeout) {
/* Release semaphores */
e1000e_put_hw_semaphore(hw);
e_dbg("Driver can't access the NVM\n");
return -E1000_ERR_NVM;
}
return 0;
}
/**
* e1000e_put_hw_semaphore - Release hardware semaphore
* @hw: pointer to the HW structure
*
* Release hardware semaphore used to access the PHY or NVM
**/
void e1000e_put_hw_semaphore(struct e1000_hw *hw)
{
u32 swsm;
swsm = er32(SWSM);
swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
ew32(SWSM, swsm);
}
/**
* e1000e_get_auto_rd_done - Check for auto read completion
* @hw: pointer to the HW structure
*
* Check EEPROM for Auto Read done bit.
**/
s32 e1000e_get_auto_rd_done(struct e1000_hw *hw)
{
s32 i = 0;
while (i < AUTO_READ_DONE_TIMEOUT) {
if (er32(EECD) & E1000_EECD_AUTO_RD)
break;
usleep_range(1000, 2000);
i++;
}
if (i == AUTO_READ_DONE_TIMEOUT) {
e_dbg("Auto read by HW from NVM has not completed.\n");
return -E1000_ERR_RESET;
}
return 0;
}
/**
* e1000e_valid_led_default - Verify a valid default LED config
* @hw: pointer to the HW structure
* @data: pointer to the NVM (EEPROM)
*
* Read the EEPROM for the current default LED configuration. If the
* LED configuration is not valid, set to a valid LED configuration.
**/
s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data)
{
s32 ret_val;
ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
if (ret_val) {
e_dbg("NVM Read Error\n");
return ret_val;
}
if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
*data = ID_LED_DEFAULT;
return 0;
}
/**
* e1000e_id_led_init -
* @hw: pointer to the HW structure
*
**/
s32 e1000e_id_led_init(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
s32 ret_val;
const u32 ledctl_mask = 0x000000FF;
const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
u16 data, i, temp;
const u16 led_mask = 0x0F;
ret_val = hw->nvm.ops.valid_led_default(hw, &data);
if (ret_val)
return ret_val;
mac->ledctl_default = er32(LEDCTL);
mac->ledctl_mode1 = mac->ledctl_default;
mac->ledctl_mode2 = mac->ledctl_default;
for (i = 0; i < 4; i++) {
temp = (data >> (i << 2)) & led_mask;
switch (temp) {
case ID_LED_ON1_DEF2:
case ID_LED_ON1_ON2:
case ID_LED_ON1_OFF2:
mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
mac->ledctl_mode1 |= ledctl_on << (i << 3);
break;
case ID_LED_OFF1_DEF2:
case ID_LED_OFF1_ON2:
case ID_LED_OFF1_OFF2:
mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
mac->ledctl_mode1 |= ledctl_off << (i << 3);
break;
default:
/* Do nothing */
break;
}
switch (temp) {
case ID_LED_DEF1_ON2:
case ID_LED_ON1_ON2:
case ID_LED_OFF1_ON2:
mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
mac->ledctl_mode2 |= ledctl_on << (i << 3);
break;
case ID_LED_DEF1_OFF2:
case ID_LED_ON1_OFF2:
case ID_LED_OFF1_OFF2:
mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
mac->ledctl_mode2 |= ledctl_off << (i << 3);
break;
default:
/* Do nothing */
break;
}
}
return 0;
}
/**
* e1000e_setup_led_generic - Configures SW controllable LED
* @hw: pointer to the HW structure
*
* This prepares the SW controllable LED for use and saves the current state
* of the LED so it can be later restored.
**/
s32 e1000e_setup_led_generic(struct e1000_hw *hw)
{
u32 ledctl;
if (hw->mac.ops.setup_led != e1000e_setup_led_generic)
return -E1000_ERR_CONFIG;
if (hw->phy.media_type == e1000_media_type_fiber) {
ledctl = er32(LEDCTL);
hw->mac.ledctl_default = ledctl;
/* Turn off LED0 */
ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
E1000_LEDCTL_LED0_BLINK |
E1000_LEDCTL_LED0_MODE_MASK);
ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
E1000_LEDCTL_LED0_MODE_SHIFT);
ew32(LEDCTL, ledctl);
} else if (hw->phy.media_type == e1000_media_type_copper) {
ew32(LEDCTL, hw->mac.ledctl_mode1);
}
return 0;
}
/**
* e1000e_cleanup_led_generic - Set LED config to default operation
* @hw: pointer to the HW structure
*
* Remove the current LED configuration and set the LED configuration
* to the default value, saved from the EEPROM.
**/
s32 e1000e_cleanup_led_generic(struct e1000_hw *hw)
{
ew32(LEDCTL, hw->mac.ledctl_default);
return 0;
}
/**
* e1000e_blink_led_generic - Blink LED
* @hw: pointer to the HW structure
*
* Blink the LEDs which are set to be on.
**/
s32 e1000e_blink_led_generic(struct e1000_hw *hw)
{
u32 ledctl_blink = 0;
u32 i;
if (hw->phy.media_type == e1000_media_type_fiber) {
/* always blink LED0 for PCI-E fiber */
ledctl_blink = E1000_LEDCTL_LED0_BLINK |
(E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
} else {
/*
* set the blink bit for each LED that's "on" (0x0E)
* in ledctl_mode2
*/
ledctl_blink = hw->mac.ledctl_mode2;
for (i = 0; i < 4; i++)
if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
E1000_LEDCTL_MODE_LED_ON)
ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
(i * 8));
}
ew32(LEDCTL, ledctl_blink);
return 0;
}
/**
* e1000e_led_on_generic - Turn LED on
* @hw: pointer to the HW structure
*
* Turn LED on.
**/
s32 e1000e_led_on_generic(struct e1000_hw *hw)
{
u32 ctrl;
switch (hw->phy.media_type) {
case e1000_media_type_fiber:
ctrl = er32(CTRL);
ctrl &= ~E1000_CTRL_SWDPIN0;
ctrl |= E1000_CTRL_SWDPIO0;
ew32(CTRL, ctrl);
break;
case e1000_media_type_copper:
ew32(LEDCTL, hw->mac.ledctl_mode2);
break;
default:
break;
}
return 0;
}
/**
* e1000e_led_off_generic - Turn LED off
* @hw: pointer to the HW structure
*
* Turn LED off.
**/
s32 e1000e_led_off_generic(struct e1000_hw *hw)
{
u32 ctrl;
switch (hw->phy.media_type) {
case e1000_media_type_fiber:
ctrl = er32(CTRL);
ctrl |= E1000_CTRL_SWDPIN0;
ctrl |= E1000_CTRL_SWDPIO0;
ew32(CTRL, ctrl);
break;
case e1000_media_type_copper:
ew32(LEDCTL, hw->mac.ledctl_mode1);
break;
default:
break;
}
return 0;
}
/**
* e1000e_set_pcie_no_snoop - Set PCI-express capabilities
* @hw: pointer to the HW structure
* @no_snoop: bitmap of snoop events
*
* Set the PCI-express register to snoop for events enabled in 'no_snoop'.
**/
void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
{
u32 gcr;
if (no_snoop) {
gcr = er32(GCR);
gcr &= ~(PCIE_NO_SNOOP_ALL);
gcr |= no_snoop;
ew32(GCR, gcr);
}
}
/**
* e1000e_disable_pcie_master - Disables PCI-express master access
* @hw: pointer to the HW structure
*
* Returns 0 if successful, else returns -10
* (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
* the master requests to be disabled.
*
* Disables PCI-Express master access and verifies there are no pending
* requests.
**/
s32 e1000e_disable_pcie_master(struct e1000_hw *hw)
{
u32 ctrl;
s32 timeout = MASTER_DISABLE_TIMEOUT;
ctrl = er32(CTRL);
ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
ew32(CTRL, ctrl);
while (timeout) {
if (!(er32(STATUS) &
E1000_STATUS_GIO_MASTER_ENABLE))
break;
udelay(100);
timeout--;
}
if (!timeout) {
e_dbg("Master requests are pending.\n");
return -E1000_ERR_MASTER_REQUESTS_PENDING;
}
return 0;
}
/**
* e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
* @hw: pointer to the HW structure
*
* Reset the Adaptive Interframe Spacing throttle to default values.
**/
void e1000e_reset_adaptive(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
if (!mac->adaptive_ifs) {
e_dbg("Not in Adaptive IFS mode!\n");
goto out;
}
mac->current_ifs_val = 0;
mac->ifs_min_val = IFS_MIN;
mac->ifs_max_val = IFS_MAX;
mac->ifs_step_size = IFS_STEP;
mac->ifs_ratio = IFS_RATIO;
mac->in_ifs_mode = false;
ew32(AIT, 0);
out:
return;
}
/**
* e1000e_update_adaptive - Update Adaptive Interframe Spacing
* @hw: pointer to the HW structure
*
* Update the Adaptive Interframe Spacing Throttle value based on the
* time between transmitted packets and time between collisions.
**/
void e1000e_update_adaptive(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
if (!mac->adaptive_ifs) {
e_dbg("Not in Adaptive IFS mode!\n");
goto out;
}
if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
if (mac->tx_packet_delta > MIN_NUM_XMITS) {
mac->in_ifs_mode = true;
if (mac->current_ifs_val < mac->ifs_max_val) {
if (!mac->current_ifs_val)
mac->current_ifs_val = mac->ifs_min_val;
else
mac->current_ifs_val +=
mac->ifs_step_size;
ew32(AIT, mac->current_ifs_val);
}
}
} else {
if (mac->in_ifs_mode &&
(mac->tx_packet_delta <= MIN_NUM_XMITS)) {
mac->current_ifs_val = 0;
mac->in_ifs_mode = false;
ew32(AIT, 0);
}
}
out:
return;
}
/**
* e1000_raise_eec_clk - Raise EEPROM clock
* @hw: pointer to the HW structure
* @eecd: pointer to the EEPROM
*
* Enable/Raise the EEPROM clock bit.
**/
static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
{
*eecd = *eecd | E1000_EECD_SK;
ew32(EECD, *eecd);
e1e_flush();
udelay(hw->nvm.delay_usec);
}
/**
* e1000_lower_eec_clk - Lower EEPROM clock
* @hw: pointer to the HW structure
* @eecd: pointer to the EEPROM
*
* Clear/Lower the EEPROM clock bit.
**/
static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
{
*eecd = *eecd & ~E1000_EECD_SK;
ew32(EECD, *eecd);
e1e_flush();
udelay(hw->nvm.delay_usec);
}
/**
* e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
* @hw: pointer to the HW structure
* @data: data to send to the EEPROM
* @count: number of bits to shift out
*
* We need to shift 'count' bits out to the EEPROM. So, the value in the
* "data" parameter will be shifted out to the EEPROM one bit at a time.
* In order to do this, "data" must be broken down into bits.
**/
static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
{
struct e1000_nvm_info *nvm = &hw->nvm;
u32 eecd = er32(EECD);
u32 mask;
mask = 0x01 << (count - 1);
if (nvm->type == e1000_nvm_eeprom_spi)
eecd |= E1000_EECD_DO;
do {
eecd &= ~E1000_EECD_DI;
if (data & mask)
eecd |= E1000_EECD_DI;
ew32(EECD, eecd);
e1e_flush();
udelay(nvm->delay_usec);
e1000_raise_eec_clk(hw, &eecd);
e1000_lower_eec_clk(hw, &eecd);
mask >>= 1;
} while (mask);
eecd &= ~E1000_EECD_DI;
ew32(EECD, eecd);
}
/**
* e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
* @hw: pointer to the HW structure
* @count: number of bits to shift in
*
* In order to read a register from the EEPROM, we need to shift 'count' bits
* in from the EEPROM. Bits are "shifted in" by raising the clock input to
* the EEPROM (setting the SK bit), and then reading the value of the data out
* "DO" bit. During this "shifting in" process the data in "DI" bit should
* always be clear.
**/
static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
{
u32 eecd;
u32 i;
u16 data;
eecd = er32(EECD);
eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
data = 0;
for (i = 0; i < count; i++) {
data <<= 1;
e1000_raise_eec_clk(hw, &eecd);
eecd = er32(EECD);
eecd &= ~E1000_EECD_DI;
if (eecd & E1000_EECD_DO)
data |= 1;
e1000_lower_eec_clk(hw, &eecd);
}
return data;
}
/**
* e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion
* @hw: pointer to the HW structure
* @ee_reg: EEPROM flag for polling
*
* Polls the EEPROM status bit for either read or write completion based
* upon the value of 'ee_reg'.
**/
s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
{
u32 attempts = 100000;
u32 i, reg = 0;
for (i = 0; i < attempts; i++) {
if (ee_reg == E1000_NVM_POLL_READ)
reg = er32(EERD);
else
reg = er32(EEWR);
if (reg & E1000_NVM_RW_REG_DONE)
return 0;
udelay(5);
}
return -E1000_ERR_NVM;
}
/**
* e1000e_acquire_nvm - Generic request for access to EEPROM
* @hw: pointer to the HW structure
*
* Set the EEPROM access request bit and wait for EEPROM access grant bit.
* Return successful if access grant bit set, else clear the request for
* EEPROM access and return -E1000_ERR_NVM (-1).
**/
s32 e1000e_acquire_nvm(struct e1000_hw *hw)
{
u32 eecd = er32(EECD);
s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
ew32(EECD, eecd | E1000_EECD_REQ);
eecd = er32(EECD);
while (timeout) {
if (eecd & E1000_EECD_GNT)
break;
udelay(5);
eecd = er32(EECD);
timeout--;
}
if (!timeout) {
eecd &= ~E1000_EECD_REQ;
ew32(EECD, eecd);
e_dbg("Could not acquire NVM grant\n");
return -E1000_ERR_NVM;
}
return 0;
}
/**
* e1000_standby_nvm - Return EEPROM to standby state
* @hw: pointer to the HW structure
*
* Return the EEPROM to a standby state.
**/
static void e1000_standby_nvm(struct e1000_hw *hw)
{
struct e1000_nvm_info *nvm = &hw->nvm;
u32 eecd = er32(EECD);
if (nvm->type == e1000_nvm_eeprom_spi) {
/* Toggle CS to flush commands */
eecd |= E1000_EECD_CS;
ew32(EECD, eecd);
e1e_flush();
udelay(nvm->delay_usec);
eecd &= ~E1000_EECD_CS;
ew32(EECD, eecd);
e1e_flush();
udelay(nvm->delay_usec);
}
}
/**
* e1000_stop_nvm - Terminate EEPROM command
* @hw: pointer to the HW structure
*
* Terminates the current command by inverting the EEPROM's chip select pin.
**/
static void e1000_stop_nvm(struct e1000_hw *hw)
{
u32 eecd;
eecd = er32(EECD);
if (hw->nvm.type == e1000_nvm_eeprom_spi) {
/* Pull CS high */
eecd |= E1000_EECD_CS;
e1000_lower_eec_clk(hw, &eecd);
}
}
/**
* e1000e_release_nvm - Release exclusive access to EEPROM
* @hw: pointer to the HW structure
*
* Stop any current commands to the EEPROM and clear the EEPROM request bit.
**/
void e1000e_release_nvm(struct e1000_hw *hw)
{
u32 eecd;
e1000_stop_nvm(hw);
eecd = er32(EECD);
eecd &= ~E1000_EECD_REQ;
ew32(EECD, eecd);
}
/**
* e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
* @hw: pointer to the HW structure
*
* Setups the EEPROM for reading and writing.
**/
static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
{
struct e1000_nvm_info *nvm = &hw->nvm;
u32 eecd = er32(EECD);
u8 spi_stat_reg;
if (nvm->type == e1000_nvm_eeprom_spi) {
u16 timeout = NVM_MAX_RETRY_SPI;
/* Clear SK and CS */
eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
ew32(EECD, eecd);
e1e_flush();
udelay(1);
/*
* Read "Status Register" repeatedly until the LSB is cleared.
* The EEPROM will signal that the command has been completed
* by clearing bit 0 of the internal status register. If it's
* not cleared within 'timeout', then error out.
*/
while (timeout) {
e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
hw->nvm.opcode_bits);
spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
break;
udelay(5);
e1000_standby_nvm(hw);
timeout--;
}
if (!timeout) {
e_dbg("SPI NVM Status error\n");
return -E1000_ERR_NVM;
}
}
return 0;
}
/**
* e1000e_read_nvm_eerd - Reads EEPROM using EERD register
* @hw: pointer to the HW structure
* @offset: offset of word in the EEPROM to read
* @words: number of words to read
* @data: word read from the EEPROM
*
* Reads a 16 bit word from the EEPROM using the EERD register.
**/
s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
{
struct e1000_nvm_info *nvm = &hw->nvm;
u32 i, eerd = 0;
s32 ret_val = 0;
/*
* A check for invalid values: offset too large, too many words,
* too many words for the offset, and not enough words.
*/
if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
(words == 0)) {
e_dbg("nvm parameter(s) out of bounds\n");
return -E1000_ERR_NVM;
}
for (i = 0; i < words; i++) {
eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
E1000_NVM_RW_REG_START;
ew32(EERD, eerd);
ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
if (ret_val)
break;
data[i] = (er32(EERD) >> E1000_NVM_RW_REG_DATA);
}
return ret_val;
}
/**
* e1000e_write_nvm_spi - Write to EEPROM using SPI
* @hw: pointer to the HW structure
* @offset: offset within the EEPROM to be written to
* @words: number of words to write
* @data: 16 bit word(s) to be written to the EEPROM
*
* Writes data to EEPROM at offset using SPI interface.
*
* If e1000e_update_nvm_checksum is not called after this function , the
* EEPROM will most likely contain an invalid checksum.
**/
s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
{
struct e1000_nvm_info *nvm = &hw->nvm;
s32 ret_val;
u16 widx = 0;
/*
* A check for invalid values: offset too large, too many words,
* and not enough words.
*/
if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
(words == 0)) {
e_dbg("nvm parameter(s) out of bounds\n");
return -E1000_ERR_NVM;
}
ret_val = nvm->ops.acquire(hw);
if (ret_val)
return ret_val;
while (widx < words) {
u8 write_opcode = NVM_WRITE_OPCODE_SPI;
ret_val = e1000_ready_nvm_eeprom(hw);
if (ret_val) {
nvm->ops.release(hw);
return ret_val;
}
e1000_standby_nvm(hw);
/* Send the WRITE ENABLE command (8 bit opcode) */
e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
nvm->opcode_bits);
e1000_standby_nvm(hw);
/*
* Some SPI eeproms use the 8th address bit embedded in the
* opcode
*/
if ((nvm->address_bits == 8) && (offset >= 128))
write_opcode |= NVM_A8_OPCODE_SPI;
/* Send the Write command (8-bit opcode + addr) */
e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
nvm->address_bits);
/* Loop to allow for up to whole page write of eeprom */
while (widx < words) {
u16 word_out = data[widx];
word_out = (word_out >> 8) | (word_out << 8);
e1000_shift_out_eec_bits(hw, word_out, 16);
widx++;
if ((((offset + widx) * 2) % nvm->page_size) == 0) {
e1000_standby_nvm(hw);
break;
}
}
}
usleep_range(10000, 20000);
nvm->ops.release(hw);
return 0;
}
/**
* e1000_read_pba_string_generic - Read device part number
* @hw: pointer to the HW structure
* @pba_num: pointer to device part number
* @pba_num_size: size of part number buffer
*
* Reads the product board assembly (PBA) number from the EEPROM and stores
* the value in pba_num.
**/
s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
u32 pba_num_size)
{
s32 ret_val;
u16 nvm_data;
u16 pba_ptr;
u16 offset;
u16 length;
if (pba_num == NULL) {
e_dbg("PBA string buffer was null\n");
ret_val = E1000_ERR_INVALID_ARGUMENT;
goto out;
}
ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
if (ret_val) {
e_dbg("NVM Read Error\n");
goto out;
}
ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
if (ret_val) {
e_dbg("NVM Read Error\n");
goto out;
}
/*
* if nvm_data is not ptr guard the PBA must be in legacy format which
* means pba_ptr is actually our second data word for the PBA number
* and we can decode it into an ascii string
*/
if (nvm_data != NVM_PBA_PTR_GUARD) {
e_dbg("NVM PBA number is not stored as string\n");
/* we will need 11 characters to store the PBA */
if (pba_num_size < 11) {
e_dbg("PBA string buffer too small\n");
return E1000_ERR_NO_SPACE;
}
/* extract hex string from data and pba_ptr */
pba_num[0] = (nvm_data >> 12) & 0xF;
pba_num[1] = (nvm_data >> 8) & 0xF;
pba_num[2] = (nvm_data >> 4) & 0xF;
pba_num[3] = nvm_data & 0xF;
pba_num[4] = (pba_ptr >> 12) & 0xF;
pba_num[5] = (pba_ptr >> 8) & 0xF;
pba_num[6] = '-';
pba_num[7] = 0;
pba_num[8] = (pba_ptr >> 4) & 0xF;
pba_num[9] = pba_ptr & 0xF;
/* put a null character on the end of our string */
pba_num[10] = '\0';
/* switch all the data but the '-' to hex char */
for (offset = 0; offset < 10; offset++) {
if (pba_num[offset] < 0xA)
pba_num[offset] += '0';
else if (pba_num[offset] < 0x10)
pba_num[offset] += 'A' - 0xA;
}
goto out;
}
ret_val = e1000_read_nvm(hw, pba_ptr, 1, &length);
if (ret_val) {
e_dbg("NVM Read Error\n");
goto out;
}
if (length == 0xFFFF || length == 0) {
e_dbg("NVM PBA number section invalid length\n");
ret_val = E1000_ERR_NVM_PBA_SECTION;
goto out;
}
/* check if pba_num buffer is big enough */
if (pba_num_size < (((u32)length * 2) - 1)) {
e_dbg("PBA string buffer too small\n");
ret_val = E1000_ERR_NO_SPACE;
goto out;
}
/* trim pba length from start of string */
pba_ptr++;
length--;
for (offset = 0; offset < length; offset++) {
ret_val = e1000_read_nvm(hw, pba_ptr + offset, 1, &nvm_data);
if (ret_val) {
e_dbg("NVM Read Error\n");
goto out;
}
pba_num[offset * 2] = (u8)(nvm_data >> 8);
pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
}
pba_num[offset * 2] = '\0';
out:
return ret_val;
}
/**
* e1000_read_mac_addr_generic - Read device MAC address
* @hw: pointer to the HW structure
*
* Reads the device MAC address from the EEPROM and stores the value.
* Since devices with two ports use the same EEPROM, we increment the
* last bit in the MAC address for the second port.
**/
s32 e1000_read_mac_addr_generic(struct e1000_hw *hw)
{
u32 rar_high;
u32 rar_low;
u16 i;
rar_high = er32(RAH(0));
rar_low = er32(RAL(0));
for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8));
for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8));
for (i = 0; i < ETH_ALEN; i++)
hw->mac.addr[i] = hw->mac.perm_addr[i];
return 0;
}
/**
* e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum
* @hw: pointer to the HW structure
*
* Calculates the EEPROM checksum by reading/adding each word of the EEPROM
* and then verifies that the sum of the EEPROM is equal to 0xBABA.
**/
s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw)
{
s32 ret_val;
u16 checksum = 0;
u16 i, nvm_data;
for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
if (ret_val) {
e_dbg("NVM Read Error\n");
return ret_val;
}
checksum += nvm_data;
}
if (checksum != (u16) NVM_SUM) {
e_dbg("NVM Checksum Invalid\n");
return -E1000_ERR_NVM;
}
return 0;
}
/**
* e1000e_update_nvm_checksum_generic - Update EEPROM checksum
* @hw: pointer to the HW structure
*
* Updates the EEPROM checksum by reading/adding each word of the EEPROM
* up to the checksum. Then calculates the EEPROM checksum and writes the
* value to the EEPROM.
**/
s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw)
{
s32 ret_val;
u16 checksum = 0;
u16 i, nvm_data;
for (i = 0; i < NVM_CHECKSUM_REG; i++) {
ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
if (ret_val) {
e_dbg("NVM Read Error while updating checksum.\n");
return ret_val;
}
checksum += nvm_data;
}
checksum = (u16) NVM_SUM - checksum;
ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum);
if (ret_val)
e_dbg("NVM Write Error while updating checksum.\n");
return ret_val;
}
/**
* e1000e_reload_nvm - Reloads EEPROM
* @hw: pointer to the HW structure
*
* Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
* extended control register.
**/
void e1000e_reload_nvm(struct e1000_hw *hw)
{
u32 ctrl_ext;
udelay(10);
ctrl_ext = er32(CTRL_EXT);
ctrl_ext |= E1000_CTRL_EXT_EE_RST;
ew32(CTRL_EXT, ctrl_ext);
e1e_flush();
}
/**
* e1000_calculate_checksum - Calculate checksum for buffer
* @buffer: pointer to EEPROM
* @length: size of EEPROM to calculate a checksum for
*
* Calculates the checksum for some buffer on a specified length. The
* checksum calculated is returned.
**/
static u8 e1000_calculate_checksum(u8 *buffer, u32 length)
{
u32 i;
u8 sum = 0;
if (!buffer)
return 0;
for (i = 0; i < length; i++)
sum += buffer[i];
return (u8) (0 - sum);
}
/**
* e1000_mng_enable_host_if - Checks host interface is enabled
* @hw: pointer to the HW structure
*
* Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
*
* This function checks whether the HOST IF is enabled for command operation
* and also checks whether the previous command is completed. It busy waits
* in case of previous command is not completed.
**/
static s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
{
u32 hicr;
u8 i;
if (!(hw->mac.arc_subsystem_valid)) {
e_dbg("ARC subsystem not valid.\n");
return -E1000_ERR_HOST_INTERFACE_COMMAND;
}
/* Check that the host interface is enabled. */
hicr = er32(HICR);
if ((hicr & E1000_HICR_EN) == 0) {
e_dbg("E1000_HOST_EN bit disabled.\n");
return -E1000_ERR_HOST_INTERFACE_COMMAND;
}
/* check the previous command is completed */
for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
hicr = er32(HICR);
if (!(hicr & E1000_HICR_C))
break;
mdelay(1);
}
if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
e_dbg("Previous command timeout failed .\n");
return -E1000_ERR_HOST_INTERFACE_COMMAND;
}
return 0;
}
/**
* e1000e_check_mng_mode_generic - check management mode
* @hw: pointer to the HW structure
*
* Reads the firmware semaphore register and returns true (>0) if
* manageability is enabled, else false (0).
**/
bool e1000e_check_mng_mode_generic(struct e1000_hw *hw)
{
u32 fwsm = er32(FWSM);
return (fwsm & E1000_FWSM_MODE_MASK) ==
(E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
}
/**
* e1000e_enable_tx_pkt_filtering - Enable packet filtering on Tx
* @hw: pointer to the HW structure
*
* Enables packet filtering on transmit packets if manageability is enabled
* and host interface is enabled.
**/
bool e1000e_enable_tx_pkt_filtering(struct e1000_hw *hw)
{
struct e1000_host_mng_dhcp_cookie *hdr = &hw->mng_cookie;
u32 *buffer = (u32 *)&hw->mng_cookie;
u32 offset;
s32 ret_val, hdr_csum, csum;
u8 i, len;
hw->mac.tx_pkt_filtering = true;
/* No manageability, no filtering */
if (!e1000e_check_mng_mode(hw)) {
hw->mac.tx_pkt_filtering = false;
goto out;
}
/*
* If we can't read from the host interface for whatever
* reason, disable filtering.
*/
ret_val = e1000_mng_enable_host_if(hw);
if (ret_val) {
hw->mac.tx_pkt_filtering = false;
goto out;
}
/* Read in the header. Length and offset are in dwords. */
len = E1000_MNG_DHCP_COOKIE_LENGTH >> 2;
offset = E1000_MNG_DHCP_COOKIE_OFFSET >> 2;
for (i = 0; i < len; i++)
*(buffer + i) = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset + i);
hdr_csum = hdr->checksum;
hdr->checksum = 0;
csum = e1000_calculate_checksum((u8 *)hdr,
E1000_MNG_DHCP_COOKIE_LENGTH);
/*
* If either the checksums or signature don't match, then
* the cookie area isn't considered valid, in which case we
* take the safe route of assuming Tx filtering is enabled.
*/
if ((hdr_csum != csum) || (hdr->signature != E1000_IAMT_SIGNATURE)) {
hw->mac.tx_pkt_filtering = true;
goto out;
}
/* Cookie area is valid, make the final check for filtering. */
if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING)) {
hw->mac.tx_pkt_filtering = false;
goto out;
}
out:
return hw->mac.tx_pkt_filtering;
}
/**
* e1000_mng_write_cmd_header - Writes manageability command header
* @hw: pointer to the HW structure
* @hdr: pointer to the host interface command header
*
* Writes the command header after does the checksum calculation.
**/
static s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
struct e1000_host_mng_command_header *hdr)
{
u16 i, length = sizeof(struct e1000_host_mng_command_header);
/* Write the whole command header structure with new checksum. */
hdr->checksum = e1000_calculate_checksum((u8 *)hdr, length);
length >>= 2;
/* Write the relevant command block into the ram area. */
for (i = 0; i < length; i++) {
E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, i,
*((u32 *) hdr + i));
e1e_flush();
}
return 0;
}
/**
* e1000_mng_host_if_write - Write to the manageability host interface
* @hw: pointer to the HW structure
* @buffer: pointer to the host interface buffer
* @length: size of the buffer
* @offset: location in the buffer to write to
* @sum: sum of the data (not checksum)
*
* This function writes the buffer content at the offset given on the host if.
* It also does alignment considerations to do the writes in most efficient
* way. Also fills up the sum of the buffer in *buffer parameter.
**/
static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer,
u16 length, u16 offset, u8 *sum)
{
u8 *tmp;
u8 *bufptr = buffer;
u32 data = 0;
u16 remaining, i, j, prev_bytes;
/* sum = only sum of the data and it is not checksum */
if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH)
return -E1000_ERR_PARAM;
tmp = (u8 *)&data;
prev_bytes = offset & 0x3;
offset >>= 2;
if (prev_bytes) {
data = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset);
for (j = prev_bytes; j < sizeof(u32); j++) {
*(tmp + j) = *bufptr++;
*sum += *(tmp + j);
}
E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset, data);
length -= j - prev_bytes;
offset++;
}
remaining = length & 0x3;
length -= remaining;
/* Calculate length in DWORDs */
length >>= 2;
/*
* The device driver writes the relevant command block into the
* ram area.
*/
for (i = 0; i < length; i++) {
for (j = 0; j < sizeof(u32); j++) {
*(tmp + j) = *bufptr++;
*sum += *(tmp + j);
}
E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data);
}
if (remaining) {
for (j = 0; j < sizeof(u32); j++) {
if (j < remaining)
*(tmp + j) = *bufptr++;
else
*(tmp + j) = 0;
*sum += *(tmp + j);
}
E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data);
}
return 0;
}
/**
* e1000e_mng_write_dhcp_info - Writes DHCP info to host interface
* @hw: pointer to the HW structure
* @buffer: pointer to the host interface
* @length: size of the buffer
*
* Writes the DHCP information to the host interface.
**/
s32 e1000e_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
{
struct e1000_host_mng_command_header hdr;
s32 ret_val;
u32 hicr;
hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
hdr.command_length = length;
hdr.reserved1 = 0;
hdr.reserved2 = 0;
hdr.checksum = 0;
/* Enable the host interface */
ret_val = e1000_mng_enable_host_if(hw);
if (ret_val)
return ret_val;
/* Populate the host interface with the contents of "buffer". */
ret_val = e1000_mng_host_if_write(hw, buffer, length,
sizeof(hdr), &(hdr.checksum));
if (ret_val)
return ret_val;
/* Write the manageability command header */
ret_val = e1000_mng_write_cmd_header(hw, &hdr);
if (ret_val)
return ret_val;
/* Tell the ARC a new command is pending. */
hicr = er32(HICR);
ew32(HICR, hicr | E1000_HICR_C);
return 0;
}
/**
* e1000e_enable_mng_pass_thru - Check if management passthrough is needed
* @hw: pointer to the HW structure
*
* Verifies the hardware needs to leave interface enabled so that frames can
* be directed to and from the management interface.
**/
bool e1000e_enable_mng_pass_thru(struct e1000_hw *hw)
{
u32 manc;
u32 fwsm, factps;
bool ret_val = false;
manc = er32(MANC);
if (!(manc & E1000_MANC_RCV_TCO_EN))
goto out;
if (hw->mac.has_fwsm) {
fwsm = er32(FWSM);
factps = er32(FACTPS);
if (!(factps & E1000_FACTPS_MNGCG) &&
((fwsm & E1000_FWSM_MODE_MASK) ==
(e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
ret_val = true;
goto out;
}
} else if ((hw->mac.type == e1000_82574) ||
(hw->mac.type == e1000_82583)) {
u16 data;
factps = er32(FACTPS);
e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
if (!(factps & E1000_FACTPS_MNGCG) &&
((data & E1000_NVM_INIT_CTRL2_MNGM) ==
(e1000_mng_mode_pt << 13))) {
ret_val = true;
goto out;
}
} else if ((manc & E1000_MANC_SMBUS_EN) &&
!(manc & E1000_MANC_ASF_EN)) {
ret_val = true;
goto out;
}
out:
return ret_val;
}
-------------- n?chster Teil --------------
/*******************************************************************************
Intel PRO/1000 Linux driver
Copyright(c) 1999 - 2011 Intel Corporation.
This program is free software; you can redistribute it and/or modify it
under the terms and conditions of the GNU General Public License,
version 2, as published by the Free Software Foundation.
This program is distributed in the hope it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
The full GNU General Public License is included in this distribution in
the file called "COPYING".
Contact Information:
Linux NICS <linux.nics at intel.com>
e1000-devel Mailing List <e1000-devel at lists.sourceforge.net>
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*******************************************************************************/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/interrupt.h>
#include <linux/tcp.h>
#include <linux/ipv6.h>
#include <linux/slab.h>
#include <net/checksum.h>
#include <net/ip6_checksum.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/if_vlan.h>
#include <linux/cpu.h>
#include <linux/smp.h>
#include <linux/pm_qos.h>
#include <linux/pm_runtime.h>
#include <linux/aer.h>
#include <linux/prefetch.h>
#include "e1000.h"
#define DRV_EXTRAVERSION "-k"
#define DRV_VERSION "1.5.1" DRV_EXTRAVERSION
char e1000e_driver_name[] = "e1000e";
const char e1000e_driver_version[] = DRV_VERSION;
static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state);
static const struct e1000_info *e1000_info_tbl[] = {
[board_82571] = &e1000_82571_info,
[board_82572] = &e1000_82572_info,
[board_82573] = &e1000_82573_info,
[board_82574] = &e1000_82574_info,
[board_82583] = &e1000_82583_info,
[board_80003es2lan] = &e1000_es2_info,
[board_ich8lan] = &e1000_ich8_info,
[board_ich9lan] = &e1000_ich9_info,
[board_ich10lan] = &e1000_ich10_info,
[board_pchlan] = &e1000_pch_info,
[board_pch2lan] = &e1000_pch2_info,
};
struct e1000_reg_info {
u32 ofs;
char *name;
};
#define E1000_RDFH 0x02410 /* Rx Data FIFO Head - RW */
#define E1000_RDFT 0x02418 /* Rx Data FIFO Tail - RW */
#define E1000_RDFHS 0x02420 /* Rx Data FIFO Head Saved - RW */
#define E1000_RDFTS 0x02428 /* Rx Data FIFO Tail Saved - RW */
#define E1000_RDFPC 0x02430 /* Rx Data FIFO Packet Count - RW */
#define E1000_TDFH 0x03410 /* Tx Data FIFO Head - RW */
#define E1000_TDFT 0x03418 /* Tx Data FIFO Tail - RW */
#define E1000_TDFHS 0x03420 /* Tx Data FIFO Head Saved - RW */
#define E1000_TDFTS 0x03428 /* Tx Data FIFO Tail Saved - RW */
#define E1000_TDFPC 0x03430 /* Tx Data FIFO Packet Count - RW */
static const struct e1000_reg_info e1000_reg_info_tbl[] = {
/* General Registers */
{E1000_CTRL, "CTRL"},
{E1000_STATUS, "STATUS"},
{E1000_CTRL_EXT, "CTRL_EXT"},
/* Interrupt Registers */
{E1000_ICR, "ICR"},
/* Rx Registers */
{E1000_RCTL, "RCTL"},
{E1000_RDLEN, "RDLEN"},
{E1000_RDH, "RDH"},
{E1000_RDT, "RDT"},
{E1000_RDTR, "RDTR"},
{E1000_RXDCTL(0), "RXDCTL"},
{E1000_ERT, "ERT"},
{E1000_RDBAL, "RDBAL"},
{E1000_RDBAH, "RDBAH"},
{E1000_RDFH, "RDFH"},
{E1000_RDFT, "RDFT"},
{E1000_RDFHS, "RDFHS"},
{E1000_RDFTS, "RDFTS"},
{E1000_RDFPC, "RDFPC"},
/* Tx Registers */
{E1000_TCTL, "TCTL"},
{E1000_TDBAL, "TDBAL"},
{E1000_TDBAH, "TDBAH"},
{E1000_TDLEN, "TDLEN"},
{E1000_TDH, "TDH"},
{E1000_TDT, "TDT"},
{E1000_TIDV, "TIDV"},
{E1000_TXDCTL(0), "TXDCTL"},
{E1000_TADV, "TADV"},
{E1000_TARC(0), "TARC"},
{E1000_TDFH, "TDFH"},
{E1000_TDFT, "TDFT"},
{E1000_TDFHS, "TDFHS"},
{E1000_TDFTS, "TDFTS"},
{E1000_TDFPC, "TDFPC"},
/* List Terminator */
{}
};
/*
* e1000_regdump - register printout routine
*/
static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
{
int n = 0;
char rname[16];
u32 regs[8];
switch (reginfo->ofs) {
case E1000_RXDCTL(0):
for (n = 0; n < 2; n++)
regs[n] = __er32(hw, E1000_RXDCTL(n));
break;
case E1000_TXDCTL(0):
for (n = 0; n < 2; n++)
regs[n] = __er32(hw, E1000_TXDCTL(n));
break;
case E1000_TARC(0):
for (n = 0; n < 2; n++)
regs[n] = __er32(hw, E1000_TARC(n));
break;
default:
printk(KERN_INFO "%-15s %08x\n",
reginfo->name, __er32(hw, reginfo->ofs));
return;
}
snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
printk(KERN_INFO "%-15s ", rname);
for (n = 0; n < 2; n++)
printk(KERN_CONT "%08x ", regs[n]);
printk(KERN_CONT "\n");
}
/*
* e1000e_dump - Print registers, Tx-ring and Rx-ring
*/
static void e1000e_dump(struct e1000_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct e1000_hw *hw = &adapter->hw;
struct e1000_reg_info *reginfo;
struct e1000_ring *tx_ring = adapter->tx_ring;
struct e1000_tx_desc *tx_desc;
struct my_u0 {
u64 a;
u64 b;
} *u0;
struct e1000_buffer *buffer_info;
struct e1000_ring *rx_ring = adapter->rx_ring;
union e1000_rx_desc_packet_split *rx_desc_ps;
union e1000_rx_desc_extended *rx_desc;
struct my_u1 {
u64 a;
u64 b;
u64 c;
u64 d;
} *u1;
u32 staterr;
int i = 0;
if (!netif_msg_hw(adapter))
return;
/* Print netdevice Info */
if (netdev) {
dev_info(&adapter->pdev->dev, "Net device Info\n");
printk(KERN_INFO "Device Name state "
"trans_start last_rx\n");
printk(KERN_INFO "%-15s %016lX %016lX %016lX\n",
netdev->name, netdev->state, netdev->trans_start,
netdev->last_rx);
}
/* Print Registers */
dev_info(&adapter->pdev->dev, "Register Dump\n");
printk(KERN_INFO " Register Name Value\n");
for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
reginfo->name; reginfo++) {
e1000_regdump(hw, reginfo);
}
/* Print Tx Ring Summary */
if (!netdev || !netif_running(netdev))
goto exit;
dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma ]"
" leng ntw timestamp\n");
buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
printk(KERN_INFO " %5d %5X %5X %016llX %04X %3X %016llX\n",
0, tx_ring->next_to_use, tx_ring->next_to_clean,
(unsigned long long)buffer_info->dma,
buffer_info->length,
buffer_info->next_to_watch,
(unsigned long long)buffer_info->time_stamp);
/* Print Tx Ring */
if (!netif_msg_tx_done(adapter))
goto rx_ring_summary;
dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
*
* Legacy Transmit Descriptor
* +--------------------------------------------------------------+
* 0 | Buffer Address [63:0] (Reserved on Write Back) |
* +--------------------------------------------------------------+
* 8 | Special | CSS | Status | CMD | CSO | Length |
* +--------------------------------------------------------------+
* 63 48 47 36 35 32 31 24 23 16 15 0
*
* Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
* 63 48 47 40 39 32 31 16 15 8 7 0
* +----------------------------------------------------------------+
* 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
* +----------------------------------------------------------------+
* 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
* +----------------------------------------------------------------+
* 63 48 47 40 39 36 35 32 31 24 23 20 19 0
*
* Extended Data Descriptor (DTYP=0x1)
* +----------------------------------------------------------------+
* 0 | Buffer Address [63:0] |
* +----------------------------------------------------------------+
* 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
* +----------------------------------------------------------------+
* 63 48 47 40 39 36 35 32 31 24 23 20 19 0
*/
printk(KERN_INFO "Tl[desc] [address 63:0 ] [SpeCssSCmCsLen]"
" [bi->dma ] leng ntw timestamp bi->skb "
"<-- Legacy format\n");
printk(KERN_INFO "Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen]"
" [bi->dma ] leng ntw timestamp bi->skb "
"<-- Ext Context format\n");
printk(KERN_INFO "Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen]"
" [bi->dma ] leng ntw timestamp bi->skb "
"<-- Ext Data format\n");
for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
tx_desc = E1000_TX_DESC(*tx_ring, i);
buffer_info = &tx_ring->buffer_info[i];
u0 = (struct my_u0 *)tx_desc;
printk(KERN_INFO "T%c[0x%03X] %016llX %016llX %016llX "
"%04X %3X %016llX %p",
(!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')), i,
(unsigned long long)le64_to_cpu(u0->a),
(unsigned long long)le64_to_cpu(u0->b),
(unsigned long long)buffer_info->dma,
buffer_info->length, buffer_info->next_to_watch,
(unsigned long long)buffer_info->time_stamp,
buffer_info->skb);
if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
printk(KERN_CONT " NTC/U\n");
else if (i == tx_ring->next_to_use)
printk(KERN_CONT " NTU\n");
else if (i == tx_ring->next_to_clean)
printk(KERN_CONT " NTC\n");
else
printk(KERN_CONT "\n");
if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
16, 1, phys_to_virt(buffer_info->dma),
buffer_info->length, true);
}
/* Print Rx Ring Summary */
rx_ring_summary:
dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
printk(KERN_INFO "Queue [NTU] [NTC]\n");
printk(KERN_INFO " %5d %5X %5X\n", 0,
rx_ring->next_to_use, rx_ring->next_to_clean);
/* Print Rx Ring */
if (!netif_msg_rx_status(adapter))
goto exit;
dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
switch (adapter->rx_ps_pages) {
case 1:
case 2:
case 3:
/* [Extended] Packet Split Receive Descriptor Format
*
* +-----------------------------------------------------+
* 0 | Buffer Address 0 [63:0] |
* +-----------------------------------------------------+
* 8 | Buffer Address 1 [63:0] |
* +-----------------------------------------------------+
* 16 | Buffer Address 2 [63:0] |
* +-----------------------------------------------------+
* 24 | Buffer Address 3 [63:0] |
* +-----------------------------------------------------+
*/
printk(KERN_INFO "R [desc] [buffer 0 63:0 ] "
"[buffer 1 63:0 ] "
"[buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] "
"[bi->skb] <-- Ext Pkt Split format\n");
/* [Extended] Receive Descriptor (Write-Back) Format
*
* 63 48 47 32 31 13 12 8 7 4 3 0
* +------------------------------------------------------+
* 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS |
* | Checksum | Ident | | Queue | | Type |
* +------------------------------------------------------+
* 8 | VLAN Tag | Length | Extended Error | Extended Status |
* +------------------------------------------------------+
* 63 48 47 32 31 20 19 0
*/
printk(KERN_INFO "RWB[desc] [ck ipid mrqhsh] "
"[vl l0 ee es] "
"[ l3 l2 l1 hs] [reserved ] ---------------- "
"[bi->skb] <-- Ext Rx Write-Back format\n");
for (i = 0; i < rx_ring->count; i++) {
buffer_info = &rx_ring->buffer_info[i];
rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
u1 = (struct my_u1 *)rx_desc_ps;
staterr =
le32_to_cpu(rx_desc_ps->wb.middle.status_error);
if (staterr & E1000_RXD_STAT_DD) {
/* Descriptor Done */
printk(KERN_INFO "RWB[0x%03X] %016llX "
"%016llX %016llX %016llX "
"---------------- %p", i,
(unsigned long long)le64_to_cpu(u1->a),
(unsigned long long)le64_to_cpu(u1->b),
(unsigned long long)le64_to_cpu(u1->c),
(unsigned long long)le64_to_cpu(u1->d),
buffer_info->skb);
} else {
printk(KERN_INFO "R [0x%03X] %016llX "
"%016llX %016llX %016llX %016llX %p", i,
(unsigned long long)le64_to_cpu(u1->a),
(unsigned long long)le64_to_cpu(u1->b),
(unsigned long long)le64_to_cpu(u1->c),
(unsigned long long)le64_to_cpu(u1->d),
(unsigned long long)buffer_info->dma,
buffer_info->skb);
if (netif_msg_pktdata(adapter))
print_hex_dump(KERN_INFO, "",
DUMP_PREFIX_ADDRESS, 16, 1,
phys_to_virt(buffer_info->dma),
adapter->rx_ps_bsize0, true);
}
if (i == rx_ring->next_to_use)
printk(KERN_CONT " NTU\n");
else if (i == rx_ring->next_to_clean)
printk(KERN_CONT " NTC\n");
else
printk(KERN_CONT "\n");
}
break;
default:
case 0:
/* Extended Receive Descriptor (Read) Format
*
* +-----------------------------------------------------+
* 0 | Buffer Address [63:0] |
* +-----------------------------------------------------+
* 8 | Reserved |
* +-----------------------------------------------------+
*/
printk(KERN_INFO "R [desc] [buf addr 63:0 ] "
"[reserved 63:0 ] [bi->dma ] "
"[bi->skb] <-- Ext (Read) format\n");
/* Extended Receive Descriptor (Write-Back) Format
*
* 63 48 47 32 31 24 23 4 3 0
* +------------------------------------------------------+
* | RSS Hash | | | |
* 0 +-------------------+ Rsvd | Reserved | MRQ RSS |
* | Packet | IP | | | Type |
* | Checksum | Ident | | | |
* +------------------------------------------------------+
* 8 | VLAN Tag | Length | Extended Error | Extended Status |
* +------------------------------------------------------+
* 63 48 47 32 31 20 19 0
*/
printk(KERN_INFO "RWB[desc] [cs ipid mrq] "
"[vt ln xe xs] "
"[bi->skb] <-- Ext (Write-Back) format\n");
for (i = 0; i < rx_ring->count; i++) {
buffer_info = &rx_ring->buffer_info[i];
rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
u1 = (struct my_u1 *)rx_desc;
staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
if (staterr & E1000_RXD_STAT_DD) {
/* Descriptor Done */
printk(KERN_INFO "RWB[0x%03X] %016llX "
"%016llX ---------------- %p", i,
(unsigned long long)le64_to_cpu(u1->a),
(unsigned long long)le64_to_cpu(u1->b),
buffer_info->skb);
} else {
printk(KERN_INFO "R [0x%03X] %016llX "
"%016llX %016llX %p", i,
(unsigned long long)le64_to_cpu(u1->a),
(unsigned long long)le64_to_cpu(u1->b),
(unsigned long long)buffer_info->dma,
buffer_info->skb);
if (netif_msg_pktdata(adapter))
print_hex_dump(KERN_INFO, "",
DUMP_PREFIX_ADDRESS, 16,
1,
phys_to_virt
(buffer_info->dma),
adapter->rx_buffer_len,
true);
}
if (i == rx_ring->next_to_use)
printk(KERN_CONT " NTU\n");
else if (i == rx_ring->next_to_clean)
printk(KERN_CONT " NTC\n");
else
printk(KERN_CONT "\n");
}
}
exit:
return;
}
/**
* e1000_desc_unused - calculate if we have unused descriptors
**/
static int e1000_desc_unused(struct e1000_ring *ring)
{
if (ring->next_to_clean > ring->next_to_use)
return ring->next_to_clean - ring->next_to_use - 1;
return ring->count + ring->next_to_clean - ring->next_to_use - 1;
}
/**
* e1000_receive_skb - helper function to handle Rx indications
* @adapter: board private structure
* @status: descriptor status field as written by hardware
* @vlan: descriptor vlan field as written by hardware (no le/be conversion)
* @skb: pointer to sk_buff to be indicated to stack
**/
static void e1000_receive_skb(struct e1000_adapter *adapter,
struct net_device *netdev, struct sk_buff *skb,
u8 status, __le16 vlan)
{
u16 tag = le16_to_cpu(vlan);
skb->protocol = eth_type_trans(skb, netdev);
if (status & E1000_RXD_STAT_VP)
__vlan_hwaccel_put_tag(skb, tag);
napi_gro_receive(&adapter->napi, skb);
}
/**
* e1000_rx_checksum - Receive Checksum Offload
* @adapter: board private structure
* @status_err: receive descriptor status and error fields
* @csum: receive descriptor csum field
* @sk_buff: socket buffer with received data
**/
static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
u32 csum, struct sk_buff *skb)
{
u16 status = (u16)status_err;
u8 errors = (u8)(status_err >> 24);
skb_checksum_none_assert(skb);
/* Ignore Checksum bit is set */
if (status & E1000_RXD_STAT_IXSM)
return;
/* TCP/UDP checksum error bit is set */
if (errors & E1000_RXD_ERR_TCPE) {
/* let the stack verify checksum errors */
adapter->hw_csum_err++;
return;
}
/* TCP/UDP Checksum has not been calculated */
if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
return;
/* It must be a TCP or UDP packet with a valid checksum */
if (status & E1000_RXD_STAT_TCPCS) {
/* TCP checksum is good */
skb->ip_summed = CHECKSUM_UNNECESSARY;
} else {
/*
* IP fragment with UDP payload
* Hardware complements the payload checksum, so we undo it
* and then put the value in host order for further stack use.
*/
__sum16 sum = (__force __sum16)htons(csum);
skb->csum = csum_unfold(~sum);
skb->ip_summed = CHECKSUM_COMPLETE;
}
adapter->hw_csum_good++;
}
/**
* e1000e_update_tail_wa - helper function for e1000e_update_[rt]dt_wa()
* @hw: pointer to the HW structure
* @tail: address of tail descriptor register
* @i: value to write to tail descriptor register
*
* When updating the tail register, the ME could be accessing Host CSR
* registers at the same time. Normally, this is handled in h/w by an
* arbiter but on some parts there is a bug that acknowledges Host accesses
* later than it should which could result in the descriptor register to
* have an incorrect value. Workaround this by checking the FWSM register
* which has bit 24 set while ME is accessing Host CSR registers, wait
* if it is set and try again a number of times.
**/
static inline s32 e1000e_update_tail_wa(struct e1000_hw *hw, u8 __iomem * tail,
unsigned int i)
{
unsigned int j = 0;
while ((j++ < E1000_ICH_FWSM_PCIM2PCI_COUNT) &&
(er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI))
udelay(50);
writel(i, tail);
if ((j == E1000_ICH_FWSM_PCIM2PCI_COUNT) && (i != readl(tail)))
return E1000_ERR_SWFW_SYNC;
return 0;
}
static void e1000e_update_rdt_wa(struct e1000_adapter *adapter, unsigned int i)
{
u8 __iomem *tail = (adapter->hw.hw_addr + adapter->rx_ring->tail);
struct e1000_hw *hw = &adapter->hw;
if (e1000e_update_tail_wa(hw, tail, i)) {
u32 rctl = er32(RCTL);
ew32(RCTL, rctl & ~E1000_RCTL_EN);
e_err("ME firmware caused invalid RDT - resetting\n");
schedule_work(&adapter->reset_task);
}
}
static void e1000e_update_tdt_wa(struct e1000_adapter *adapter, unsigned int i)
{
u8 __iomem *tail = (adapter->hw.hw_addr + adapter->tx_ring->tail);
struct e1000_hw *hw = &adapter->hw;
if (e1000e_update_tail_wa(hw, tail, i)) {
u32 tctl = er32(TCTL);
ew32(TCTL, tctl & ~E1000_TCTL_EN);
e_err("ME firmware caused invalid TDT - resetting\n");
schedule_work(&adapter->reset_task);
}
}
/**
* e1000_alloc_rx_buffers - Replace used receive buffers
* @adapter: address of board private structure
**/
static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
int cleaned_count, gfp_t gfp)
{
struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev;
struct e1000_ring *rx_ring = adapter->rx_ring;
union e1000_rx_desc_extended *rx_desc;
struct e1000_buffer *buffer_info;
struct sk_buff *skb;
unsigned int i;
unsigned int bufsz = adapter->rx_buffer_len;
i = rx_ring->next_to_use;
buffer_info = &rx_ring->buffer_info[i];
while (cleaned_count--) {
skb = buffer_info->skb;
if (skb) {
skb_trim(skb, 0);
goto map_skb;
}
skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
if (!skb) {
/* Better luck next round */
adapter->alloc_rx_buff_failed++;
break;
}
buffer_info->skb = skb;
map_skb:
buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
adapter->rx_buffer_len,
DMA_FROM_DEVICE);
if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
dev_err(&pdev->dev, "Rx DMA map failed\n");
adapter->rx_dma_failed++;
break;
}
rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
/*
* Force memory writes to complete before letting h/w
* know there are new descriptors to fetch. (Only
* applicable for weak-ordered memory model archs,
* such as IA-64).
*/
wmb();
if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
e1000e_update_rdt_wa(adapter, i);
else
writel(i, adapter->hw.hw_addr + rx_ring->tail);
}
i++;
if (i == rx_ring->count)
i = 0;
buffer_info = &rx_ring->buffer_info[i];
}
rx_ring->next_to_use = i;
}
/**
* e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
* @adapter: address of board private structure
**/
static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
int cleaned_count, gfp_t gfp)
{
struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev;
union e1000_rx_desc_packet_split *rx_desc;
struct e1000_ring *rx_ring = adapter->rx_ring;
struct e1000_buffer *buffer_info;
struct e1000_ps_page *ps_page;
struct sk_buff *skb;
unsigned int i, j;
i = rx_ring->next_to_use;
buffer_info = &rx_ring->buffer_info[i];
while (cleaned_count--) {
rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
for (j = 0; j < PS_PAGE_BUFFERS; j++) {
ps_page = &buffer_info->ps_pages[j];
if (j >= adapter->rx_ps_pages) {
/* all unused desc entries get hw null ptr */
rx_desc->read.buffer_addr[j + 1] =
~cpu_to_le64(0);
continue;
}
if (!ps_page->page) {
ps_page->page = alloc_page(gfp);
if (!ps_page->page) {
adapter->alloc_rx_buff_failed++;
goto no_buffers;
}
ps_page->dma = dma_map_page(&pdev->dev,
ps_page->page,
0, PAGE_SIZE,
DMA_FROM_DEVICE);
if (dma_mapping_error(&pdev->dev,
ps_page->dma)) {
dev_err(&adapter->pdev->dev,
"Rx DMA page map failed\n");
adapter->rx_dma_failed++;
goto no_buffers;
}
}
/*
* Refresh the desc even if buffer_addrs
* didn't change because each write-back
* erases this info.
*/
rx_desc->read.buffer_addr[j + 1] =
cpu_to_le64(ps_page->dma);
}
skb = __netdev_alloc_skb_ip_align(netdev,
adapter->rx_ps_bsize0,
gfp);
if (!skb) {
adapter->alloc_rx_buff_failed++;
break;
}
buffer_info->skb = skb;
buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
adapter->rx_ps_bsize0,
DMA_FROM_DEVICE);
if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
dev_err(&pdev->dev, "Rx DMA map failed\n");
adapter->rx_dma_failed++;
/* cleanup skb */
dev_kfree_skb_any(skb);
buffer_info->skb = NULL;
break;
}
rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
/*
* Force memory writes to complete before letting h/w
* know there are new descriptors to fetch. (Only
* applicable for weak-ordered memory model archs,
* such as IA-64).
*/
wmb();
if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
e1000e_update_rdt_wa(adapter, i << 1);
else
writel(i << 1,
adapter->hw.hw_addr + rx_ring->tail);
}
i++;
if (i == rx_ring->count)
i = 0;
buffer_info = &rx_ring->buffer_info[i];
}
no_buffers:
rx_ring->next_to_use = i;
}
/**
* e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
* @adapter: address of board private structure
* @cleaned_count: number of buffers to allocate this pass
**/
static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
int cleaned_count, gfp_t gfp)
{
struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev;
union e1000_rx_desc_extended *rx_desc;
struct e1000_ring *rx_ring = adapter->rx_ring;
struct e1000_buffer *buffer_info;
struct sk_buff *skb;
unsigned int i;
unsigned int bufsz = 256 - 16 /* for skb_reserve */;
i = rx_ring->next_to_use;
buffer_info = &rx_ring->buffer_info[i];
while (cleaned_count--) {
skb = buffer_info->skb;
if (skb) {
skb_trim(skb, 0);
goto check_page;
}
skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
if (unlikely(!skb)) {
/* Better luck next round */
adapter->alloc_rx_buff_failed++;
break;
}
buffer_info->skb = skb;
check_page:
/* allocate a new page if necessary */
if (!buffer_info->page) {
buffer_info->page = alloc_page(gfp);
if (unlikely(!buffer_info->page)) {
adapter->alloc_rx_buff_failed++;
break;
}
}
if (!buffer_info->dma)
buffer_info->dma = dma_map_page(&pdev->dev,
buffer_info->page, 0,
PAGE_SIZE,
DMA_FROM_DEVICE);
rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
if (unlikely(++i == rx_ring->count))
i = 0;
buffer_info = &rx_ring->buffer_info[i];
}
if (likely(rx_ring->next_to_use != i)) {
rx_ring->next_to_use = i;
if (unlikely(i-- == 0))
i = (rx_ring->count - 1);
/* Force memory writes to complete before letting h/w
* know there are new descriptors to fetch. (Only
* applicable for weak-ordered memory model archs,
* such as IA-64). */
wmb();
if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
e1000e_update_rdt_wa(adapter, i);
else
writel(i, adapter->hw.hw_addr + rx_ring->tail);
}
}
/**
* e1000_clean_rx_irq - Send received data up the network stack; legacy
* @adapter: board private structure
*
* the return value indicates whether actual cleaning was done, there
* is no guarantee that everything was cleaned
**/
static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
int *work_done, int work_to_do)
{
struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev;
struct e1000_hw *hw = &adapter->hw;
struct e1000_ring *rx_ring = adapter->rx_ring;
union e1000_rx_desc_extended *rx_desc, *next_rxd;
struct e1000_buffer *buffer_info, *next_buffer;
u32 length, staterr;
unsigned int i;
int cleaned_count = 0;
bool cleaned = 0;
unsigned int total_rx_bytes = 0, total_rx_packets = 0;
i = rx_ring->next_to_clean;
rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
buffer_info = &rx_ring->buffer_info[i];
while (staterr & E1000_RXD_STAT_DD) {
struct sk_buff *skb;
if (*work_done >= work_to_do)
break;
(*work_done)++;
rmb(); /* read descriptor and rx_buffer_info after status DD */
skb = buffer_info->skb;
buffer_info->skb = NULL;
prefetch(skb->data - NET_IP_ALIGN);
i++;
if (i == rx_ring->count)
i = 0;
next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
prefetch(next_rxd);
next_buffer = &rx_ring->buffer_info[i];
cleaned = 1;
cleaned_count++;
dma_unmap_single(&pdev->dev,
buffer_info->dma,
adapter->rx_buffer_len,
DMA_FROM_DEVICE);
buffer_info->dma = 0;
length = le16_to_cpu(rx_desc->wb.upper.length);
/*
* !EOP means multiple descriptors were used to store a single
* packet, if that's the case we need to toss it. In fact, we
* need to toss every packet with the EOP bit clear and the
* next frame that _does_ have the EOP bit set, as it is by
* definition only a frame fragment
*/
if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
adapter->flags2 |= FLAG2_IS_DISCARDING;
if (adapter->flags2 & FLAG2_IS_DISCARDING) {
/* All receives must fit into a single buffer */
e_dbg("Receive packet consumed multiple buffers\n");
/* recycle */
buffer_info->skb = skb;
if (staterr & E1000_RXD_STAT_EOP)
adapter->flags2 &= ~FLAG2_IS_DISCARDING;
goto next_desc;
}
if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
/* recycle */
buffer_info->skb = skb;
goto next_desc;
}
/* adjust length to remove Ethernet CRC */
if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
length -= 4;
total_rx_bytes += length;
total_rx_packets++;
/*
* code added for copybreak, this should improve
* performance for small packets with large amounts
* of reassembly being done in the stack
*/
if (length < copybreak) {
struct sk_buff *new_skb =
netdev_alloc_skb_ip_align(netdev, length);
if (new_skb) {
skb_copy_to_linear_data_offset(new_skb,
-NET_IP_ALIGN,
(skb->data -
NET_IP_ALIGN),
(length +
NET_IP_ALIGN));
/* save the skb in buffer_info as good */
buffer_info->skb = skb;
skb = new_skb;
}
/* else just continue with the old one */
}
/* end copybreak code */
skb_put(skb, length);
/* Receive Checksum Offload */
e1000_rx_checksum(adapter, staterr,
le16_to_cpu(rx_desc->wb.lower.hi_dword.
csum_ip.csum), skb);
e1000_receive_skb(adapter, netdev, skb, staterr,
rx_desc->wb.upper.vlan);
next_desc:
rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
/* return some buffers to hardware, one at a time is too slow */
if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
adapter->alloc_rx_buf(adapter, cleaned_count,
GFP_ATOMIC);
cleaned_count = 0;
}
/* use prefetched values */
rx_desc = next_rxd;
buffer_info = next_buffer;
staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
}
rx_ring->next_to_clean = i;
cleaned_count = e1000_desc_unused(rx_ring);
if (cleaned_count)
adapter->alloc_rx_buf(adapter, cleaned_count, GFP_ATOMIC);
adapter->total_rx_bytes += total_rx_bytes;
adapter->total_rx_packets += total_rx_packets;
return cleaned;
}
static void e1000_put_txbuf(struct e1000_adapter *adapter,
struct e1000_buffer *buffer_info)
{
if (buffer_info->dma) {
if (buffer_info->mapped_as_page)
dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
buffer_info->length, DMA_TO_DEVICE);
else
dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
buffer_info->length, DMA_TO_DEVICE);
buffer_info->dma = 0;
}
if (buffer_info->skb) {
dev_kfree_skb_any(buffer_info->skb);
buffer_info->skb = NULL;
}
buffer_info->time_stamp = 0;
}
static void e1000_print_hw_hang(struct work_struct *work)
{
struct e1000_adapter *adapter = container_of(work,
struct e1000_adapter,
print_hang_task);
struct net_device *netdev = adapter->netdev;
struct e1000_ring *tx_ring = adapter->tx_ring;
unsigned int i = tx_ring->next_to_clean;
unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
struct e1000_hw *hw = &adapter->hw;
u16 phy_status, phy_1000t_status, phy_ext_status;
u16 pci_status;
if (test_bit(__E1000_DOWN, &adapter->state))
return;
if (!adapter->tx_hang_recheck &&
(adapter->flags2 & FLAG2_DMA_BURST)) {
/* May be block on write-back, flush and detect again
* flush pending descriptor writebacks to memory
*/
ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
/* execute the writes immediately */
e1e_flush();
adapter->tx_hang_recheck = true;
return;
}
/* Real hang detected */
adapter->tx_hang_recheck = false;
netif_stop_queue(netdev);
e1e_rphy(hw, PHY_STATUS, &phy_status);
e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
/* detected Hardware unit hang */
e_err("Detected Hardware Unit Hang:\n"
" TDH <%x>\n"
" TDT <%x>\n"
" next_to_use <%x>\n"
" next_to_clean <%x>\n"
"buffer_info[next_to_clean]:\n"
" time_stamp <%lx>\n"
" next_to_watch <%x>\n"
" jiffies <%lx>\n"
" next_to_watch.status <%x>\n"
"MAC Status <%x>\n"
"PHY Status <%x>\n"
"PHY 1000BASE-T Status <%x>\n"
"PHY Extended Status <%x>\n"
"PCI Status <%x>\n",
readl(adapter->hw.hw_addr + tx_ring->head),
readl(adapter->hw.hw_addr + tx_ring->tail),
tx_ring->next_to_use,
tx_ring->next_to_clean,
tx_ring->buffer_info[eop].time_stamp,
eop,
jiffies,
eop_desc->upper.fields.status,
er32(STATUS),
phy_status,
phy_1000t_status,
phy_ext_status,
pci_status);
}
/**
* e1000_clean_tx_irq - Reclaim resources after transmit completes
* @adapter: board private structure
*
* the return value indicates whether actual cleaning was done, there
* is no guarantee that everything was cleaned
**/
static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct e1000_hw *hw = &adapter->hw;
struct e1000_ring *tx_ring = adapter->tx_ring;
struct e1000_tx_desc *tx_desc, *eop_desc;
struct e1000_buffer *buffer_info;
unsigned int i, eop;
unsigned int count = 0;
unsigned int total_tx_bytes = 0, total_tx_packets = 0;
i = tx_ring->next_to_clean;
eop = tx_ring->buffer_info[i].next_to_watch;
eop_desc = E1000_TX_DESC(*tx_ring, eop);
while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
(count < tx_ring->count)) {
bool cleaned = false;
rmb(); /* read buffer_info after eop_desc */
for (; !cleaned; count++) {
tx_desc = E1000_TX_DESC(*tx_ring, i);
buffer_info = &tx_ring->buffer_info[i];
cleaned = (i == eop);
if (cleaned) {
total_tx_packets += buffer_info->segs;
total_tx_bytes += buffer_info->bytecount;
}
e1000_put_txbuf(adapter, buffer_info);
tx_desc->upper.data = 0;
i++;
if (i == tx_ring->count)
i = 0;
}
if (i == tx_ring->next_to_use)
break;
eop = tx_ring->buffer_info[i].next_to_watch;
eop_desc = E1000_TX_DESC(*tx_ring, eop);
}
tx_ring->next_to_clean = i;
#define TX_WAKE_THRESHOLD 32
if (count && netif_carrier_ok(netdev) &&
e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
/* Make sure that anybody stopping the queue after this
* sees the new next_to_clean.
*/
smp_mb();
if (netif_queue_stopped(netdev) &&
!(test_bit(__E1000_DOWN, &adapter->state))) {
netif_wake_queue(netdev);
++adapter->restart_queue;
}
}
if (adapter->detect_tx_hung) {
/*
* Detect a transmit hang in hardware, this serializes the
* check with the clearing of time_stamp and movement of i
*/
adapter->detect_tx_hung = 0;
if (tx_ring->buffer_info[i].time_stamp &&
time_after(jiffies, tx_ring->buffer_info[i].time_stamp
+ (adapter->tx_timeout_factor * HZ)) &&
!(er32(STATUS) & E1000_STATUS_TXOFF))
schedule_work(&adapter->print_hang_task);
else
adapter->tx_hang_recheck = false;
}
adapter->total_tx_bytes += total_tx_bytes;
adapter->total_tx_packets += total_tx_packets;
return count < tx_ring->count;
}
/**
* e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
* @adapter: board private structure
*
* the return value indicates whether actual cleaning was done, there
* is no guarantee that everything was cleaned
**/
static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
int *work_done, int work_to_do)
{
struct e1000_hw *hw = &adapter->hw;
union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev;
struct e1000_ring *rx_ring = adapter->rx_ring;
struct e1000_buffer *buffer_info, *next_buffer;
struct e1000_ps_page *ps_page;
struct sk_buff *skb;
unsigned int i, j;
u32 length, staterr;
int cleaned_count = 0;
bool cleaned = 0;
unsigned int total_rx_bytes = 0, total_rx_packets = 0;
i = rx_ring->next_to_clean;
rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
buffer_info = &rx_ring->buffer_info[i];
while (staterr & E1000_RXD_STAT_DD) {
if (*work_done >= work_to_do)
break;
(*work_done)++;
skb = buffer_info->skb;
rmb(); /* read descriptor and rx_buffer_info after status DD */
/* in the packet split case this is header only */
prefetch(skb->data - NET_IP_ALIGN);
i++;
if (i == rx_ring->count)
i = 0;
next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
prefetch(next_rxd);
next_buffer = &rx_ring->buffer_info[i];
cleaned = 1;
cleaned_count++;
dma_unmap_single(&pdev->dev, buffer_info->dma,
adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
buffer_info->dma = 0;
/* see !EOP comment in other Rx routine */
if (!(staterr & E1000_RXD_STAT_EOP))
adapter->flags2 |= FLAG2_IS_DISCARDING;
if (adapter->flags2 & FLAG2_IS_DISCARDING) {
e_dbg("Packet Split buffers didn't pick up the full "
"packet\n");
dev_kfree_skb_irq(skb);
if (staterr & E1000_RXD_STAT_EOP)
adapter->flags2 &= ~FLAG2_IS_DISCARDING;
goto next_desc;
}
if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
dev_kfree_skb_irq(skb);
goto next_desc;
}
length = le16_to_cpu(rx_desc->wb.middle.length0);
if (!length) {
e_dbg("Last part of the packet spanning multiple "
"descriptors\n");
dev_kfree_skb_irq(skb);
goto next_desc;
}
/* Good Receive */
skb_put(skb, length);
{
/*
* this looks ugly, but it seems compiler issues make it
* more efficient than reusing j
*/
int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
/*
* page alloc/put takes too long and effects small packet
* throughput, so unsplit small packets and save the alloc/put
* only valid in softirq (napi) context to call kmap_*
*/
if (l1 && (l1 <= copybreak) &&
((length + l1) <= adapter->rx_ps_bsize0)) {
u8 *vaddr;
ps_page = &buffer_info->ps_pages[0];
/*
* there is no documentation about how to call
* kmap_atomic, so we can't hold the mapping
* very long
*/
dma_sync_single_for_cpu(&pdev->dev, ps_page->dma,
PAGE_SIZE, DMA_FROM_DEVICE);
vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
memcpy(skb_tail_pointer(skb), vaddr, l1);
kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
dma_sync_single_for_device(&pdev->dev, ps_page->dma,
PAGE_SIZE, DMA_FROM_DEVICE);
/* remove the CRC */
if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
l1 -= 4;
skb_put(skb, l1);
goto copydone;
} /* if */
}
for (j = 0; j < PS_PAGE_BUFFERS; j++) {
length = le16_to_cpu(rx_desc->wb.upper.length[j]);
if (!length)
break;
ps_page = &buffer_info->ps_pages[j];
dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
DMA_FROM_DEVICE);
ps_page->dma = 0;
skb_fill_page_desc(skb, j, ps_page->page, 0, length);
ps_page->page = NULL;
skb->len += length;
skb->data_len += length;
skb->truesize += PAGE_SIZE;
}
/* strip the ethernet crc, problem is we're using pages now so
* this whole operation can get a little cpu intensive
*/
if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
pskb_trim(skb, skb->len - 4);
copydone:
total_rx_bytes += skb->len;
total_rx_packets++;
e1000_rx_checksum(adapter, staterr, le16_to_cpu(
rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
if (rx_desc->wb.upper.header_status &
cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
adapter->rx_hdr_split++;
e1000_receive_skb(adapter, netdev, skb,
staterr, rx_desc->wb.middle.vlan);
next_desc:
rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
buffer_info->skb = NULL;
/* return some buffers to hardware, one at a time is too slow */
if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
adapter->alloc_rx_buf(adapter, cleaned_count,
GFP_ATOMIC);
cleaned_count = 0;
}
/* use prefetched values */
rx_desc = next_rxd;
buffer_info = next_buffer;
staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
}
rx_ring->next_to_clean = i;
cleaned_count = e1000_desc_unused(rx_ring);
if (cleaned_count)
adapter->alloc_rx_buf(adapter, cleaned_count, GFP_ATOMIC);
adapter->total_rx_bytes += total_rx_bytes;
adapter->total_rx_packets += total_rx_packets;
return cleaned;
}
/**
* e1000_consume_page - helper function
**/
static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
u16 length)
{
bi->page = NULL;
skb->len += length;
skb->data_len += length;
skb->truesize += PAGE_SIZE;
}
/**
* e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
* @adapter: board private structure
*
* the return value indicates whether actual cleaning was done, there
* is no guarantee that everything was cleaned
**/
static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
int *work_done, int work_to_do)
{
struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev;
struct e1000_ring *rx_ring = adapter->rx_ring;
union e1000_rx_desc_extended *rx_desc, *next_rxd;
struct e1000_buffer *buffer_info, *next_buffer;
u32 length, staterr;
unsigned int i;
int cleaned_count = 0;
bool cleaned = false;
unsigned int total_rx_bytes=0, total_rx_packets=0;
i = rx_ring->next_to_clean;
rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
buffer_info = &rx_ring->buffer_info[i];
while (staterr & E1000_RXD_STAT_DD) {
struct sk_buff *skb;
if (*work_done >= work_to_do)
break;
(*work_done)++;
rmb(); /* read descriptor and rx_buffer_info after status DD */
skb = buffer_info->skb;
buffer_info->skb = NULL;
++i;
if (i == rx_ring->count)
i = 0;
next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
prefetch(next_rxd);
next_buffer = &rx_ring->buffer_info[i];
cleaned = true;
cleaned_count++;
dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
DMA_FROM_DEVICE);
buffer_info->dma = 0;
length = le16_to_cpu(rx_desc->wb.upper.length);
/* errors is only valid for DD + EOP descriptors */
if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK))) {
/* recycle both page and skb */
buffer_info->skb = skb;
/* an error means any chain goes out the window too */
if (rx_ring->rx_skb_top)
dev_kfree_skb_irq(rx_ring->rx_skb_top);
rx_ring->rx_skb_top = NULL;
goto next_desc;
}
#define rxtop (rx_ring->rx_skb_top)
if (!(staterr & E1000_RXD_STAT_EOP)) {
/* this descriptor is only the beginning (or middle) */
if (!rxtop) {
/* this is the beginning of a chain */
rxtop = skb;
skb_fill_page_desc(rxtop, 0, buffer_info->page,
0, length);
} else {
/* this is the middle of a chain */
skb_fill_page_desc(rxtop,
skb_shinfo(rxtop)->nr_frags,
buffer_info->page, 0, length);
/* re-use the skb, only consumed the page */
buffer_info->skb = skb;
}
e1000_consume_page(buffer_info, rxtop, length);
goto next_desc;
} else {
if (rxtop) {
/* end of the chain */
skb_fill_page_desc(rxtop,
skb_shinfo(rxtop)->nr_frags,
buffer_info->page, 0, length);
/* re-use the current skb, we only consumed the
* page */
buffer_info->skb = skb;
skb = rxtop;
rxtop = NULL;
e1000_consume_page(buffer_info, skb, length);
} else {
/* no chain, got EOP, this buf is the packet
* copybreak to save the put_page/alloc_page */
if (length <= copybreak &&
skb_tailroom(skb) >= length) {
u8 *vaddr;
vaddr = kmap_atomic(buffer_info->page,
KM_SKB_DATA_SOFTIRQ);
memcpy(skb_tail_pointer(skb), vaddr,
length);
kunmap_atomic(vaddr,
KM_SKB_DATA_SOFTIRQ);
/* re-use the page, so don't erase
* buffer_info->page */
skb_put(skb, length);
} else {
skb_fill_page_desc(skb, 0,
buffer_info->page, 0,
length);
e1000_consume_page(buffer_info, skb,
length);
}
}
}
/* Receive Checksum Offload XXX recompute due to CRC strip? */
e1000_rx_checksum(adapter, staterr,
le16_to_cpu(rx_desc->wb.lower.hi_dword.
csum_ip.csum), skb);
/* probably a little skewed due to removing CRC */
total_rx_bytes += skb->len;
total_rx_packets++;
/* eth type trans needs skb->data to point to something */
if (!pskb_may_pull(skb, ETH_HLEN)) {
e_err("pskb_may_pull failed.\n");
dev_kfree_skb_irq(skb);
goto next_desc;
}
e1000_receive_skb(adapter, netdev, skb, staterr,
rx_desc->wb.upper.vlan);
next_desc:
rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
/* return some buffers to hardware, one at a time is too slow */
if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
adapter->alloc_rx_buf(adapter, cleaned_count,
GFP_ATOMIC);
cleaned_count = 0;
}
/* use prefetched values */
rx_desc = next_rxd;
buffer_info = next_buffer;
staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
}
rx_ring->next_to_clean = i;
cleaned_count = e1000_desc_unused(rx_ring);
if (cleaned_count)
adapter->alloc_rx_buf(adapter, cleaned_count, GFP_ATOMIC);
adapter->total_rx_bytes += total_rx_bytes;
adapter->total_rx_packets += total_rx_packets;
return cleaned;
}
/**
* e1000_clean_rx_ring - Free Rx Buffers per Queue
* @adapter: board private structure
**/
static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
{
struct e1000_ring *rx_ring = adapter->rx_ring;
struct e1000_buffer *buffer_info;
struct e1000_ps_page *ps_page;
struct pci_dev *pdev = adapter->pdev;
unsigned int i, j;
/* Free all the Rx ring sk_buffs */
for (i = 0; i < rx_ring->count; i++) {
buffer_info = &rx_ring->buffer_info[i];
if (buffer_info->dma) {
if (adapter->clean_rx == e1000_clean_rx_irq)
dma_unmap_single(&pdev->dev, buffer_info->dma,
adapter->rx_buffer_len,
DMA_FROM_DEVICE);
else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
dma_unmap_page(&pdev->dev, buffer_info->dma,
PAGE_SIZE,
DMA_FROM_DEVICE);
else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
dma_unmap_single(&pdev->dev, buffer_info->dma,
adapter->rx_ps_bsize0,
DMA_FROM_DEVICE);
buffer_info->dma = 0;
}
if (buffer_info->page) {
put_page(buffer_info->page);
buffer_info->page = NULL;
}
if (buffer_info->skb) {
dev_kfree_skb(buffer_info->skb);
buffer_info->skb = NULL;
}
for (j = 0; j < PS_PAGE_BUFFERS; j++) {
ps_page = &buffer_info->ps_pages[j];
if (!ps_page->page)
break;
dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
DMA_FROM_DEVICE);
ps_page->dma = 0;
put_page(ps_page->page);
ps_page->page = NULL;
}
}
/* there also may be some cached data from a chained receive */
if (rx_ring->rx_skb_top) {
dev_kfree_skb(rx_ring->rx_skb_top);
rx_ring->rx_skb_top = NULL;
}
/* Zero out the descriptor ring */
memset(rx_ring->desc, 0, rx_ring->size);
rx_ring->next_to_clean = 0;
rx_ring->next_to_use = 0;
adapter->flags2 &= ~FLAG2_IS_DISCARDING;
writel(0, adapter->hw.hw_addr + rx_ring->head);
writel(0, adapter->hw.hw_addr + rx_ring->tail);
}
static void e1000e_downshift_workaround(struct work_struct *work)
{
struct e1000_adapter *adapter = container_of(work,
struct e1000_adapter, downshift_task);
if (test_bit(__E1000_DOWN, &adapter->state))
return;
e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
}
/**
* e1000_intr_msi - Interrupt Handler
* @irq: interrupt number
* @data: pointer to a network interface device structure
**/
static irqreturn_t e1000_intr_msi(int irq, void *data)
{
struct net_device *netdev = data;
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 icr = er32(ICR);
/*
* read ICR disables interrupts using IAM
*/
if (icr & E1000_ICR_LSC) {
hw->mac.get_link_status = 1;
/*
* ICH8 workaround-- Call gig speed drop workaround on cable
* disconnect (LSC) before accessing any PHY registers
*/
if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
(!(er32(STATUS) & E1000_STATUS_LU)))
schedule_work(&adapter->downshift_task);
/*
* 80003ES2LAN workaround-- For packet buffer work-around on
* link down event; disable receives here in the ISR and reset
* adapter in watchdog
*/
if (netif_carrier_ok(netdev) &&
adapter->flags & FLAG_RX_NEEDS_RESTART) {
/* disable receives */
u32 rctl = er32(RCTL);
ew32(RCTL, rctl & ~E1000_RCTL_EN);
adapter->flags |= FLAG_RX_RESTART_NOW;
}
/* guard against interrupt when we're going down */
if (!test_bit(__E1000_DOWN, &adapter->state))
mod_timer(&adapter->watchdog_timer, jiffies + 1);
}
if (napi_schedule_prep(&adapter->napi)) {
adapter->total_tx_bytes = 0;
adapter->total_tx_packets = 0;
adapter->total_rx_bytes = 0;
adapter->total_rx_packets = 0;
__napi_schedule(&adapter->napi);
}
return IRQ_HANDLED;
}
/**
* e1000_intr - Interrupt Handler
* @irq: interrupt number
* @data: pointer to a network interface device structure
**/
static irqreturn_t e1000_intr(int irq, void *data)
{
struct net_device *netdev = data;
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 rctl, icr = er32(ICR);
if (!icr || test_bit(__E1000_DOWN, &adapter->state))
return IRQ_NONE; /* Not our interrupt */
/*
* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
* not set, then the adapter didn't send an interrupt
*/
if (!(icr & E1000_ICR_INT_ASSERTED))
return IRQ_NONE;
/*
* Interrupt Auto-Mask...upon reading ICR,
* interrupts are masked. No need for the
* IMC write
*/
if (icr & E1000_ICR_LSC) {
hw->mac.get_link_status = 1;
/*
* ICH8 workaround-- Call gig speed drop workaround on cable
* disconnect (LSC) before accessing any PHY registers
*/
if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
(!(er32(STATUS) & E1000_STATUS_LU)))
schedule_work(&adapter->downshift_task);
/*
* 80003ES2LAN workaround--
* For packet buffer work-around on link down event;
* disable receives here in the ISR and
* reset adapter in watchdog
*/
if (netif_carrier_ok(netdev) &&
(adapter->flags & FLAG_RX_NEEDS_RESTART)) {
/* disable receives */
rctl = er32(RCTL);
ew32(RCTL, rctl & ~E1000_RCTL_EN);
adapter->flags |= FLAG_RX_RESTART_NOW;
}
/* guard against interrupt when we're going down */
if (!test_bit(__E1000_DOWN, &adapter->state))
mod_timer(&adapter->watchdog_timer, jiffies + 1);
}
if (napi_schedule_prep(&adapter->napi)) {
adapter->total_tx_bytes = 0;
adapter->total_tx_packets = 0;
adapter->total_rx_bytes = 0;
adapter->total_rx_packets = 0;
__napi_schedule(&adapter->napi);
}
return IRQ_HANDLED;
}
static irqreturn_t e1000_msix_other(int irq, void *data)
{
struct net_device *netdev = data;
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 icr = er32(ICR);
if (!(icr & E1000_ICR_INT_ASSERTED)) {
if (!test_bit(__E1000_DOWN, &adapter->state))
ew32(IMS, E1000_IMS_OTHER);
return IRQ_NONE;
}
if (icr & adapter->eiac_mask)
ew32(ICS, (icr & adapter->eiac_mask));
if (icr & E1000_ICR_OTHER) {
if (!(icr & E1000_ICR_LSC))
goto no_link_interrupt;
hw->mac.get_link_status = 1;
/* guard against interrupt when we're going down */
if (!test_bit(__E1000_DOWN, &adapter->state))
mod_timer(&adapter->watchdog_timer, jiffies + 1);
}
no_link_interrupt:
if (!test_bit(__E1000_DOWN, &adapter->state))
ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
return IRQ_HANDLED;
}
static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
{
struct net_device *netdev = data;
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
struct e1000_ring *tx_ring = adapter->tx_ring;
adapter->total_tx_bytes = 0;
adapter->total_tx_packets = 0;
if (!e1000_clean_tx_irq(adapter))
/* Ring was not completely cleaned, so fire another interrupt */
ew32(ICS, tx_ring->ims_val);
return IRQ_HANDLED;
}
static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
{
struct net_device *netdev = data;
struct e1000_adapter *adapter = netdev_priv(netdev);
/* Write the ITR value calculated at the end of the
* previous interrupt.
*/
if (adapter->rx_ring->set_itr) {
writel(1000000000 / (adapter->rx_ring->itr_val * 256),
adapter->hw.hw_addr + adapter->rx_ring->itr_register);
adapter->rx_ring->set_itr = 0;
}
if (napi_schedule_prep(&adapter->napi)) {
adapter->total_rx_bytes = 0;
adapter->total_rx_packets = 0;
__napi_schedule(&adapter->napi);
}
return IRQ_HANDLED;
}
/**
* e1000_configure_msix - Configure MSI-X hardware
*
* e1000_configure_msix sets up the hardware to properly
* generate MSI-X interrupts.
**/
static void e1000_configure_msix(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
struct e1000_ring *rx_ring = adapter->rx_ring;
struct e1000_ring *tx_ring = adapter->tx_ring;
int vector = 0;
u32 ctrl_ext, ivar = 0;
adapter->eiac_mask = 0;
/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
if (hw->mac.type == e1000_82574) {
u32 rfctl = er32(RFCTL);
rfctl |= E1000_RFCTL_ACK_DIS;
ew32(RFCTL, rfctl);
}
#define E1000_IVAR_INT_ALLOC_VALID 0x8
/* Configure Rx vector */
rx_ring->ims_val = E1000_IMS_RXQ0;
adapter->eiac_mask |= rx_ring->ims_val;
if (rx_ring->itr_val)
writel(1000000000 / (rx_ring->itr_val * 256),
hw->hw_addr + rx_ring->itr_register);
else
writel(1, hw->hw_addr + rx_ring->itr_register);
ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
/* Configure Tx vector */
tx_ring->ims_val = E1000_IMS_TXQ0;
vector++;
if (tx_ring->itr_val)
writel(1000000000 / (tx_ring->itr_val * 256),
hw->hw_addr + tx_ring->itr_register);
else
writel(1, hw->hw_addr + tx_ring->itr_register);
adapter->eiac_mask |= tx_ring->ims_val;
ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
/* set vector for Other Causes, e.g. link changes */
vector++;
ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
if (rx_ring->itr_val)
writel(1000000000 / (rx_ring->itr_val * 256),
hw->hw_addr + E1000_EITR_82574(vector));
else
writel(1, hw->hw_addr + E1000_EITR_82574(vector));
/* Cause Tx interrupts on every write back */
ivar |= (1 << 31);
ew32(IVAR, ivar);
/* enable MSI-X PBA support */
ctrl_ext = er32(CTRL_EXT);
ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
/* Auto-Mask Other interrupts upon ICR read */
#define E1000_EIAC_MASK_82574 0x01F00000
ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
ctrl_ext |= E1000_CTRL_EXT_EIAME;
ew32(CTRL_EXT, ctrl_ext);
e1e_flush();
}
void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
{
if (adapter->msix_entries) {
pci_disable_msix(adapter->pdev);
kfree(adapter->msix_entries);
adapter->msix_entries = NULL;
} else if (adapter->flags & FLAG_MSI_ENABLED) {
pci_disable_msi(adapter->pdev);
adapter->flags &= ~FLAG_MSI_ENABLED;
}
}
/**
* e1000e_set_interrupt_capability - set MSI or MSI-X if supported
*
* Attempt to configure interrupts using the best available
* capabilities of the hardware and kernel.
**/
void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
{
int err;
int i;
switch (adapter->int_mode) {
case E1000E_INT_MODE_MSIX:
if (adapter->flags & FLAG_HAS_MSIX) {
adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
adapter->msix_entries = kcalloc(adapter->num_vectors,
sizeof(struct msix_entry),
GFP_KERNEL);
if (adapter->msix_entries) {
for (i = 0; i < adapter->num_vectors; i++)
adapter->msix_entries[i].entry = i;
err = pci_enable_msix(adapter->pdev,
adapter->msix_entries,
adapter->num_vectors);
if (err == 0)
return;
}
/* MSI-X failed, so fall through and try MSI */
e_err("Failed to initialize MSI-X interrupts. "
"Falling back to MSI interrupts.\n");
e1000e_reset_interrupt_capability(adapter);
}
adapter->int_mode = E1000E_INT_MODE_MSI;
/* Fall through */
case E1000E_INT_MODE_MSI:
if (!pci_enable_msi(adapter->pdev)) {
adapter->flags |= FLAG_MSI_ENABLED;
} else {
adapter->int_mode = E1000E_INT_MODE_LEGACY;
e_err("Failed to initialize MSI interrupts. Falling "
"back to legacy interrupts.\n");
}
/* Fall through */
case E1000E_INT_MODE_LEGACY:
/* Don't do anything; this is the system default */
break;
}
/* store the number of vectors being used */
adapter->num_vectors = 1;
}
/**
* e1000_request_msix - Initialize MSI-X interrupts
*
* e1000_request_msix allocates MSI-X vectors and requests interrupts from the
* kernel.
**/
static int e1000_request_msix(struct e1000_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
int err = 0, vector = 0;
if (strlen(netdev->name) < (IFNAMSIZ - 5))
snprintf(adapter->rx_ring->name,
sizeof(adapter->rx_ring->name) - 1,
"%s-rx-0", netdev->name);
else
memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
err = request_irq(adapter->msix_entries[vector].vector,
e1000_intr_msix_rx, 0, adapter->rx_ring->name,
netdev);
if (err)
goto out;
adapter->rx_ring->itr_register = E1000_EITR_82574(vector);
adapter->rx_ring->itr_val = adapter->itr;
vector++;
if (strlen(netdev->name) < (IFNAMSIZ - 5))
snprintf(adapter->tx_ring->name,
sizeof(adapter->tx_ring->name) - 1,
"%s-tx-0", netdev->name);
else
memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
err = request_irq(adapter->msix_entries[vector].vector,
e1000_intr_msix_tx, 0, adapter->tx_ring->name,
netdev);
if (err)
goto out;
adapter->tx_ring->itr_register = E1000_EITR_82574(vector);
adapter->tx_ring->itr_val = adapter->itr;
vector++;
err = request_irq(adapter->msix_entries[vector].vector,
e1000_msix_other, 0, netdev->name, netdev);
if (err)
goto out;
e1000_configure_msix(adapter);
return 0;
out:
return err;
}
/**
* e1000_request_irq - initialize interrupts
*
* Attempts to configure interrupts using the best available
* capabilities of the hardware and kernel.
**/
static int e1000_request_irq(struct e1000_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
int err;
if (adapter->msix_entries) {
err = e1000_request_msix(adapter);
if (!err)
return err;
/* fall back to MSI */
e1000e_reset_interrupt_capability(adapter);
adapter->int_mode = E1000E_INT_MODE_MSI;
e1000e_set_interrupt_capability(adapter);
}
if (adapter->flags & FLAG_MSI_ENABLED) {
err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
netdev->name, netdev);
if (!err)
return err;
/* fall back to legacy interrupt */
e1000e_reset_interrupt_capability(adapter);
adapter->int_mode = E1000E_INT_MODE_LEGACY;
}
err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
netdev->name, netdev);
if (err)
e_err("Unable to allocate interrupt, Error: %d\n", err);
return err;
}
static void e1000_free_irq(struct e1000_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
if (adapter->msix_entries) {
int vector = 0;
free_irq(adapter->msix_entries[vector].vector, netdev);
vector++;
free_irq(adapter->msix_entries[vector].vector, netdev);
vector++;
/* Other Causes interrupt vector */
free_irq(adapter->msix_entries[vector].vector, netdev);
return;
}
free_irq(adapter->pdev->irq, netdev);
}
/**
* e1000_irq_disable - Mask off interrupt generation on the NIC
**/
static void e1000_irq_disable(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
ew32(IMC, ~0);
if (adapter->msix_entries)
ew32(EIAC_82574, 0);
e1e_flush();
if (adapter->msix_entries) {
int i;
for (i = 0; i < adapter->num_vectors; i++)
synchronize_irq(adapter->msix_entries[i].vector);
} else {
synchronize_irq(adapter->pdev->irq);
}
}
/**
* e1000_irq_enable - Enable default interrupt generation settings
**/
static void e1000_irq_enable(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
if (adapter->msix_entries) {
ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
} else {
ew32(IMS, IMS_ENABLE_MASK);
}
e1e_flush();
}
/**
* e1000e_get_hw_control - get control of the h/w from f/w
* @adapter: address of board private structure
*
* e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
* For ASF and Pass Through versions of f/w this means that
* the driver is loaded. For AMT version (only with 82573)
* of the f/w this means that the network i/f is open.
**/
void e1000e_get_hw_control(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 ctrl_ext;
u32 swsm;
/* Let firmware know the driver has taken over */
if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
swsm = er32(SWSM);
ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
ctrl_ext = er32(CTRL_EXT);
ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
}
}
/**
* e1000e_release_hw_control - release control of the h/w to f/w
* @adapter: address of board private structure
*
* e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
* For ASF and Pass Through versions of f/w this means that the
* driver is no longer loaded. For AMT version (only with 82573) i
* of the f/w this means that the network i/f is closed.
*
**/
void e1000e_release_hw_control(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 ctrl_ext;
u32 swsm;
/* Let firmware taken over control of h/w */
if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
swsm = er32(SWSM);
ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
ctrl_ext = er32(CTRL_EXT);
ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
}
}
/**
* @e1000_alloc_ring - allocate memory for a ring structure
**/
static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
struct e1000_ring *ring)
{
struct pci_dev *pdev = adapter->pdev;
ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
GFP_KERNEL);
if (!ring->desc)
return -ENOMEM;
return 0;
}
/**
* e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
* @adapter: board private structure
*
* Return 0 on success, negative on failure
**/
int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
{
struct e1000_ring *tx_ring = adapter->tx_ring;
int err = -ENOMEM, size;
size = sizeof(struct e1000_buffer) * tx_ring->count;
tx_ring->buffer_info = vzalloc(size);
if (!tx_ring->buffer_info)
goto err;
/* round up to nearest 4K */
tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
tx_ring->size = ALIGN(tx_ring->size, 4096);
err = e1000_alloc_ring_dma(adapter, tx_ring);
if (err)
goto err;
tx_ring->next_to_use = 0;
tx_ring->next_to_clean = 0;
return 0;
err:
vfree(tx_ring->buffer_info);
e_err("Unable to allocate memory for the transmit descriptor ring\n");
return err;
}
/**
* e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
* @adapter: board private structure
*
* Returns 0 on success, negative on failure
**/
int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
{
struct e1000_ring *rx_ring = adapter->rx_ring;
struct e1000_buffer *buffer_info;
int i, size, desc_len, err = -ENOMEM;
size = sizeof(struct e1000_buffer) * rx_ring->count;
rx_ring->buffer_info = vzalloc(size);
if (!rx_ring->buffer_info)
goto err;
for (i = 0; i < rx_ring->count; i++) {
buffer_info = &rx_ring->buffer_info[i];
buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
sizeof(struct e1000_ps_page),
GFP_KERNEL);
if (!buffer_info->ps_pages)
goto err_pages;
}
desc_len = sizeof(union e1000_rx_desc_packet_split);
/* Round up to nearest 4K */
rx_ring->size = rx_ring->count * desc_len;
rx_ring->size = ALIGN(rx_ring->size, 4096);
err = e1000_alloc_ring_dma(adapter, rx_ring);
if (err)
goto err_pages;
rx_ring->next_to_clean = 0;
rx_ring->next_to_use = 0;
rx_ring->rx_skb_top = NULL;
return 0;
err_pages:
for (i = 0; i < rx_ring->count; i++) {
buffer_info = &rx_ring->buffer_info[i];
kfree(buffer_info->ps_pages);
}
err:
vfree(rx_ring->buffer_info);
e_err("Unable to allocate memory for the receive descriptor ring\n");
return err;
}
/**
* e1000_clean_tx_ring - Free Tx Buffers
* @adapter: board private structure
**/
static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
{
struct e1000_ring *tx_ring = adapter->tx_ring;
struct e1000_buffer *buffer_info;
unsigned long size;
unsigned int i;
for (i = 0; i < tx_ring->count; i++) {
buffer_info = &tx_ring->buffer_info[i];
e1000_put_txbuf(adapter, buffer_info);
}
size = sizeof(struct e1000_buffer) * tx_ring->count;
memset(tx_ring->buffer_info, 0, size);
memset(tx_ring->desc, 0, tx_ring->size);
tx_ring->next_to_use = 0;
tx_ring->next_to_clean = 0;
writel(0, adapter->hw.hw_addr + tx_ring->head);
writel(0, adapter->hw.hw_addr + tx_ring->tail);
}
/**
* e1000e_free_tx_resources - Free Tx Resources per Queue
* @adapter: board private structure
*
* Free all transmit software resources
**/
void e1000e_free_tx_resources(struct e1000_adapter *adapter)
{
struct pci_dev *pdev = adapter->pdev;
struct e1000_ring *tx_ring = adapter->tx_ring;
e1000_clean_tx_ring(adapter);
vfree(tx_ring->buffer_info);
tx_ring->buffer_info = NULL;
dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
tx_ring->dma);
tx_ring->desc = NULL;
}
/**
* e1000e_free_rx_resources - Free Rx Resources
* @adapter: board private structure
*
* Free all receive software resources
**/
void e1000e_free_rx_resources(struct e1000_adapter *adapter)
{
struct pci_dev *pdev = adapter->pdev;
struct e1000_ring *rx_ring = adapter->rx_ring;
int i;
e1000_clean_rx_ring(adapter);
for (i = 0; i < rx_ring->count; i++)
kfree(rx_ring->buffer_info[i].ps_pages);
vfree(rx_ring->buffer_info);
rx_ring->buffer_info = NULL;
dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
rx_ring->dma);
rx_ring->desc = NULL;
}
/**
* e1000_update_itr - update the dynamic ITR value based on statistics
* @adapter: pointer to adapter
* @itr_setting: current adapter->itr
* @packets: the number of packets during this measurement interval
* @bytes: the number of bytes during this measurement interval
*
* Stores a new ITR value based on packets and byte
* counts during the last interrupt. The advantage of per interrupt
* computation is faster updates and more accurate ITR for the current
* traffic pattern. Constants in this function were computed
* based on theoretical maximum wire speed and thresholds were set based
* on testing data as well as attempting to minimize response time
* while increasing bulk throughput. This functionality is controlled
* by the InterruptThrottleRate module parameter.
**/
static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
u16 itr_setting, int packets,
int bytes)
{
unsigned int retval = itr_setting;
if (packets == 0)
goto update_itr_done;
switch (itr_setting) {
case lowest_latency:
/* handle TSO and jumbo frames */
if (bytes/packets > 8000)
retval = bulk_latency;
else if ((packets < 5) && (bytes > 512))
retval = low_latency;
break;
case low_latency: /* 50 usec aka 20000 ints/s */
if (bytes > 10000) {
/* this if handles the TSO accounting */
if (bytes/packets > 8000)
retval = bulk_latency;
else if ((packets < 10) || ((bytes/packets) > 1200))
retval = bulk_latency;
else if ((packets > 35))
retval = lowest_latency;
} else if (bytes/packets > 2000) {
retval = bulk_latency;
} else if (packets <= 2 && bytes < 512) {
retval = lowest_latency;
}
break;
case bulk_latency: /* 250 usec aka 4000 ints/s */
if (bytes > 25000) {
if (packets > 35)
retval = low_latency;
} else if (bytes < 6000) {
retval = low_latency;
}
break;
}
update_itr_done:
return retval;
}
static void e1000_set_itr(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u16 current_itr;
u32 new_itr = adapter->itr;
/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
if (adapter->link_speed != SPEED_1000) {
current_itr = 0;
new_itr = 4000;
goto set_itr_now;
}
if (adapter->flags2 & FLAG2_DISABLE_AIM) {
new_itr = 0;
goto set_itr_now;
}
adapter->tx_itr = e1000_update_itr(adapter,
adapter->tx_itr,
adapter->total_tx_packets,
adapter->total_tx_bytes);
/* conservative mode (itr 3) eliminates the lowest_latency setting */
if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
adapter->tx_itr = low_latency;
adapter->rx_itr = e1000_update_itr(adapter,
adapter->rx_itr,
adapter->total_rx_packets,
adapter->total_rx_bytes);
/* conservative mode (itr 3) eliminates the lowest_latency setting */
if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
adapter->rx_itr = low_latency;
current_itr = max(adapter->rx_itr, adapter->tx_itr);
switch (current_itr) {
/* counts and packets in update_itr are dependent on these numbers */
case lowest_latency:
new_itr = 70000;
break;
case low_latency:
new_itr = 20000; /* aka hwitr = ~200 */
break;
case bulk_latency:
new_itr = 4000;
break;
default:
break;
}
set_itr_now:
if (new_itr != adapter->itr) {
/*
* this attempts to bias the interrupt rate towards Bulk
* by adding intermediate steps when interrupt rate is
* increasing
*/
new_itr = new_itr > adapter->itr ?
min(adapter->itr + (new_itr >> 2), new_itr) :
new_itr;
adapter->itr = new_itr;
adapter->rx_ring->itr_val = new_itr;
if (adapter->msix_entries)
adapter->rx_ring->set_itr = 1;
else
if (new_itr)
ew32(ITR, 1000000000 / (new_itr * 256));
else
ew32(ITR, 0);
}
}
/**
* e1000_alloc_queues - Allocate memory for all rings
* @adapter: board private structure to initialize
**/
static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
{
adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
if (!adapter->tx_ring)
goto err;
adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
if (!adapter->rx_ring)
goto err;
return 0;
err:
e_err("Unable to allocate memory for queues\n");
kfree(adapter->rx_ring);
kfree(adapter->tx_ring);
return -ENOMEM;
}
/**
* e1000_clean - NAPI Rx polling callback
* @napi: struct associated with this polling callback
* @budget: amount of packets driver is allowed to process this poll
**/
static int e1000_clean(struct napi_struct *napi, int budget)
{
struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
struct e1000_hw *hw = &adapter->hw;
struct net_device *poll_dev = adapter->netdev;
int tx_cleaned = 1, work_done = 0;
adapter = netdev_priv(poll_dev);
if (adapter->msix_entries &&
!(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
goto clean_rx;
tx_cleaned = e1000_clean_tx_irq(adapter);
clean_rx:
adapter->clean_rx(adapter, &work_done, budget);
if (!tx_cleaned)
work_done = budget;
/* If budget not fully consumed, exit the polling mode */
if (work_done < budget) {
if (adapter->itr_setting & 3)
e1000_set_itr(adapter);
napi_complete(napi);
if (!test_bit(__E1000_DOWN, &adapter->state)) {
if (adapter->msix_entries)
ew32(IMS, adapter->rx_ring->ims_val);
else
e1000_irq_enable(adapter);
}
}
return work_done;
}
static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 vfta, index;
/* don't update vlan cookie if already programmed */
if ((adapter->hw.mng_cookie.status &
E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
(vid == adapter->mng_vlan_id))
return;
/* add VID to filter table */
if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
index = (vid >> 5) & 0x7F;
vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
vfta |= (1 << (vid & 0x1F));
hw->mac.ops.write_vfta(hw, index, vfta);
}
set_bit(vid, adapter->active_vlans);
}
static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 vfta, index;
if ((adapter->hw.mng_cookie.status &
E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
(vid == adapter->mng_vlan_id)) {
/* release control to f/w */
e1000e_release_hw_control(adapter);
return;
}
/* remove VID from filter table */
if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
index = (vid >> 5) & 0x7F;
vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
vfta &= ~(1 << (vid & 0x1F));
hw->mac.ops.write_vfta(hw, index, vfta);
}
clear_bit(vid, adapter->active_vlans);
}
/**
* e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
* @adapter: board private structure to initialize
**/
static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct e1000_hw *hw = &adapter->hw;
u32 rctl;
if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
/* disable VLAN receive filtering */
rctl = er32(RCTL);
rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
ew32(RCTL, rctl);
if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
}
}
}
/**
* e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
* @adapter: board private structure to initialize
**/
static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 rctl;
if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
/* enable VLAN receive filtering */
rctl = er32(RCTL);
rctl |= E1000_RCTL_VFE;
rctl &= ~E1000_RCTL_CFIEN;
ew32(RCTL, rctl);
}
}
/**
* e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
* @adapter: board private structure to initialize
**/
static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 ctrl;
/* disable VLAN tag insert/strip */
ctrl = er32(CTRL);
ctrl &= ~E1000_CTRL_VME;
ew32(CTRL, ctrl);
}
/**
* e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
* @adapter: board private structure to initialize
**/
static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 ctrl;
/* enable VLAN tag insert/strip */
ctrl = er32(CTRL);
ctrl |= E1000_CTRL_VME;
ew32(CTRL, ctrl);
}
static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
u16 vid = adapter->hw.mng_cookie.vlan_id;
u16 old_vid = adapter->mng_vlan_id;
if (adapter->hw.mng_cookie.status &
E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
e1000_vlan_rx_add_vid(netdev, vid);
adapter->mng_vlan_id = vid;
}
if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
e1000_vlan_rx_kill_vid(netdev, old_vid);
}
static void e1000_restore_vlan(struct e1000_adapter *adapter)
{
u16 vid;
e1000_vlan_rx_add_vid(adapter->netdev, 0);
for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
e1000_vlan_rx_add_vid(adapter->netdev, vid);
}
static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 manc, manc2h, mdef, i, j;
if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
return;
manc = er32(MANC);
/*
* enable receiving management packets to the host. this will probably
* generate destination unreachable messages from the host OS, but
* the packets will be handled on SMBUS
*/
manc |= E1000_MANC_EN_MNG2HOST;
manc2h = er32(MANC2H);
switch (hw->mac.type) {
default:
manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
break;
case e1000_82574:
case e1000_82583:
/*
* Check if IPMI pass-through decision filter already exists;
* if so, enable it.
*/
for (i = 0, j = 0; i < 8; i++) {
mdef = er32(MDEF(i));
/* Ignore filters with anything other than IPMI ports */
if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
continue;
/* Enable this decision filter in MANC2H */
if (mdef)
manc2h |= (1 << i);
j |= mdef;
}
if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
break;
/* Create new decision filter in an empty filter */
for (i = 0, j = 0; i < 8; i++)
if (er32(MDEF(i)) == 0) {
ew32(MDEF(i), (E1000_MDEF_PORT_623 |
E1000_MDEF_PORT_664));
manc2h |= (1 << 1);
j++;
break;
}
if (!j)
e_warn("Unable to create IPMI pass-through filter\n");
break;
}
ew32(MANC2H, manc2h);
ew32(MANC, manc);
}
/**
* e1000_configure_tx - Configure Transmit Unit after Reset
* @adapter: board private structure
*
* Configure the Tx unit of the MAC after a reset.
**/
static void e1000_configure_tx(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
struct e1000_ring *tx_ring = adapter->tx_ring;
u64 tdba;
u32 tdlen, tctl, tipg, tarc;
u32 ipgr1, ipgr2;
/* Setup the HW Tx Head and Tail descriptor pointers */
tdba = tx_ring->dma;
tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
ew32(TDBAL, (tdba & DMA_BIT_MASK(32)));
ew32(TDBAH, (tdba >> 32));
ew32(TDLEN, tdlen);
ew32(TDH, 0);
ew32(TDT, 0);
tx_ring->head = E1000_TDH;
tx_ring->tail = E1000_TDT;
/* Set the default values for the Tx Inter Packet Gap timer */
tipg = DEFAULT_82543_TIPG_IPGT_COPPER; /* 8 */
ipgr1 = DEFAULT_82543_TIPG_IPGR1; /* 8 */
ipgr2 = DEFAULT_82543_TIPG_IPGR2; /* 6 */
if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /* 7 */
tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
ew32(TIPG, tipg);
/* Set the Tx Interrupt Delay register */
ew32(TIDV, adapter->tx_int_delay);
/* Tx irq moderation */
ew32(TADV, adapter->tx_abs_int_delay);
if (adapter->flags2 & FLAG2_DMA_BURST) {
u32 txdctl = er32(TXDCTL(0));
txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
E1000_TXDCTL_WTHRESH);
/*
* set up some performance related parameters to encourage the
* hardware to use the bus more efficiently in bursts, depends
* on the tx_int_delay to be enabled,
* wthresh = 5 ==> burst write a cacheline (64 bytes) at a time
* hthresh = 1 ==> prefetch when one or more available
* pthresh = 0x1f ==> prefetch if internal cache 31 or less
* BEWARE: this seems to work but should be considered first if
* there are Tx hangs or other Tx related bugs
*/
txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
ew32(TXDCTL(0), txdctl);
/* erratum work around: set txdctl the same for both queues */
ew32(TXDCTL(1), txdctl);
}
/* Program the Transmit Control Register */
tctl = er32(TCTL);
tctl &= ~E1000_TCTL_CT;
tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
tarc = er32(TARC(0));
/*
* set the speed mode bit, we'll clear it if we're not at
* gigabit link later
*/
#define SPEED_MODE_BIT (1 << 21)
tarc |= SPEED_MODE_BIT;
ew32(TARC(0), tarc);
}
/* errata: program both queues to unweighted RR */
if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
tarc = er32(TARC(0));
tarc |= 1;
ew32(TARC(0), tarc);
tarc = er32(TARC(1));
tarc |= 1;
ew32(TARC(1), tarc);
}
/* Setup Transmit Descriptor Settings for eop descriptor */
adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
/* only set IDE if we are delaying interrupts using the timers */
if (adapter->tx_int_delay)
adapter->txd_cmd |= E1000_TXD_CMD_IDE;
/* enable Report Status bit */
adapter->txd_cmd |= E1000_TXD_CMD_RS;
ew32(TCTL, tctl);
e1000e_config_collision_dist(hw);
}
/**
* e1000_setup_rctl - configure the receive control registers
* @adapter: Board private structure
**/
#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
(((S) & (PAGE_SIZE - 1)) ? 1 : 0))
static void e1000_setup_rctl(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 rctl, rfctl;
u32 pages = 0;
/* Workaround Si errata on 82579 - configure jumbo frame flow */
if (hw->mac.type == e1000_pch2lan) {
s32 ret_val;
if (adapter->netdev->mtu > ETH_DATA_LEN)
ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
else
ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
if (ret_val)
e_dbg("failed to enable jumbo frame workaround mode\n");
}
/* Program MC offset vector base */
rctl = er32(RCTL);
rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
/* Do not Store bad packets */
rctl &= ~E1000_RCTL_SBP;
/* Enable Long Packet receive */
if (adapter->netdev->mtu <= ETH_DATA_LEN)
rctl &= ~E1000_RCTL_LPE;
else
rctl |= E1000_RCTL_LPE;
/* Some systems expect that the CRC is included in SMBUS traffic. The
* hardware strips the CRC before sending to both SMBUS (BMC) and to
* host memory when this is enabled
*/
if (adapter->flags2 & FLAG2_CRC_STRIPPING)
rctl |= E1000_RCTL_SECRC;
/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
u16 phy_data;
e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
phy_data &= 0xfff8;
phy_data |= (1 << 2);
e1e_wphy(hw, PHY_REG(770, 26), phy_data);
e1e_rphy(hw, 22, &phy_data);
phy_data &= 0x0fff;
phy_data |= (1 << 14);
e1e_wphy(hw, 0x10, 0x2823);
e1e_wphy(hw, 0x11, 0x0003);
e1e_wphy(hw, 22, phy_data);
}
/* Setup buffer sizes */
rctl &= ~E1000_RCTL_SZ_4096;
rctl |= E1000_RCTL_BSEX;
switch (adapter->rx_buffer_len) {
case 2048:
default:
rctl |= E1000_RCTL_SZ_2048;
rctl &= ~E1000_RCTL_BSEX;
break;
case 4096:
rctl |= E1000_RCTL_SZ_4096;
break;
case 8192:
rctl |= E1000_RCTL_SZ_8192;
break;
case 16384:
rctl |= E1000_RCTL_SZ_16384;
break;
}
/* Enable Extended Status in all Receive Descriptors */
rfctl = er32(RFCTL);
rfctl |= E1000_RFCTL_EXTEN;
/*
* 82571 and greater support packet-split where the protocol
* header is placed in skb->data and the packet data is
* placed in pages hanging off of skb_shinfo(skb)->nr_frags.
* In the case of a non-split, skb->data is linearly filled,
* followed by the page buffers. Therefore, skb->data is
* sized to hold the largest protocol header.
*
* allocations using alloc_page take too long for regular MTU
* so only enable packet split for jumbo frames
*
* Using pages when the page size is greater than 16k wastes
* a lot of memory, since we allocate 3 pages at all times
* per packet.
*/
pages = PAGE_USE_COUNT(adapter->netdev->mtu);
if (!(adapter->flags & FLAG_HAS_ERT) && (pages <= 3) &&
(PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
adapter->rx_ps_pages = pages;
else
adapter->rx_ps_pages = 0;
if (adapter->rx_ps_pages) {
u32 psrctl = 0;
/*
* disable packet split support for IPv6 extension headers,
* because some malformed IPv6 headers can hang the Rx
*/
rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
E1000_RFCTL_NEW_IPV6_EXT_DIS);
/* Enable Packet split descriptors */
rctl |= E1000_RCTL_DTYP_PS;
psrctl |= adapter->rx_ps_bsize0 >>
E1000_PSRCTL_BSIZE0_SHIFT;
switch (adapter->rx_ps_pages) {
case 3:
psrctl |= PAGE_SIZE <<
E1000_PSRCTL_BSIZE3_SHIFT;
case 2:
psrctl |= PAGE_SIZE <<
E1000_PSRCTL_BSIZE2_SHIFT;
case 1:
psrctl |= PAGE_SIZE >>
E1000_PSRCTL_BSIZE1_SHIFT;
break;
}
ew32(PSRCTL, psrctl);
}
ew32(RFCTL, rfctl);
ew32(RCTL, rctl);
/* just started the receive unit, no need to restart */
adapter->flags &= ~FLAG_RX_RESTART_NOW;
}
/**
* e1000_configure_rx - Configure Receive Unit after Reset
* @adapter: board private structure
*
* Configure the Rx unit of the MAC after a reset.
**/
static void e1000_configure_rx(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
struct e1000_ring *rx_ring = adapter->rx_ring;
u64 rdba;
u32 rdlen, rctl, rxcsum, ctrl_ext;
if (adapter->rx_ps_pages) {
/* this is a 32 byte descriptor */
rdlen = rx_ring->count *
sizeof(union e1000_rx_desc_packet_split);
adapter->clean_rx = e1000_clean_rx_irq_ps;
adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
adapter->clean_rx = e1000_clean_jumbo_rx_irq;
adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
} else {
rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
adapter->clean_rx = e1000_clean_rx_irq;
adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
}
/* disable receives while setting up the descriptors */
rctl = er32(RCTL);
if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
ew32(RCTL, rctl & ~E1000_RCTL_EN);
e1e_flush();
usleep_range(10000, 20000);
if (adapter->flags2 & FLAG2_DMA_BURST) {
/*
* set the writeback threshold (only takes effect if the RDTR
* is set). set GRAN=1 and write back up to 0x4 worth, and
* enable prefetching of 0x20 Rx descriptors
* granularity = 01
* wthresh = 04,
* hthresh = 04,
* pthresh = 0x20
*/
ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
/*
* override the delay timers for enabling bursting, only if
* the value was not set by the user via module options
*/
if (adapter->rx_int_delay == DEFAULT_RDTR)
adapter->rx_int_delay = BURST_RDTR;
if (adapter->rx_abs_int_delay == DEFAULT_RADV)
adapter->rx_abs_int_delay = BURST_RADV;
}
/* set the Receive Delay Timer Register */
ew32(RDTR, adapter->rx_int_delay);
/* irq moderation */
ew32(RADV, adapter->rx_abs_int_delay);
if ((adapter->itr_setting != 0) && (adapter->itr != 0))
ew32(ITR, 1000000000 / (adapter->itr * 256));
ctrl_ext = er32(CTRL_EXT);
/* Auto-Mask interrupts upon ICR access */
ctrl_ext |= E1000_CTRL_EXT_IAME;
ew32(IAM, 0xffffffff);
ew32(CTRL_EXT, ctrl_ext);
e1e_flush();
/*
* Setup the HW Rx Head and Tail Descriptor Pointers and
* the Base and Length of the Rx Descriptor Ring
*/
rdba = rx_ring->dma;
ew32(RDBAL, (rdba & DMA_BIT_MASK(32)));
ew32(RDBAH, (rdba >> 32));
ew32(RDLEN, rdlen);
ew32(RDH, 0);
ew32(RDT, 0);
rx_ring->head = E1000_RDH;
rx_ring->tail = E1000_RDT;
/* Enable Receive Checksum Offload for TCP and UDP */
rxcsum = er32(RXCSUM);
if (adapter->netdev->features & NETIF_F_RXCSUM) {
rxcsum |= E1000_RXCSUM_TUOFL;
/*
* IPv4 payload checksum for UDP fragments must be
* used in conjunction with packet-split.
*/
if (adapter->rx_ps_pages)
rxcsum |= E1000_RXCSUM_IPPCSE;
} else {
rxcsum &= ~E1000_RXCSUM_TUOFL;
/* no need to clear IPPCSE as it defaults to 0 */
}
ew32(RXCSUM, rxcsum);
/*
* Enable early receives on supported devices, only takes effect when
* packet size is equal or larger than the specified value (in 8 byte
* units), e.g. using jumbo frames when setting to E1000_ERT_2048
*/
if ((adapter->flags & FLAG_HAS_ERT) ||
(adapter->hw.mac.type == e1000_pch2lan)) {
if (adapter->netdev->mtu > ETH_DATA_LEN) {
u32 rxdctl = er32(RXDCTL(0));
ew32(RXDCTL(0), rxdctl | 0x3);
if (adapter->flags & FLAG_HAS_ERT)
ew32(ERT, E1000_ERT_2048 | (1 << 13));
/*
* With jumbo frames and early-receive enabled,
* excessive C-state transition latencies result in
* dropped transactions.
*/
pm_qos_update_request(&adapter->netdev->pm_qos_req, 55);
} else {
pm_qos_update_request(&adapter->netdev->pm_qos_req,
PM_QOS_DEFAULT_VALUE);
}
}
/* Enable Receives */
ew32(RCTL, rctl);
}
/**
* e1000_update_mc_addr_list - Update Multicast addresses
* @hw: pointer to the HW structure
* @mc_addr_list: array of multicast addresses to program
* @mc_addr_count: number of multicast addresses to program
*
* Updates the Multicast Table Array.
* The caller must have a packed mc_addr_list of multicast addresses.
**/
static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
u32 mc_addr_count)
{
hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count);
}
/**
* e1000_set_multi - Multicast and Promiscuous mode set
* @netdev: network interface device structure
*
* The set_multi entry point is called whenever the multicast address
* list or the network interface flags are updated. This routine is
* responsible for configuring the hardware for proper multicast,
* promiscuous mode, and all-multi behavior.
**/
static void e1000_set_multi(struct net_device *netdev)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
struct netdev_hw_addr *ha;
u8 *mta_list;
u32 rctl;
/* Check for Promiscuous and All Multicast modes */
rctl = er32(RCTL);
if (netdev->flags & IFF_PROMISC) {
rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
rctl &= ~E1000_RCTL_VFE;
/* Do not hardware filter VLANs in promisc mode */
e1000e_vlan_filter_disable(adapter);
} else {
if (netdev->flags & IFF_ALLMULTI) {
rctl |= E1000_RCTL_MPE;
rctl &= ~E1000_RCTL_UPE;
} else {
rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
}
e1000e_vlan_filter_enable(adapter);
}
ew32(RCTL, rctl);
if (!netdev_mc_empty(netdev)) {
int i = 0;
mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
if (!mta_list)
return;
/* prepare a packed array of only addresses. */
netdev_for_each_mc_addr(ha, netdev)
memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
e1000_update_mc_addr_list(hw, mta_list, i);
kfree(mta_list);
} else {
/*
* if we're called from probe, we might not have
* anything to do here, so clear out the list
*/
e1000_update_mc_addr_list(hw, NULL, 0);
}
if (netdev->features & NETIF_F_HW_VLAN_RX)
e1000e_vlan_strip_enable(adapter);
else
e1000e_vlan_strip_disable(adapter);
}
/**
* e1000_configure - configure the hardware for Rx and Tx
* @adapter: private board structure
**/
static void e1000_configure(struct e1000_adapter *adapter)
{
e1000_set_multi(adapter->netdev);
e1000_restore_vlan(adapter);
e1000_init_manageability_pt(adapter);
e1000_configure_tx(adapter);
e1000_setup_rctl(adapter);
e1000_configure_rx(adapter);
adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring),
GFP_KERNEL);
}
/**
* e1000e_power_up_phy - restore link in case the phy was powered down
* @adapter: address of board private structure
*
* The phy may be powered down to save power and turn off link when the
* driver is unloaded and wake on lan is not enabled (among others)
* *** this routine MUST be followed by a call to e1000e_reset ***
**/
void e1000e_power_up_phy(struct e1000_adapter *adapter)
{
if (adapter->hw.phy.ops.power_up)
adapter->hw.phy.ops.power_up(&adapter->hw);
adapter->hw.mac.ops.setup_link(&adapter->hw);
}
/**
* e1000_power_down_phy - Power down the PHY
*
* Power down the PHY so no link is implied when interface is down.
* The PHY cannot be powered down if management or WoL is active.
*/
static void e1000_power_down_phy(struct e1000_adapter *adapter)
{
/* WoL is enabled */
if (adapter->wol)
return;
if (adapter->hw.phy.ops.power_down)
adapter->hw.phy.ops.power_down(&adapter->hw);
}
/**
* e1000e_reset - bring the hardware into a known good state
*
* This function boots the hardware and enables some settings that
* require a configuration cycle of the hardware - those cannot be
* set/changed during runtime. After reset the device needs to be
* properly configured for Rx, Tx etc.
*/
void e1000e_reset(struct e1000_adapter *adapter)
{
struct e1000_mac_info *mac = &adapter->hw.mac;
struct e1000_fc_info *fc = &adapter->hw.fc;
struct e1000_hw *hw = &adapter->hw;
u32 tx_space, min_tx_space, min_rx_space;
u32 pba = adapter->pba;
u16 hwm;
/* reset Packet Buffer Allocation to default */
ew32(PBA, pba);
if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
/*
* To maintain wire speed transmits, the Tx FIFO should be
* large enough to accommodate two full transmit packets,
* rounded up to the next 1KB and expressed in KB. Likewise,
* the Rx FIFO should be large enough to accommodate at least
* one full receive packet and is similarly rounded up and
* expressed in KB.
*/
pba = er32(PBA);
/* upper 16 bits has Tx packet buffer allocation size in KB */
tx_space = pba >> 16;
/* lower 16 bits has Rx packet buffer allocation size in KB */
pba &= 0xffff;
/*
* the Tx fifo also stores 16 bytes of information about the Tx
* but don't include ethernet FCS because hardware appends it
*/
min_tx_space = (adapter->max_frame_size +
sizeof(struct e1000_tx_desc) -
ETH_FCS_LEN) * 2;
min_tx_space = ALIGN(min_tx_space, 1024);
min_tx_space >>= 10;
/* software strips receive CRC, so leave room for it */
min_rx_space = adapter->max_frame_size;
min_rx_space = ALIGN(min_rx_space, 1024);
min_rx_space >>= 10;
/*
* If current Tx allocation is less than the min Tx FIFO size,
* and the min Tx FIFO size is less than the current Rx FIFO
* allocation, take space away from current Rx allocation
*/
if ((tx_space < min_tx_space) &&
((min_tx_space - tx_space) < pba)) {
pba -= min_tx_space - tx_space;
/*
* if short on Rx space, Rx wins and must trump Tx
* adjustment or use Early Receive if available
*/
if ((pba < min_rx_space) &&
(!(adapter->flags & FLAG_HAS_ERT)))
/* ERT enabled in e1000_configure_rx */
pba = min_rx_space;
}
ew32(PBA, pba);
}
/*
* flow control settings
*
* The high water mark must be low enough to fit one full frame
* (or the size used for early receive) above it in the Rx FIFO.
* Set it to the lower of:
* - 90% of the Rx FIFO size, and
* - the full Rx FIFO size minus the early receive size (for parts
* with ERT support assuming ERT set to E1000_ERT_2048), or
* - the full Rx FIFO size minus one full frame
*/
if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
fc->pause_time = 0xFFFF;
else
fc->pause_time = E1000_FC_PAUSE_TIME;
fc->send_xon = 1;
fc->current_mode = fc->requested_mode;
switch (hw->mac.type) {
default:
if ((adapter->flags & FLAG_HAS_ERT) &&
(adapter->netdev->mtu > ETH_DATA_LEN))
hwm = min(((pba << 10) * 9 / 10),
((pba << 10) - (E1000_ERT_2048 << 3)));
else
hwm = min(((pba << 10) * 9 / 10),
((pba << 10) - adapter->max_frame_size));
fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
fc->low_water = fc->high_water - 8;
break;
case e1000_pchlan:
/*
* Workaround PCH LOM adapter hangs with certain network
* loads. If hangs persist, try disabling Tx flow control.
*/
if (adapter->netdev->mtu > ETH_DATA_LEN) {
fc->high_water = 0x3500;
fc->low_water = 0x1500;
} else {
fc->high_water = 0x5000;
fc->low_water = 0x3000;
}
fc->refresh_time = 0x1000;
break;
case e1000_pch2lan:
fc->high_water = 0x05C20;
fc->low_water = 0x05048;
fc->pause_time = 0x0650;
fc->refresh_time = 0x0400;
if (adapter->netdev->mtu > ETH_DATA_LEN) {
pba = 14;
ew32(PBA, pba);
}
break;
}
/*
* Disable Adaptive Interrupt Moderation if 2 full packets cannot
* fit in receive buffer and early-receive not supported.
*/
if (adapter->itr_setting & 0x3) {
if (((adapter->max_frame_size * 2) > (pba << 10)) &&
!(adapter->flags & FLAG_HAS_ERT)) {
if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
dev_info(&adapter->pdev->dev,
"Interrupt Throttle Rate turned off\n");
adapter->flags2 |= FLAG2_DISABLE_AIM;
ew32(ITR, 0);
}
} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
dev_info(&adapter->pdev->dev,
"Interrupt Throttle Rate turned on\n");
adapter->flags2 &= ~FLAG2_DISABLE_AIM;
adapter->itr = 20000;
ew32(ITR, 1000000000 / (adapter->itr * 256));
}
}
/* Allow time for pending master requests to run */
mac->ops.reset_hw(hw);
/*
* For parts with AMT enabled, let the firmware know
* that the network interface is in control
*/
if (adapter->flags & FLAG_HAS_AMT)
e1000e_get_hw_control(adapter);
ew32(WUC, 0);
if (mac->ops.init_hw(hw))
e_err("Hardware Error\n");
e1000_update_mng_vlan(adapter);
/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
ew32(VET, ETH_P_8021Q);
e1000e_reset_adaptive(hw);
if (!netif_running(adapter->netdev) &&
!test_bit(__E1000_TESTING, &adapter->state)) {
e1000_power_down_phy(adapter);
return;
}
e1000_get_phy_info(hw);
if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
!(adapter->flags & FLAG_SMART_POWER_DOWN)) {
u16 phy_data = 0;
/*
* speed up time to link by disabling smart power down, ignore
* the return value of this function because there is nothing
* different we would do if it failed
*/
e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
phy_data &= ~IGP02E1000_PM_SPD;
e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
}
}
int e1000e_up(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
/* hardware has been reset, we need to reload some things */
e1000_configure(adapter);
clear_bit(__E1000_DOWN, &adapter->state);
napi_enable(&adapter->napi);
if (adapter->msix_entries)
e1000_configure_msix(adapter);
e1000_irq_enable(adapter);
netif_start_queue(adapter->netdev);
/* fire a link change interrupt to start the watchdog */
if (adapter->msix_entries)
ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
else
ew32(ICS, E1000_ICS_LSC);
return 0;
}
static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
if (!(adapter->flags2 & FLAG2_DMA_BURST))
return;
/* flush pending descriptor writebacks to memory */
ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
/* execute the writes immediately */
e1e_flush();
}
static void e1000e_update_stats(struct e1000_adapter *adapter);
void e1000e_down(struct e1000_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct e1000_hw *hw = &adapter->hw;
u32 tctl, rctl;
/*
* signal that we're down so the interrupt handler does not
* reschedule our watchdog timer
*/
set_bit(__E1000_DOWN, &adapter->state);
/* disable receives in the hardware */
rctl = er32(RCTL);
if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
ew32(RCTL, rctl & ~E1000_RCTL_EN);
/* flush and sleep below */
netif_stop_queue(netdev);
/* disable transmits in the hardware */
tctl = er32(TCTL);
tctl &= ~E1000_TCTL_EN;
ew32(TCTL, tctl);
/* flush both disables and wait for them to finish */
e1e_flush();
usleep_range(10000, 20000);
napi_disable(&adapter->napi);
e1000_irq_disable(adapter);
del_timer_sync(&adapter->watchdog_timer);
del_timer_sync(&adapter->phy_info_timer);
netif_carrier_off(netdev);
spin_lock(&adapter->stats64_lock);
e1000e_update_stats(adapter);
spin_unlock(&adapter->stats64_lock);
e1000e_flush_descriptors(adapter);
e1000_clean_tx_ring(adapter);
e1000_clean_rx_ring(adapter);
adapter->link_speed = 0;
adapter->link_duplex = 0;
if (!pci_channel_offline(adapter->pdev))
e1000e_reset(adapter);
/*
* TODO: for power management, we could drop the link and
* pci_disable_device here.
*/
}
void e1000e_reinit_locked(struct e1000_adapter *adapter)
{
might_sleep();
while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
usleep_range(1000, 2000);
e1000e_down(adapter);
e1000e_up(adapter);
clear_bit(__E1000_RESETTING, &adapter->state);
}
/**
* e1000_sw_init - Initialize general software structures (struct e1000_adapter)
* @adapter: board private structure to initialize
*
* e1000_sw_init initializes the Adapter private data structure.
* Fields are initialized based on PCI device information and
* OS network device settings (MTU size).
**/
static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
adapter->rx_ps_bsize0 = 128;
adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
spin_lock_init(&adapter->stats64_lock);
e1000e_set_interrupt_capability(adapter);
if (e1000_alloc_queues(adapter))
return -ENOMEM;
/* Explicitly disable IRQ since the NIC can be in any state. */
e1000_irq_disable(adapter);
set_bit(__E1000_DOWN, &adapter->state);
return 0;
}
/**
* e1000_intr_msi_test - Interrupt Handler
* @irq: interrupt number
* @data: pointer to a network interface device structure
**/
static irqreturn_t e1000_intr_msi_test(int irq, void *data)
{
struct net_device *netdev = data;
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 icr = er32(ICR);
e_dbg("icr is %08X\n", icr);
if (icr & E1000_ICR_RXSEQ) {
adapter->flags &= ~FLAG_MSI_TEST_FAILED;
wmb();
}
return IRQ_HANDLED;
}
/**
* e1000_test_msi_interrupt - Returns 0 for successful test
* @adapter: board private struct
*
* code flow taken from tg3.c
**/
static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct e1000_hw *hw = &adapter->hw;
int err;
/* poll_enable hasn't been called yet, so don't need disable */
/* clear any pending events */
er32(ICR);
/* free the real vector and request a test handler */
e1000_free_irq(adapter);
e1000e_reset_interrupt_capability(adapter);
/* Assume that the test fails, if it succeeds then the test
* MSI irq handler will unset this flag */
adapter->flags |= FLAG_MSI_TEST_FAILED;
err = pci_enable_msi(adapter->pdev);
if (err)
goto msi_test_failed;
err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
netdev->name, netdev);
if (err) {
pci_disable_msi(adapter->pdev);
goto msi_test_failed;
}
wmb();
e1000_irq_enable(adapter);
/* fire an unusual interrupt on the test handler */
ew32(ICS, E1000_ICS_RXSEQ);
e1e_flush();
msleep(50);
e1000_irq_disable(adapter);
rmb();
if (adapter->flags & FLAG_MSI_TEST_FAILED) {
adapter->int_mode = E1000E_INT_MODE_LEGACY;
e_info("MSI interrupt test failed, using legacy interrupt.\n");
} else
e_dbg("MSI interrupt test succeeded!\n");
free_irq(adapter->pdev->irq, netdev);
pci_disable_msi(adapter->pdev);
msi_test_failed:
e1000e_set_interrupt_capability(adapter);
return e1000_request_irq(adapter);
}
/**
* e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
* @adapter: board private struct
*
* code flow taken from tg3.c, called with e1000 interrupts disabled.
**/
static int e1000_test_msi(struct e1000_adapter *adapter)
{
int err;
u16 pci_cmd;
if (!(adapter->flags & FLAG_MSI_ENABLED))
return 0;
/* disable SERR in case the MSI write causes a master abort */
pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
if (pci_cmd & PCI_COMMAND_SERR)
pci_write_config_word(adapter->pdev, PCI_COMMAND,
pci_cmd & ~PCI_COMMAND_SERR);
err = e1000_test_msi_interrupt(adapter);
/* re-enable SERR */
if (pci_cmd & PCI_COMMAND_SERR) {
pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
pci_cmd |= PCI_COMMAND_SERR;
pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
}
return err;
}
/**
* e1000_open - Called when a network interface is made active
* @netdev: network interface device structure
*
* Returns 0 on success, negative value on failure
*
* The open entry point is called when a network interface is made
* active by the system (IFF_UP). At this point all resources needed
* for transmit and receive operations are allocated, the interrupt
* handler is registered with the OS, the watchdog timer is started,
* and the stack is notified that the interface is ready.
**/
static int e1000_open(struct net_device *netdev)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
struct pci_dev *pdev = adapter->pdev;
int err;
/* disallow open during test */
if (test_bit(__E1000_TESTING, &adapter->state))
return -EBUSY;
pm_runtime_get_sync(&pdev->dev);
netif_carrier_off(netdev);
/* allocate transmit descriptors */
err = e1000e_setup_tx_resources(adapter);
if (err)
goto err_setup_tx;
/* allocate receive descriptors */
err = e1000e_setup_rx_resources(adapter);
if (err)
goto err_setup_rx;
/*
* If AMT is enabled, let the firmware know that the network
* interface is now open and reset the part to a known state.
*/
if (adapter->flags & FLAG_HAS_AMT) {
e1000e_get_hw_control(adapter);
e1000e_reset(adapter);
}
e1000e_power_up_phy(adapter);
adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
if ((adapter->hw.mng_cookie.status &
E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
e1000_update_mng_vlan(adapter);
/* DMA latency requirement to workaround early-receive/jumbo issue */
if ((adapter->flags & FLAG_HAS_ERT) ||
(adapter->hw.mac.type == e1000_pch2lan))
pm_qos_add_request(&adapter->netdev->pm_qos_req,
PM_QOS_CPU_DMA_LATENCY,
PM_QOS_DEFAULT_VALUE);
/*
* before we allocate an interrupt, we must be ready to handle it.
* Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
* as soon as we call pci_request_irq, so we have to setup our
* clean_rx handler before we do so.
*/
e1000_configure(adapter);
err = e1000_request_irq(adapter);
if (err)
goto err_req_irq;
/*
* Work around PCIe errata with MSI interrupts causing some chipsets to
* ignore e1000e MSI messages, which means we need to test our MSI
* interrupt now
*/
if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
err = e1000_test_msi(adapter);
if (err) {
e_err("Interrupt allocation failed\n");
goto err_req_irq;
}
}
/* From here on the code is the same as e1000e_up() */
clear_bit(__E1000_DOWN, &adapter->state);
napi_enable(&adapter->napi);
e1000_irq_enable(adapter);
adapter->tx_hang_recheck = false;
netif_start_queue(netdev);
adapter->idle_check = true;
pm_runtime_put(&pdev->dev);
/* fire a link status change interrupt to start the watchdog */
if (adapter->msix_entries)
ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
else
ew32(ICS, E1000_ICS_LSC);
return 0;
err_req_irq:
e1000e_release_hw_control(adapter);
e1000_power_down_phy(adapter);
e1000e_free_rx_resources(adapter);
err_setup_rx:
e1000e_free_tx_resources(adapter);
err_setup_tx:
e1000e_reset(adapter);
pm_runtime_put_sync(&pdev->dev);
return err;
}
/**
* e1000_close - Disables a network interface
* @netdev: network interface device structure
*
* Returns 0, this is not allowed to fail
*
* The close entry point is called when an interface is de-activated
* by the OS. The hardware is still under the drivers control, but
* needs to be disabled. A global MAC reset is issued to stop the
* hardware, and all transmit and receive resources are freed.
**/
static int e1000_close(struct net_device *netdev)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct pci_dev *pdev = adapter->pdev;
WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
pm_runtime_get_sync(&pdev->dev);
if (!test_bit(__E1000_DOWN, &adapter->state)) {
e1000e_down(adapter);
e1000_free_irq(adapter);
}
e1000_power_down_phy(adapter);
e1000e_free_tx_resources(adapter);
e1000e_free_rx_resources(adapter);
/*
* kill manageability vlan ID if supported, but not if a vlan with
* the same ID is registered on the host OS (let 8021q kill it)
*/
if (adapter->hw.mng_cookie.status &
E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
/*
* If AMT is enabled, let the firmware know that the network
* interface is now closed
*/
if ((adapter->flags & FLAG_HAS_AMT) &&
!test_bit(__E1000_TESTING, &adapter->state))
e1000e_release_hw_control(adapter);
if ((adapter->flags & FLAG_HAS_ERT) ||
(adapter->hw.mac.type == e1000_pch2lan))
pm_qos_remove_request(&adapter->netdev->pm_qos_req);
pm_runtime_put_sync(&pdev->dev);
return 0;
}
/**
* e1000_set_mac - Change the Ethernet Address of the NIC
* @netdev: network interface device structure
* @p: pointer to an address structure
*
* Returns 0 on success, negative on failure
**/
static int e1000_set_mac(struct net_device *netdev, void *p)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct sockaddr *addr = p;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
/* activate the work around */
e1000e_set_laa_state_82571(&adapter->hw, 1);
/*
* Hold a copy of the LAA in RAR[14] This is done so that
* between the time RAR[0] gets clobbered and the time it
* gets fixed (in e1000_watchdog), the actual LAA is in one
* of the RARs and no incoming packets directed to this port
* are dropped. Eventually the LAA will be in RAR[0] and
* RAR[14]
*/
e1000e_rar_set(&adapter->hw,
adapter->hw.mac.addr,
adapter->hw.mac.rar_entry_count - 1);
}
return 0;
}
/**
* e1000e_update_phy_task - work thread to update phy
* @work: pointer to our work struct
*
* this worker thread exists because we must acquire a
* semaphore to read the phy, which we could msleep while
* waiting for it, and we can't msleep in a timer.
**/
static void e1000e_update_phy_task(struct work_struct *work)
{
struct e1000_adapter *adapter = container_of(work,
struct e1000_adapter, update_phy_task);
if (test_bit(__E1000_DOWN, &adapter->state))
return;
e1000_get_phy_info(&adapter->hw);
}
/*
* Need to wait a few seconds after link up to get diagnostic information from
* the phy
*/
static void e1000_update_phy_info(unsigned long data)
{
struct e1000_adapter *adapter = (struct e1000_adapter *) data;
if (test_bit(__E1000_DOWN, &adapter->state))
return;
schedule_work(&adapter->update_phy_task);
}
/**
* e1000e_update_phy_stats - Update the PHY statistics counters
* @adapter: board private structure
*
* Read/clear the upper 16-bit PHY registers and read/accumulate lower
**/
static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
s32 ret_val;
u16 phy_data;
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return;
/*
* A page set is expensive so check if already on desired page.
* If not, set to the page with the PHY status registers.
*/
hw->phy.addr = 1;
ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
&phy_data);
if (ret_val)
goto release;
if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
ret_val = hw->phy.ops.set_page(hw,
HV_STATS_PAGE << IGP_PAGE_SHIFT);
if (ret_val)
goto release;
}
/* Single Collision Count */
hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
if (!ret_val)
adapter->stats.scc += phy_data;
/* Excessive Collision Count */
hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
if (!ret_val)
adapter->stats.ecol += phy_data;
/* Multiple Collision Count */
hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
if (!ret_val)
adapter->stats.mcc += phy_data;
/* Late Collision Count */
hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
if (!ret_val)
adapter->stats.latecol += phy_data;
/* Collision Count - also used for adaptive IFS */
hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
if (!ret_val)
hw->mac.collision_delta = phy_data;
/* Defer Count */
hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
if (!ret_val)
adapter->stats.dc += phy_data;
/* Transmit with no CRS */
hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
if (!ret_val)
adapter->stats.tncrs += phy_data;
release:
hw->phy.ops.release(hw);
}
/**
* e1000e_update_stats - Update the board statistics counters
* @adapter: board private structure
**/
static void e1000e_update_stats(struct e1000_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct e1000_hw *hw = &adapter->hw;
struct pci_dev *pdev = adapter->pdev;
/*
* Prevent stats update while adapter is being reset, or if the pci
* connection is down.
*/
if (adapter->link_speed == 0)
return;
if (pci_channel_offline(pdev))
return;
adapter->stats.crcerrs += er32(CRCERRS);
adapter->stats.gprc += er32(GPRC);
adapter->stats.gorc += er32(GORCL);
er32(GORCH); /* Clear gorc */
adapter->stats.bprc += er32(BPRC);
adapter->stats.mprc += er32(MPRC);
adapter->stats.roc += er32(ROC);
adapter->stats.mpc += er32(MPC);
/* Half-duplex statistics */
if (adapter->link_duplex == HALF_DUPLEX) {
if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
e1000e_update_phy_stats(adapter);
} else {
adapter->stats.scc += er32(SCC);
adapter->stats.ecol += er32(ECOL);
adapter->stats.mcc += er32(MCC);
adapter->stats.latecol += er32(LATECOL);
adapter->stats.dc += er32(DC);
hw->mac.collision_delta = er32(COLC);
if ((hw->mac.type != e1000_82574) &&
(hw->mac.type != e1000_82583))
adapter->stats.tncrs += er32(TNCRS);
}
adapter->stats.colc += hw->mac.collision_delta;
}
adapter->stats.xonrxc += er32(XONRXC);
adapter->stats.xontxc += er32(XONTXC);
adapter->stats.xoffrxc += er32(XOFFRXC);
adapter->stats.xofftxc += er32(XOFFTXC);
adapter->stats.gptc += er32(GPTC);
adapter->stats.gotc += er32(GOTCL);
er32(GOTCH); /* Clear gotc */
adapter->stats.rnbc += er32(RNBC);
adapter->stats.ruc += er32(RUC);
adapter->stats.mptc += er32(MPTC);
adapter->stats.bptc += er32(BPTC);
/* used for adaptive IFS */
hw->mac.tx_packet_delta = er32(TPT);
adapter->stats.tpt += hw->mac.tx_packet_delta;
adapter->stats.algnerrc += er32(ALGNERRC);
adapter->stats.rxerrc += er32(RXERRC);
adapter->stats.cexterr += er32(CEXTERR);
adapter->stats.tsctc += er32(TSCTC);
adapter->stats.tsctfc += er32(TSCTFC);
/* Fill out the OS statistics structure */
netdev->stats.multicast = adapter->stats.mprc;
netdev->stats.collisions = adapter->stats.colc;
/* Rx Errors */
/*
* RLEC on some newer hardware can be incorrect so build
* our own version based on RUC and ROC
*/
netdev->stats.rx_errors = adapter->stats.rxerrc +
adapter->stats.crcerrs + adapter->stats.algnerrc +
adapter->stats.ruc + adapter->stats.roc +
adapter->stats.cexterr;
netdev->stats.rx_length_errors = adapter->stats.ruc +
adapter->stats.roc;
netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
netdev->stats.rx_missed_errors = adapter->stats.mpc;
/* Tx Errors */
netdev->stats.tx_errors = adapter->stats.ecol +
adapter->stats.latecol;
netdev->stats.tx_aborted_errors = adapter->stats.ecol;
netdev->stats.tx_window_errors = adapter->stats.latecol;
netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
/* Tx Dropped needs to be maintained elsewhere */
/* Management Stats */
adapter->stats.mgptc += er32(MGTPTC);
adapter->stats.mgprc += er32(MGTPRC);
adapter->stats.mgpdc += er32(MGTPDC);
}
/**
* e1000_phy_read_status - Update the PHY register status snapshot
* @adapter: board private structure
**/
static void e1000_phy_read_status(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
struct e1000_phy_regs *phy = &adapter->phy_regs;
if ((er32(STATUS) & E1000_STATUS_LU) &&
(adapter->hw.phy.media_type == e1000_media_type_copper)) {
int ret_val;
ret_val = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
if (ret_val)
e_warn("Error reading PHY register\n");
} else {
/*
* Do not read PHY registers if link is not up
* Set values to typical power-on defaults
*/
phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
BMSR_ERCAP);
phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
ADVERTISE_ALL | ADVERTISE_CSMA);
phy->lpa = 0;
phy->expansion = EXPANSION_ENABLENPAGE;
phy->ctrl1000 = ADVERTISE_1000FULL;
phy->stat1000 = 0;
phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
}
}
static void e1000_print_link_info(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 ctrl = er32(CTRL);
/* Link status message must follow this format for user tools */
printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s, "
"Flow Control: %s\n",
adapter->netdev->name,
adapter->link_speed,
(adapter->link_duplex == FULL_DUPLEX) ?
"Full Duplex" : "Half Duplex",
((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
"Rx/Tx" :
((ctrl & E1000_CTRL_RFCE) ? "Rx" :
((ctrl & E1000_CTRL_TFCE) ? "Tx" : "None")));
}
static bool e1000e_has_link(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
bool link_active = 0;
s32 ret_val = 0;
/*
* get_link_status is set on LSC (link status) interrupt or
* Rx sequence error interrupt. get_link_status will stay
* false until the check_for_link establishes link
* for copper adapters ONLY
*/
switch (hw->phy.media_type) {
case e1000_media_type_copper:
if (hw->mac.get_link_status) {
ret_val = hw->mac.ops.check_for_link(hw);
link_active = !hw->mac.get_link_status;
} else {
link_active = 1;
}
break;
case e1000_media_type_fiber:
ret_val = hw->mac.ops.check_for_link(hw);
link_active = !!(er32(STATUS) & E1000_STATUS_LU);
break;
case e1000_media_type_internal_serdes:
ret_val = hw->mac.ops.check_for_link(hw);
link_active = adapter->hw.mac.serdes_has_link;
break;
default:
case e1000_media_type_unknown:
break;
}
if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
(er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
e_info("Gigabit has been disabled, downgrading speed\n");
}
return link_active;
}
static void e1000e_enable_receives(struct e1000_adapter *adapter)
{
/* make sure the receive unit is started */
if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
(adapter->flags & FLAG_RX_RESTART_NOW)) {
struct e1000_hw *hw = &adapter->hw;
u32 rctl = er32(RCTL);
ew32(RCTL, rctl | E1000_RCTL_EN);
adapter->flags &= ~FLAG_RX_RESTART_NOW;
}
}
static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
/*
* With 82574 controllers, PHY needs to be checked periodically
* for hung state and reset, if two calls return true
*/
if (e1000_check_phy_82574(hw))
adapter->phy_hang_count++;
else
adapter->phy_hang_count = 0;
if (adapter->phy_hang_count > 1) {
adapter->phy_hang_count = 0;
schedule_work(&adapter->reset_task);
}
}
/**
* e1000_watchdog - Timer Call-back
* @data: pointer to adapter cast into an unsigned long
**/
static void e1000_watchdog(unsigned long data)
{
struct e1000_adapter *adapter = (struct e1000_adapter *) data;
/* Do the rest outside of interrupt context */
schedule_work(&adapter->watchdog_task);
/* TODO: make this use queue_delayed_work() */
}
static void e1000_watchdog_task(struct work_struct *work)
{
struct e1000_adapter *adapter = container_of(work,
struct e1000_adapter, watchdog_task);
struct net_device *netdev = adapter->netdev;
struct e1000_mac_info *mac = &adapter->hw.mac;
struct e1000_phy_info *phy = &adapter->hw.phy;
struct e1000_ring *tx_ring = adapter->tx_ring;
struct e1000_hw *hw = &adapter->hw;
u32 link, tctl;
if (test_bit(__E1000_DOWN, &adapter->state))
return;
link = e1000e_has_link(adapter);
if ((netif_carrier_ok(netdev)) && link) {
/* Cancel scheduled suspend requests. */
pm_runtime_resume(netdev->dev.parent);
e1000e_enable_receives(adapter);
goto link_up;
}
if ((e1000e_enable_tx_pkt_filtering(hw)) &&
(adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
e1000_update_mng_vlan(adapter);
if (link) {
if (!netif_carrier_ok(netdev)) {
bool txb2b = 1;
/* Cancel scheduled suspend requests. */
pm_runtime_resume(netdev->dev.parent);
/* update snapshot of PHY registers on LSC */
e1000_phy_read_status(adapter);
mac->ops.get_link_up_info(&adapter->hw,
&adapter->link_speed,
&adapter->link_duplex);
e1000_print_link_info(adapter);
/*
* On supported PHYs, check for duplex mismatch only
* if link has autonegotiated at 10/100 half
*/
if ((hw->phy.type == e1000_phy_igp_3 ||
hw->phy.type == e1000_phy_bm) &&
(hw->mac.autoneg == true) &&
(adapter->link_speed == SPEED_10 ||
adapter->link_speed == SPEED_100) &&
(adapter->link_duplex == HALF_DUPLEX)) {
u16 autoneg_exp;
e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
e_info("Autonegotiated half duplex but"
" link partner cannot autoneg. "
" Try forcing full duplex if "
"link gets many collisions.\n");
}
/* adjust timeout factor according to speed/duplex */
adapter->tx_timeout_factor = 1;
switch (adapter->link_speed) {
case SPEED_10:
txb2b = 0;
adapter->tx_timeout_factor = 16;
break;
case SPEED_100:
txb2b = 0;
adapter->tx_timeout_factor = 10;
break;
}
/*
* workaround: re-program speed mode bit after
* link-up event
*/
if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
!txb2b) {
u32 tarc0;
tarc0 = er32(TARC(0));
tarc0 &= ~SPEED_MODE_BIT;
ew32(TARC(0), tarc0);
}
/*
* disable TSO for pcie and 10/100 speeds, to avoid
* some hardware issues
*/
if (!(adapter->flags & FLAG_TSO_FORCE)) {
switch (adapter->link_speed) {
case SPEED_10:
case SPEED_100:
e_info("10/100 speed: disabling TSO\n");
netdev->features &= ~NETIF_F_TSO;
netdev->features &= ~NETIF_F_TSO6;
break;
case SPEED_1000:
netdev->features |= NETIF_F_TSO;
netdev->features |= NETIF_F_TSO6;
break;
default:
/* oops */
break;
}
}
/*
* enable transmits in the hardware, need to do this
* after setting TARC(0)
*/
tctl = er32(TCTL);
tctl |= E1000_TCTL_EN;
ew32(TCTL, tctl);
/*
* Perform any post-link-up configuration before
* reporting link up.
*/
if (phy->ops.cfg_on_link_up)
phy->ops.cfg_on_link_up(hw);
netif_carrier_on(netdev);
if (!test_bit(__E1000_DOWN, &adapter->state))
mod_timer(&adapter->phy_info_timer,
round_jiffies(jiffies + 2 * HZ));
}
} else {
if (netif_carrier_ok(netdev)) {
adapter->link_speed = 0;
adapter->link_duplex = 0;
/* Link status message must follow this format */
printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
adapter->netdev->name);
netif_carrier_off(netdev);
if (!test_bit(__E1000_DOWN, &adapter->state))
mod_timer(&adapter->phy_info_timer,
round_jiffies(jiffies + 2 * HZ));
if (adapter->flags & FLAG_RX_NEEDS_RESTART)
schedule_work(&adapter->reset_task);
else
pm_schedule_suspend(netdev->dev.parent,
LINK_TIMEOUT);
}
}
link_up:
spin_lock(&adapter->stats64_lock);
e1000e_update_stats(adapter);
mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
adapter->tpt_old = adapter->stats.tpt;
mac->collision_delta = adapter->stats.colc - adapter->colc_old;
adapter->colc_old = adapter->stats.colc;
adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
adapter->gorc_old = adapter->stats.gorc;
adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
adapter->gotc_old = adapter->stats.gotc;
spin_unlock(&adapter->stats64_lock);
e1000e_update_adaptive(&adapter->hw);
if (!netif_carrier_ok(netdev) &&
(e1000_desc_unused(tx_ring) + 1 < tx_ring->count)) {
/*
* We've lost link, so the controller stops DMA,
* but we've got queued Tx work that's never going
* to get done, so reset controller to flush Tx.
* (Do the reset outside of interrupt context).
*/
schedule_work(&adapter->reset_task);
/* return immediately since reset is imminent */
return;
}
/* Simple mode for Interrupt Throttle Rate (ITR) */
if (adapter->itr_setting == 4) {
/*
* Symmetric Tx/Rx gets a reduced ITR=2000;
* Total asymmetrical Tx or Rx gets ITR=8000;
* everyone else is between 2000-8000.
*/
u32 goc = (adapter->gotc + adapter->gorc) / 10000;
u32 dif = (adapter->gotc > adapter->gorc ?
adapter->gotc - adapter->gorc :
adapter->gorc - adapter->gotc) / 10000;
u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
ew32(ITR, 1000000000 / (itr * 256));
}
/* Cause software interrupt to ensure Rx ring is cleaned */
if (adapter->msix_entries)
ew32(ICS, adapter->rx_ring->ims_val);
else
ew32(ICS, E1000_ICS_RXDMT0);
/* flush pending descriptors to memory before detecting Tx hang */
e1000e_flush_descriptors(adapter);
/* Force detection of hung controller every watchdog period */
adapter->detect_tx_hung = 1;
/*
* With 82571 controllers, LAA may be overwritten due to controller
* reset from the other port. Set the appropriate LAA in RAR[0]
*/
if (e1000e_get_laa_state_82571(hw))
e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
e1000e_check_82574_phy_workaround(adapter);
/* Reset the timer */
if (!test_bit(__E1000_DOWN, &adapter->state))
mod_timer(&adapter->watchdog_timer,
round_jiffies(jiffies + 2 * HZ));
}
#define E1000_TX_FLAGS_CSUM 0x00000001
#define E1000_TX_FLAGS_VLAN 0x00000002
#define E1000_TX_FLAGS_TSO 0x00000004
#define E1000_TX_FLAGS_IPV4 0x00000008
#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
#define E1000_TX_FLAGS_VLAN_SHIFT 16
static int e1000_tso(struct e1000_adapter *adapter,
struct sk_buff *skb)
{
struct e1000_ring *tx_ring = adapter->tx_ring;
struct e1000_context_desc *context_desc;
struct e1000_buffer *buffer_info;
unsigned int i;
u32 cmd_length = 0;
u16 ipcse = 0, tucse, mss;
u8 ipcss, ipcso, tucss, tucso, hdr_len;
if (!skb_is_gso(skb))
return 0;
if (skb_header_cloned(skb)) {
int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
if (err)
return err;
}
hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
mss = skb_shinfo(skb)->gso_size;
if (skb->protocol == htons(ETH_P_IP)) {
struct iphdr *iph = ip_hdr(skb);
iph->tot_len = 0;
iph->check = 0;
tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
0, IPPROTO_TCP, 0);
cmd_length = E1000_TXD_CMD_IP;
ipcse = skb_transport_offset(skb) - 1;
} else if (skb_is_gso_v6(skb)) {
ipv6_hdr(skb)->payload_len = 0;
tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
&ipv6_hdr(skb)->daddr,
0, IPPROTO_TCP, 0);
ipcse = 0;
}
ipcss = skb_network_offset(skb);
ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
tucss = skb_transport_offset(skb);
tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
tucse = 0;
cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
i = tx_ring->next_to_use;
context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
buffer_info = &tx_ring->buffer_info[i];
context_desc->lower_setup.ip_fields.ipcss = ipcss;
context_desc->lower_setup.ip_fields.ipcso = ipcso;
context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
context_desc->upper_setup.tcp_fields.tucss = tucss;
context_desc->upper_setup.tcp_fields.tucso = tucso;
context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
context_desc->cmd_and_length = cpu_to_le32(cmd_length);
buffer_info->time_stamp = jiffies;
buffer_info->next_to_watch = i;
i++;
if (i == tx_ring->count)
i = 0;
tx_ring->next_to_use = i;
return 1;
}
static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
{
struct e1000_ring *tx_ring = adapter->tx_ring;
struct e1000_context_desc *context_desc;
struct e1000_buffer *buffer_info;
unsigned int i;
u8 css;
u32 cmd_len = E1000_TXD_CMD_DEXT;
__be16 protocol;
if (skb->ip_summed != CHECKSUM_PARTIAL)
return 0;
if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
else
protocol = skb->protocol;
switch (protocol) {
case cpu_to_be16(ETH_P_IP):
if (ip_hdr(skb)->protocol == IPPROTO_TCP)
cmd_len |= E1000_TXD_CMD_TCP;
break;
case cpu_to_be16(ETH_P_IPV6):
/* XXX not handling all IPV6 headers */
if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
cmd_len |= E1000_TXD_CMD_TCP;
break;
default:
if (unlikely(net_ratelimit()))
e_warn("checksum_partial proto=%x!\n",
be16_to_cpu(protocol));
break;
}
css = skb_checksum_start_offset(skb);
i = tx_ring->next_to_use;
buffer_info = &tx_ring->buffer_info[i];
context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
context_desc->lower_setup.ip_config = 0;
context_desc->upper_setup.tcp_fields.tucss = css;
context_desc->upper_setup.tcp_fields.tucso =
css + skb->csum_offset;
context_desc->upper_setup.tcp_fields.tucse = 0;
context_desc->tcp_seg_setup.data = 0;
context_desc->cmd_and_length = cpu_to_le32(cmd_len);
buffer_info->time_stamp = jiffies;
buffer_info->next_to_watch = i;
i++;
if (i == tx_ring->count)
i = 0;
tx_ring->next_to_use = i;
return 1;
}
#define E1000_MAX_PER_TXD 8192
#define E1000_MAX_TXD_PWR 12
static int e1000_tx_map(struct e1000_adapter *adapter,
struct sk_buff *skb, unsigned int first,
unsigned int max_per_txd, unsigned int nr_frags,
unsigned int mss)
{
struct e1000_ring *tx_ring = adapter->tx_ring;
struct pci_dev *pdev = adapter->pdev;
struct e1000_buffer *buffer_info;
unsigned int len = skb_headlen(skb);
unsigned int offset = 0, size, count = 0, i;
unsigned int f, bytecount, segs;
i = tx_ring->next_to_use;
while (len) {
buffer_info = &tx_ring->buffer_info[i];
size = min(len, max_per_txd);
buffer_info->length = size;
buffer_info->time_stamp = jiffies;
buffer_info->next_to_watch = i;
buffer_info->dma = dma_map_single(&pdev->dev,
skb->data + offset,
size, DMA_TO_DEVICE);
buffer_info->mapped_as_page = false;
if (dma_mapping_error(&pdev->dev, buffer_info->dma))
goto dma_error;
len -= size;
offset += size;
count++;
if (len) {
i++;
if (i == tx_ring->count)
i = 0;
}
}
for (f = 0; f < nr_frags; f++) {
const struct skb_frag_struct *frag;
frag = &skb_shinfo(skb)->frags[f];
len = skb_frag_size(frag);
offset = 0;
while (len) {
i++;
if (i == tx_ring->count)
i = 0;
buffer_info = &tx_ring->buffer_info[i];
size = min(len, max_per_txd);
buffer_info->length = size;
buffer_info->time_stamp = jiffies;
buffer_info->next_to_watch = i;
buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
offset, size, DMA_TO_DEVICE);
buffer_info->mapped_as_page = true;
if (dma_mapping_error(&pdev->dev, buffer_info->dma))
goto dma_error;
len -= size;
offset += size;
count++;
}
}
segs = skb_shinfo(skb)->gso_segs ? : 1;
/* multiply data chunks by size of headers */
bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
tx_ring->buffer_info[i].skb = skb;
tx_ring->buffer_info[i].segs = segs;
tx_ring->buffer_info[i].bytecount = bytecount;
tx_ring->buffer_info[first].next_to_watch = i;
return count;
dma_error:
dev_err(&pdev->dev, "Tx DMA map failed\n");
buffer_info->dma = 0;
if (count)
count--;
while (count--) {
if (i == 0)
i += tx_ring->count;
i--;
buffer_info = &tx_ring->buffer_info[i];
e1000_put_txbuf(adapter, buffer_info);
}
return 0;
}
static void e1000_tx_queue(struct e1000_adapter *adapter,
int tx_flags, int count)
{
struct e1000_ring *tx_ring = adapter->tx_ring;
struct e1000_tx_desc *tx_desc = NULL;
struct e1000_buffer *buffer_info;
u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
unsigned int i;
if (tx_flags & E1000_TX_FLAGS_TSO) {
txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
E1000_TXD_CMD_TSE;
txd_upper |= E1000_TXD_POPTS_TXSM << 8;
if (tx_flags & E1000_TX_FLAGS_IPV4)
txd_upper |= E1000_TXD_POPTS_IXSM << 8;
}
if (tx_flags & E1000_TX_FLAGS_CSUM) {
txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
txd_upper |= E1000_TXD_POPTS_TXSM << 8;
}
if (tx_flags & E1000_TX_FLAGS_VLAN) {
txd_lower |= E1000_TXD_CMD_VLE;
txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
}
i = tx_ring->next_to_use;
do {
buffer_info = &tx_ring->buffer_info[i];
tx_desc = E1000_TX_DESC(*tx_ring, i);
tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
tx_desc->lower.data =
cpu_to_le32(txd_lower | buffer_info->length);
tx_desc->upper.data = cpu_to_le32(txd_upper);
i++;
if (i == tx_ring->count)
i = 0;
} while (--count > 0);
tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
/*
* Force memory writes to complete before letting h/w
* know there are new descriptors to fetch. (Only
* applicable for weak-ordered memory model archs,
* such as IA-64).
*/
wmb();
tx_ring->next_to_use = i;
if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
e1000e_update_tdt_wa(adapter, i);
else
writel(i, adapter->hw.hw_addr + tx_ring->tail);
/*
* we need this if more than one processor can write to our tail
* at a time, it synchronizes IO on IA64/Altix systems
*/
mmiowb();
}
#define MINIMUM_DHCP_PACKET_SIZE 282
static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
struct sk_buff *skb)
{
struct e1000_hw *hw = &adapter->hw;
u16 length, offset;
if (vlan_tx_tag_present(skb)) {
if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
(adapter->hw.mng_cookie.status &
E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
return 0;
}
if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
return 0;
if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
return 0;
{
const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
struct udphdr *udp;
if (ip->protocol != IPPROTO_UDP)
return 0;
udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
if (ntohs(udp->dest) != 67)
return 0;
offset = (u8 *)udp + 8 - skb->data;
length = skb->len - offset;
return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
}
return 0;
}
static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
netif_stop_queue(netdev);
/*
* Herbert's original patch had:
* smp_mb__after_netif_stop_queue();
* but since that doesn't exist yet, just open code it.
*/
smp_mb();
/*
* We need to check again in a case another CPU has just
* made room available.
*/
if (e1000_desc_unused(adapter->tx_ring) < size)
return -EBUSY;
/* A reprieve! */
netif_start_queue(netdev);
++adapter->restart_queue;
return 0;
}
static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
if (e1000_desc_unused(adapter->tx_ring) >= size)
return 0;
return __e1000_maybe_stop_tx(netdev, size);
}
#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
struct net_device *netdev)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_ring *tx_ring = adapter->tx_ring;
unsigned int first;
unsigned int max_per_txd = E1000_MAX_PER_TXD;
unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
unsigned int tx_flags = 0;
unsigned int len = skb_headlen(skb);
unsigned int nr_frags;
unsigned int mss;
int count = 0;
int tso;
unsigned int f;
if (test_bit(__E1000_DOWN, &adapter->state)) {
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
if (skb->len <= 0) {
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
mss = skb_shinfo(skb)->gso_size;
/*
* The controller does a simple calculation to
* make sure there is enough room in the FIFO before
* initiating the DMA for each buffer. The calc is:
* 4 = ceil(buffer len/mss). To make sure we don't
* overrun the FIFO, adjust the max buffer len if mss
* drops.
*/
if (mss) {
u8 hdr_len;
max_per_txd = min(mss << 2, max_per_txd);
max_txd_pwr = fls(max_per_txd) - 1;
/*
* TSO Workaround for 82571/2/3 Controllers -- if skb->data
* points to just header, pull a few bytes of payload from
* frags into skb->data
*/
hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
/*
* we do this workaround for ES2LAN, but it is un-necessary,
* avoiding it could save a lot of cycles
*/
if (skb->data_len && (hdr_len == len)) {
unsigned int pull_size;
pull_size = min((unsigned int)4, skb->data_len);
if (!__pskb_pull_tail(skb, pull_size)) {
e_err("__pskb_pull_tail failed.\n");
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
len = skb_headlen(skb);
}
}
/* reserve a descriptor for the offload context */
if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
count++;
count++;
count += TXD_USE_COUNT(len, max_txd_pwr);
nr_frags = skb_shinfo(skb)->nr_frags;
for (f = 0; f < nr_frags; f++)
count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
max_txd_pwr);
if (adapter->hw.mac.tx_pkt_filtering)
e1000_transfer_dhcp_info(adapter, skb);
/*
* need: count + 2 desc gap to keep tail from touching
* head, otherwise try next time
*/
if (e1000_maybe_stop_tx(netdev, count + 2))
return NETDEV_TX_BUSY;
if (vlan_tx_tag_present(skb)) {
tx_flags |= E1000_TX_FLAGS_VLAN;
tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
}
first = tx_ring->next_to_use;
tso = e1000_tso(adapter, skb);
if (tso < 0) {
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
if (tso)
tx_flags |= E1000_TX_FLAGS_TSO;
else if (e1000_tx_csum(adapter, skb))
tx_flags |= E1000_TX_FLAGS_CSUM;
/*
* Old method was to assume IPv4 packet by default if TSO was enabled.
* 82571 hardware supports TSO capabilities for IPv6 as well...
* no longer assume, we must.
*/
if (skb->protocol == htons(ETH_P_IP))
tx_flags |= E1000_TX_FLAGS_IPV4;
/* if count is 0 then mapping error has occurred */
count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
if (count) {
e1000_tx_queue(adapter, tx_flags, count);
/* Make sure there is space in the ring for the next send. */
e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
} else {
dev_kfree_skb_any(skb);
tx_ring->buffer_info[first].time_stamp = 0;
tx_ring->next_to_use = first;
}
return NETDEV_TX_OK;
}
/**
* e1000_tx_timeout - Respond to a Tx Hang
* @netdev: network interface device structure
**/
static void e1000_tx_timeout(struct net_device *netdev)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
/* Do the reset outside of interrupt context */
adapter->tx_timeout_count++;
schedule_work(&adapter->reset_task);
}
static void e1000_reset_task(struct work_struct *work)
{
struct e1000_adapter *adapter;
adapter = container_of(work, struct e1000_adapter, reset_task);
/* don't run the task if already down */
if (test_bit(__E1000_DOWN, &adapter->state))
return;
if (!((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
(adapter->flags & FLAG_RX_RESTART_NOW))) {
e1000e_dump(adapter);
e_err("Reset adapter\n");
}
e1000e_reinit_locked(adapter);
}
/**
* e1000_get_stats64 - Get System Network Statistics
* @netdev: network interface device structure
* @stats: rtnl_link_stats64 pointer
*
* Returns the address of the device statistics structure.
**/
struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
struct rtnl_link_stats64 *stats)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
memset(stats, 0, sizeof(struct rtnl_link_stats64));
spin_lock(&adapter->stats64_lock);
e1000e_update_stats(adapter);
/* Fill out the OS statistics structure */
stats->rx_bytes = adapter->stats.gorc;
stats->rx_packets = adapter->stats.gprc;
stats->tx_bytes = adapter->stats.gotc;
stats->tx_packets = adapter->stats.gptc;
stats->multicast = adapter->stats.mprc;
stats->collisions = adapter->stats.colc;
/* Rx Errors */
/*
* RLEC on some newer hardware can be incorrect so build
* our own version based on RUC and ROC
*/
stats->rx_errors = adapter->stats.rxerrc +
adapter->stats.crcerrs + adapter->stats.algnerrc +
adapter->stats.ruc + adapter->stats.roc +
adapter->stats.cexterr;
stats->rx_length_errors = adapter->stats.ruc +
adapter->stats.roc;
stats->rx_crc_errors = adapter->stats.crcerrs;
stats->rx_frame_errors = adapter->stats.algnerrc;
stats->rx_missed_errors = adapter->stats.mpc;
/* Tx Errors */
stats->tx_errors = adapter->stats.ecol +
adapter->stats.latecol;
stats->tx_aborted_errors = adapter->stats.ecol;
stats->tx_window_errors = adapter->stats.latecol;
stats->tx_carrier_errors = adapter->stats.tncrs;
/* Tx Dropped needs to be maintained elsewhere */
spin_unlock(&adapter->stats64_lock);
return stats;
}
/**
* e1000_change_mtu - Change the Maximum Transfer Unit
* @netdev: network interface device structure
* @new_mtu: new value for maximum frame size
*
* Returns 0 on success, negative on failure
**/
static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
/* Jumbo frame support */
if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
e_err("Jumbo Frames not supported.\n");
return -EINVAL;
}
/* Supported frame sizes */
if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
(max_frame > adapter->max_hw_frame_size)) {
e_err("Unsupported MTU setting\n");
return -EINVAL;
}
/* Jumbo frame workaround on 82579 requires CRC be stripped */
if ((adapter->hw.mac.type == e1000_pch2lan) &&
!(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
(new_mtu > ETH_DATA_LEN)) {
e_err("Jumbo Frames not supported on 82579 when CRC "
"stripping is disabled.\n");
return -EINVAL;
}
/* 82573 Errata 17 */
if (((adapter->hw.mac.type == e1000_82573) ||
(adapter->hw.mac.type == e1000_82574)) &&
(max_frame > ETH_FRAME_LEN + ETH_FCS_LEN)) {
adapter->flags2 |= FLAG2_DISABLE_ASPM_L1;
e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L1);
}
while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
usleep_range(1000, 2000);
/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
adapter->max_frame_size = max_frame;
e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
netdev->mtu = new_mtu;
if (netif_running(netdev))
e1000e_down(adapter);
/*
* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
* means we reserve 2 more, this pushes us to allocate from the next
* larger slab size.
* i.e. RXBUFFER_2048 --> size-4096 slab
* However with the new *_jumbo_rx* routines, jumbo receives will use
* fragmented skbs
*/
if (max_frame <= 2048)
adapter->rx_buffer_len = 2048;
else
adapter->rx_buffer_len = 4096;
/* adjust allocation if LPE protects us, and we aren't using SBP */
if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
(max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
+ ETH_FCS_LEN;
if (netif_running(netdev))
e1000e_up(adapter);
else
e1000e_reset(adapter);
clear_bit(__E1000_RESETTING, &adapter->state);
return 0;
}
static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
int cmd)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct mii_ioctl_data *data = if_mii(ifr);
if (adapter->hw.phy.media_type != e1000_media_type_copper)
return -EOPNOTSUPP;
switch (cmd) {
case SIOCGMIIPHY:
data->phy_id = adapter->hw.phy.addr;
break;
case SIOCGMIIREG:
e1000_phy_read_status(adapter);
switch (data->reg_num & 0x1F) {
case MII_BMCR:
data->val_out = adapter->phy_regs.bmcr;
break;
case MII_BMSR:
data->val_out = adapter->phy_regs.bmsr;
break;
case MII_PHYSID1:
data->val_out = (adapter->hw.phy.id >> 16);
break;
case MII_PHYSID2:
data->val_out = (adapter->hw.phy.id & 0xFFFF);
break;
case MII_ADVERTISE:
data->val_out = adapter->phy_regs.advertise;
break;
case MII_LPA:
data->val_out = adapter->phy_regs.lpa;
break;
case MII_EXPANSION:
data->val_out = adapter->phy_regs.expansion;
break;
case MII_CTRL1000:
data->val_out = adapter->phy_regs.ctrl1000;
break;
case MII_STAT1000:
data->val_out = adapter->phy_regs.stat1000;
break;
case MII_ESTATUS:
data->val_out = adapter->phy_regs.estatus;
break;
default:
return -EIO;
}
break;
case SIOCSMIIREG:
default:
return -EOPNOTSUPP;
}
return 0;
}
static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
switch (cmd) {
case SIOCGMIIPHY:
case SIOCGMIIREG:
case SIOCSMIIREG:
return e1000_mii_ioctl(netdev, ifr, cmd);
default:
return -EOPNOTSUPP;
}
}
static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
{
struct e1000_hw *hw = &adapter->hw;
u32 i, mac_reg;
u16 phy_reg, wuc_enable;
int retval = 0;
/* copy MAC RARs to PHY RARs */
e1000_copy_rx_addrs_to_phy_ich8lan(hw);
retval = hw->phy.ops.acquire(hw);
if (retval) {
e_err("Could not acquire PHY\n");
return retval;
}
/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
if (retval)
goto out;
/* copy MAC MTA to PHY MTA - only needed for pchlan */
for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
hw->phy.ops.write_reg_page(hw, BM_MTA(i),
(u16)(mac_reg & 0xFFFF));
hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
(u16)((mac_reg >> 16) & 0xFFFF));
}
/* configure PHY Rx Control register */
hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
mac_reg = er32(RCTL);
if (mac_reg & E1000_RCTL_UPE)
phy_reg |= BM_RCTL_UPE;
if (mac_reg & E1000_RCTL_MPE)
phy_reg |= BM_RCTL_MPE;
phy_reg &= ~(BM_RCTL_MO_MASK);
if (mac_reg & E1000_RCTL_MO_3)
phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
<< BM_RCTL_MO_SHIFT);
if (mac_reg & E1000_RCTL_BAM)
phy_reg |= BM_RCTL_BAM;
if (mac_reg & E1000_RCTL_PMCF)
phy_reg |= BM_RCTL_PMCF;
mac_reg = er32(CTRL);
if (mac_reg & E1000_CTRL_RFCE)
phy_reg |= BM_RCTL_RFCE;
hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
/* enable PHY wakeup in MAC register */
ew32(WUFC, wufc);
ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
/* configure and enable PHY wakeup in PHY registers */
hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
/* activate PHY wakeup */
wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
if (retval)
e_err("Could not set PHY Host Wakeup bit\n");
out:
hw->phy.ops.release(hw);
return retval;
}
static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake,
bool runtime)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 ctrl, ctrl_ext, rctl, status;
/* Runtime suspend should only enable wakeup for link changes */
u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
int retval = 0;
netif_device_detach(netdev);
if (netif_running(netdev)) {
WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
e1000e_down(adapter);
e1000_free_irq(adapter);
}
e1000e_reset_interrupt_capability(adapter);
retval = pci_save_state(pdev);
if (retval)
return retval;
status = er32(STATUS);
if (status & E1000_STATUS_LU)
wufc &= ~E1000_WUFC_LNKC;
if (wufc) {
e1000_setup_rctl(adapter);
e1000_set_multi(netdev);
/* turn on all-multi mode if wake on multicast is enabled */
if (wufc & E1000_WUFC_MC) {
rctl = er32(RCTL);
rctl |= E1000_RCTL_MPE;
ew32(RCTL, rctl);
}
ctrl = er32(CTRL);
/* advertise wake from D3Cold */
#define E1000_CTRL_ADVD3WUC 0x00100000
/* phy power management enable */
#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
ctrl |= E1000_CTRL_ADVD3WUC;
if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
ew32(CTRL, ctrl);
if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
adapter->hw.phy.media_type ==
e1000_media_type_internal_serdes) {
/* keep the laser running in D3 */
ctrl_ext = er32(CTRL_EXT);
ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
ew32(CTRL_EXT, ctrl_ext);
}
if (adapter->flags & FLAG_IS_ICH)
e1000_suspend_workarounds_ich8lan(&adapter->hw);
/* Allow time for pending master requests to run */
e1000e_disable_pcie_master(&adapter->hw);
if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
/* enable wakeup by the PHY */
retval = e1000_init_phy_wakeup(adapter, wufc);
if (retval)
return retval;
} else {
/* enable wakeup by the MAC */
ew32(WUFC, wufc);
ew32(WUC, E1000_WUC_PME_EN);
}
} else {
ew32(WUC, 0);
ew32(WUFC, 0);
}
*enable_wake = !!wufc;
/* make sure adapter isn't asleep if manageability is enabled */
if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
(hw->mac.ops.check_mng_mode(hw)))
*enable_wake = true;
if (adapter->hw.phy.type == e1000_phy_igp_3)
e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
/*
* Release control of h/w to f/w. If f/w is AMT enabled, this
* would have already happened in close and is redundant.
*/
e1000e_release_hw_control(adapter);
pci_disable_device(pdev);
return 0;
}
static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
{
if (sleep && wake) {
pci_prepare_to_sleep(pdev);
return;
}
pci_wake_from_d3(pdev, wake);
pci_set_power_state(pdev, PCI_D3hot);
}
static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
bool wake)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct e1000_adapter *adapter = netdev_priv(netdev);
/*
* The pci-e switch on some quad port adapters will report a
* correctable error when the MAC transitions from D0 to D3. To
* prevent this we need to mask off the correctable errors on the
* downstream port of the pci-e switch.
*/
if (adapter->flags & FLAG_IS_QUAD_PORT) {
struct pci_dev *us_dev = pdev->bus->self;
int pos = pci_pcie_cap(us_dev);
u16 devctl;
pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
(devctl & ~PCI_EXP_DEVCTL_CERE));
e1000_power_off(pdev, sleep, wake);
pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
} else {
e1000_power_off(pdev, sleep, wake);
}
}
#ifdef CONFIG_PCIEASPM
static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
{
pci_disable_link_state_locked(pdev, state);
}
#else
static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
{
int pos;
u16 reg16;
/*
* Both device and parent should have the same ASPM setting.
* Disable ASPM in downstream component first and then upstream.
*/
pos = pci_pcie_cap(pdev);
pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, ®16);
reg16 &= ~state;
pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, reg16);
if (!pdev->bus->self)
return;
pos = pci_pcie_cap(pdev->bus->self);
pci_read_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, ®16);
reg16 &= ~state;
pci_write_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, reg16);
}
#endif
static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
{
dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
(state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
(state & PCIE_LINK_STATE_L1) ? "L1" : "");
__e1000e_disable_aspm(pdev, state);
}
#ifdef CONFIG_PM
static bool e1000e_pm_ready(struct e1000_adapter *adapter)
{
return !!adapter->tx_ring->buffer_info;
}
static int __e1000_resume(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u16 aspm_disable_flag = 0;
u32 err;
if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
aspm_disable_flag = PCIE_LINK_STATE_L0S;
if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
aspm_disable_flag |= PCIE_LINK_STATE_L1;
if (aspm_disable_flag)
e1000e_disable_aspm(pdev, aspm_disable_flag);
pci_set_power_state(pdev, PCI_D0);
pci_restore_state(pdev);
pci_save_state(pdev);
e1000e_set_interrupt_capability(adapter);
if (netif_running(netdev)) {
err = e1000_request_irq(adapter);
if (err)
return err;
}
if (hw->mac.type == e1000_pch2lan)
e1000_resume_workarounds_pchlan(&adapter->hw);
e1000e_power_up_phy(adapter);
/* report the system wakeup cause from S3/S4 */
if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
u16 phy_data;
e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
if (phy_data) {
e_info("PHY Wakeup cause - %s\n",
phy_data & E1000_WUS_EX ? "Unicast Packet" :
phy_data & E1000_WUS_MC ? "Multicast Packet" :
phy_data & E1000_WUS_BC ? "Broadcast Packet" :
phy_data & E1000_WUS_MAG ? "Magic Packet" :
phy_data & E1000_WUS_LNKC ? "Link Status "
" Change" : "other");
}
e1e_wphy(&adapter->hw, BM_WUS, ~0);
} else {
u32 wus = er32(WUS);
if (wus) {
e_info("MAC Wakeup cause - %s\n",
wus & E1000_WUS_EX ? "Unicast Packet" :
wus & E1000_WUS_MC ? "Multicast Packet" :
wus & E1000_WUS_BC ? "Broadcast Packet" :
wus & E1000_WUS_MAG ? "Magic Packet" :
wus & E1000_WUS_LNKC ? "Link Status Change" :
"other");
}
ew32(WUS, ~0);
}
e1000e_reset(adapter);
e1000_init_manageability_pt(adapter);
if (netif_running(netdev))
e1000e_up(adapter);
netif_device_attach(netdev);
/*
* If the controller has AMT, do not set DRV_LOAD until the interface
* is up. For all other cases, let the f/w know that the h/w is now
* under the control of the driver.
*/
if (!(adapter->flags & FLAG_HAS_AMT))
e1000e_get_hw_control(adapter);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int e1000_suspend(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
int retval;
bool wake;
retval = __e1000_shutdown(pdev, &wake, false);
if (!retval)
e1000_complete_shutdown(pdev, true, wake);
return retval;
}
static int e1000_resume(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct net_device *netdev = pci_get_drvdata(pdev);
struct e1000_adapter *adapter = netdev_priv(netdev);
if (e1000e_pm_ready(adapter))
adapter->idle_check = true;
return __e1000_resume(pdev);
}
#endif /* CONFIG_PM_SLEEP */
#ifdef CONFIG_PM_RUNTIME
static int e1000_runtime_suspend(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct net_device *netdev = pci_get_drvdata(pdev);
struct e1000_adapter *adapter = netdev_priv(netdev);
if (e1000e_pm_ready(adapter)) {
bool wake;
__e1000_shutdown(pdev, &wake, true);
}
return 0;
}
static int e1000_idle(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct net_device *netdev = pci_get_drvdata(pdev);
struct e1000_adapter *adapter = netdev_priv(netdev);
if (!e1000e_pm_ready(adapter))
return 0;
if (adapter->idle_check) {
adapter->idle_check = false;
if (!e1000e_has_link(adapter))
pm_schedule_suspend(dev, MSEC_PER_SEC);
}
return -EBUSY;
}
static int e1000_runtime_resume(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct net_device *netdev = pci_get_drvdata(pdev);
struct e1000_adapter *adapter = netdev_priv(netdev);
if (!e1000e_pm_ready(adapter))
return 0;
adapter->idle_check = !dev->power.runtime_auto;
return __e1000_resume(pdev);
}
#endif /* CONFIG_PM_RUNTIME */
#endif /* CONFIG_PM */
static void e1000_shutdown(struct pci_dev *pdev)
{
bool wake = false;
__e1000_shutdown(pdev, &wake, false);
if (system_state == SYSTEM_POWER_OFF)
e1000_complete_shutdown(pdev, false, wake);
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static irqreturn_t e1000_intr_msix(int irq, void *data)
{
struct net_device *netdev = data;
struct e1000_adapter *adapter = netdev_priv(netdev);
if (adapter->msix_entries) {
int vector, msix_irq;
vector = 0;
msix_irq = adapter->msix_entries[vector].vector;
disable_irq(msix_irq);
e1000_intr_msix_rx(msix_irq, netdev);
enable_irq(msix_irq);
vector++;
msix_irq = adapter->msix_entries[vector].vector;
disable_irq(msix_irq);
e1000_intr_msix_tx(msix_irq, netdev);
enable_irq(msix_irq);
vector++;
msix_irq = adapter->msix_entries[vector].vector;
disable_irq(msix_irq);
e1000_msix_other(msix_irq, netdev);
enable_irq(msix_irq);
}
return IRQ_HANDLED;
}
/*
* Polling 'interrupt' - used by things like netconsole to send skbs
* without having to re-enable interrupts. It's not called while
* the interrupt routine is executing.
*/
static void e1000_netpoll(struct net_device *netdev)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
switch (adapter->int_mode) {
case E1000E_INT_MODE_MSIX:
e1000_intr_msix(adapter->pdev->irq, netdev);
break;
case E1000E_INT_MODE_MSI:
disable_irq(adapter->pdev->irq);
e1000_intr_msi(adapter->pdev->irq, netdev);
enable_irq(adapter->pdev->irq);
break;
default: /* E1000E_INT_MODE_LEGACY */
disable_irq(adapter->pdev->irq);
e1000_intr(adapter->pdev->irq, netdev);
enable_irq(adapter->pdev->irq);
break;
}
}
#endif
/**
* e1000_io_error_detected - called when PCI error is detected
* @pdev: Pointer to PCI device
* @state: The current pci connection state
*
* This function is called after a PCI bus error affecting
* this device has been detected.
*/
static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
pci_channel_state_t state)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct e1000_adapter *adapter = netdev_priv(netdev);
netif_device_detach(netdev);
if (state == pci_channel_io_perm_failure)
return PCI_ERS_RESULT_DISCONNECT;
if (netif_running(netdev))
e1000e_down(adapter);
pci_disable_device(pdev);
/* Request a slot slot reset. */
return PCI_ERS_RESULT_NEED_RESET;
}
/**
* e1000_io_slot_reset - called after the pci bus has been reset.
* @pdev: Pointer to PCI device
*
* Restart the card from scratch, as if from a cold-boot. Implementation
* resembles the first-half of the e1000_resume routine.
*/
static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u16 aspm_disable_flag = 0;
int err;
pci_ers_result_t result;
if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
aspm_disable_flag = PCIE_LINK_STATE_L0S;
if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
aspm_disable_flag |= PCIE_LINK_STATE_L1;
if (aspm_disable_flag)
e1000e_disable_aspm(pdev, aspm_disable_flag);
err = pci_enable_device_mem(pdev);
if (err) {
dev_err(&pdev->dev,
"Cannot re-enable PCI device after reset.\n");
result = PCI_ERS_RESULT_DISCONNECT;
} else {
pci_set_master(pdev);
pdev->state_saved = true;
pci_restore_state(pdev);
pci_enable_wake(pdev, PCI_D3hot, 0);
pci_enable_wake(pdev, PCI_D3cold, 0);
e1000e_reset(adapter);
ew32(WUS, ~0);
result = PCI_ERS_RESULT_RECOVERED;
}
pci_cleanup_aer_uncorrect_error_status(pdev);
return result;
}
/**
* e1000_io_resume - called when traffic can start flowing again.
* @pdev: Pointer to PCI device
*
* This callback is called when the error recovery driver tells us that
* its OK to resume normal operation. Implementation resembles the
* second-half of the e1000_resume routine.
*/
static void e1000_io_resume(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct e1000_adapter *adapter = netdev_priv(netdev);
e1000_init_manageability_pt(adapter);
if (netif_running(netdev)) {
if (e1000e_up(adapter)) {
dev_err(&pdev->dev,
"can't bring device back up after reset\n");
return;
}
}
netif_device_attach(netdev);
/*
* If the controller has AMT, do not set DRV_LOAD until the interface
* is up. For all other cases, let the f/w know that the h/w is now
* under the control of the driver.
*/
if (!(adapter->flags & FLAG_HAS_AMT))
e1000e_get_hw_control(adapter);
}
static void e1000_print_device_info(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
struct net_device *netdev = adapter->netdev;
u32 ret_val;
u8 pba_str[E1000_PBANUM_LENGTH];
/* print bus type/speed/width info */
e_info("(PCI Express:2.5GT/s:%s) %pM\n",
/* bus width */
((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
"Width x1"),
/* MAC address */
netdev->dev_addr);
e_info("Intel(R) PRO/%s Network Connection\n",
(hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
ret_val = e1000_read_pba_string_generic(hw, pba_str,
E1000_PBANUM_LENGTH);
if (ret_val)
strncpy((char *)pba_str, "Unknown", sizeof(pba_str) - 1);
e_info("MAC: %d, PHY: %d, PBA No: %s\n",
hw->mac.type, hw->phy.type, pba_str);
}
static void e1000_eeprom_checks(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
int ret_val;
u16 buf = 0;
if (hw->mac.type != e1000_82573)
return;
ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
if (!ret_val && (!(le16_to_cpu(buf) & (1 << 0)))) {
/* Deep Smart Power Down (DSPD) */
dev_warn(&adapter->pdev->dev,
"Warning: detected DSPD enabled in EEPROM\n");
}
}
static int e1000_set_features(struct net_device *netdev, u32 features)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
u32 changed = features ^ netdev->features;
if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
adapter->flags |= FLAG_TSO_FORCE;
if (!(changed & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX |
NETIF_F_RXCSUM)))
return 0;
if (netif_running(netdev))
e1000e_reinit_locked(adapter);
else
e1000e_reset(adapter);
return 0;
}
static const struct net_device_ops e1000e_netdev_ops = {
.ndo_open = e1000_open,
.ndo_stop = e1000_close,
.ndo_start_xmit = e1000_xmit_frame,
.ndo_get_stats64 = e1000e_get_stats64,
.ndo_set_rx_mode = e1000_set_multi,
.ndo_set_mac_address = e1000_set_mac,
.ndo_change_mtu = e1000_change_mtu,
.ndo_do_ioctl = e1000_ioctl,
.ndo_tx_timeout = e1000_tx_timeout,
.ndo_validate_addr = eth_validate_addr,
.ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
.ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = e1000_netpoll,
#endif
.ndo_set_features = e1000_set_features,
};
/**
* e1000_probe - Device Initialization Routine
* @pdev: PCI device information struct
* @ent: entry in e1000_pci_tbl
*
* Returns 0 on success, negative on failure
*
* e1000_probe initializes an adapter identified by a pci_dev structure.
* The OS initialization, configuring of the adapter private structure,
* and a hardware reset occur.
**/
static int __devinit e1000_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct net_device *netdev;
struct e1000_adapter *adapter;
struct e1000_hw *hw;
const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
resource_size_t mmio_start, mmio_len;
resource_size_t flash_start, flash_len;
static int cards_found;
u16 aspm_disable_flag = 0;
int i, err, pci_using_dac;
u16 eeprom_data = 0;
u16 eeprom_apme_mask = E1000_EEPROM_APME;
if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
aspm_disable_flag = PCIE_LINK_STATE_L0S;
if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
aspm_disable_flag |= PCIE_LINK_STATE_L1;
if (aspm_disable_flag)
e1000e_disable_aspm(pdev, aspm_disable_flag);
err = pci_enable_device_mem(pdev);
if (err)
return err;
pci_using_dac = 0;
err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
if (!err) {
err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
if (!err)
pci_using_dac = 1;
} else {
err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
if (err) {
err = dma_set_coherent_mask(&pdev->dev,
DMA_BIT_MASK(32));
if (err) {
dev_err(&pdev->dev, "No usable DMA "
"configuration, aborting\n");
goto err_dma;
}
}
}
err = pci_request_selected_regions_exclusive(pdev,
pci_select_bars(pdev, IORESOURCE_MEM),
e1000e_driver_name);
if (err)
goto err_pci_reg;
/* AER (Advanced Error Reporting) hooks */
pci_enable_pcie_error_reporting(pdev);
pci_set_master(pdev);
/* PCI config space info */
err = pci_save_state(pdev);
if (err)
goto err_alloc_etherdev;
err = -ENOMEM;
netdev = alloc_etherdev(sizeof(struct e1000_adapter));
if (!netdev)
goto err_alloc_etherdev;
SET_NETDEV_DEV(netdev, &pdev->dev);
netdev->irq = pdev->irq;
pci_set_drvdata(pdev, netdev);
adapter = netdev_priv(netdev);
hw = &adapter->hw;
adapter->netdev = netdev;
adapter->pdev = pdev;
adapter->ei = ei;
adapter->pba = ei->pba;
adapter->flags = ei->flags;
adapter->flags2 = ei->flags2;
adapter->hw.adapter = adapter;
adapter->hw.mac.type = ei->mac;
adapter->max_hw_frame_size = ei->max_hw_frame_size;
adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
mmio_start = pci_resource_start(pdev, 0);
mmio_len = pci_resource_len(pdev, 0);
err = -EIO;
adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
if (!adapter->hw.hw_addr)
goto err_ioremap;
if ((adapter->flags & FLAG_HAS_FLASH) &&
(pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
flash_start = pci_resource_start(pdev, 1);
flash_len = pci_resource_len(pdev, 1);
adapter->hw.flash_address = ioremap(flash_start, flash_len);
if (!adapter->hw.flash_address)
goto err_flashmap;
}
/* construct the net_device struct */
netdev->netdev_ops = &e1000e_netdev_ops;
e1000e_set_ethtool_ops(netdev);
netdev->watchdog_timeo = 5 * HZ;
netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
netdev->mem_start = mmio_start;
netdev->mem_end = mmio_start + mmio_len;
adapter->bd_number = cards_found++;
e1000e_check_options(adapter);
/* setup adapter struct */
err = e1000_sw_init(adapter);
if (err)
goto err_sw_init;
memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
err = ei->get_variants(adapter);
if (err)
goto err_hw_init;
if ((adapter->flags & FLAG_IS_ICH) &&
(adapter->flags & FLAG_READ_ONLY_NVM))
e1000e_write_protect_nvm_ich8lan(&adapter->hw);
hw->mac.ops.get_bus_info(&adapter->hw);
adapter->hw.phy.autoneg_wait_to_complete = 0;
/* Copper options */
if (adapter->hw.phy.media_type == e1000_media_type_copper) {
adapter->hw.phy.mdix = AUTO_ALL_MODES;
adapter->hw.phy.disable_polarity_correction = 0;
adapter->hw.phy.ms_type = e1000_ms_hw_default;
}
if (e1000_check_reset_block(&adapter->hw))
e_info("PHY reset is blocked due to SOL/IDER session.\n");
/* Set initial default active device features */
netdev->features = (NETIF_F_SG |
NETIF_F_HW_VLAN_RX |
NETIF_F_HW_VLAN_TX |
NETIF_F_TSO |
NETIF_F_TSO6 |
NETIF_F_RXCSUM |
NETIF_F_HW_CSUM);
/* Set user-changeable features (subset of all device features) */
netdev->hw_features = netdev->features;
if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
netdev->features |= NETIF_F_HW_VLAN_FILTER;
netdev->vlan_features |= (NETIF_F_SG |
NETIF_F_TSO |
NETIF_F_TSO6 |
NETIF_F_HW_CSUM);
if (pci_using_dac) {
netdev->features |= NETIF_F_HIGHDMA;
netdev->vlan_features |= NETIF_F_HIGHDMA;
}
if (e1000e_enable_mng_pass_thru(&adapter->hw))
adapter->flags |= FLAG_MNG_PT_ENABLED;
/*
* before reading the NVM, reset the controller to
* put the device in a known good starting state
*/
adapter->hw.mac.ops.reset_hw(&adapter->hw);
/*
* systems with ASPM and others may see the checksum fail on the first
* attempt. Let's give it a few tries
*/
for (i = 0;; i++) {
if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
break;
if (i == 2) {
e_err("The NVM Checksum Is Not Valid\n");
err = -EIO;
goto err_eeprom;
}
}
e1000_eeprom_checks(adapter);
/* copy the MAC address */
if (e1000e_read_mac_addr(&adapter->hw))
e_err("NVM Read Error while reading MAC address\n");
memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
if (!is_valid_ether_addr(netdev->perm_addr)) {
e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
err = -EIO;
goto err_eeprom;
}
init_timer(&adapter->watchdog_timer);
adapter->watchdog_timer.function = e1000_watchdog;
adapter->watchdog_timer.data = (unsigned long) adapter;
init_timer(&adapter->phy_info_timer);
adapter->phy_info_timer.function = e1000_update_phy_info;
adapter->phy_info_timer.data = (unsigned long) adapter;
INIT_WORK(&adapter->reset_task, e1000_reset_task);
INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
/* Initialize link parameters. User can change them with ethtool */
adapter->hw.mac.autoneg = 1;
adapter->fc_autoneg = 1;
adapter->hw.fc.requested_mode = e1000_fc_default;
adapter->hw.fc.current_mode = e1000_fc_default;
adapter->hw.phy.autoneg_advertised = 0x2f;
/* ring size defaults */
adapter->rx_ring->count = 256;
adapter->tx_ring->count = 256;
/*
* Initial Wake on LAN setting - If APM wake is enabled in
* the EEPROM, enable the ACPI Magic Packet filter
*/
if (adapter->flags & FLAG_APME_IN_WUC) {
/* APME bit in EEPROM is mapped to WUC.APME */
eeprom_data = er32(WUC);
eeprom_apme_mask = E1000_WUC_APME;
if ((hw->mac.type > e1000_ich10lan) &&
(eeprom_data & E1000_WUC_PHY_WAKE))
adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
(adapter->hw.bus.func == 1))
e1000_read_nvm(&adapter->hw,
NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
else
e1000_read_nvm(&adapter->hw,
NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
}
/* fetch WoL from EEPROM */
if (eeprom_data & eeprom_apme_mask)
adapter->eeprom_wol |= E1000_WUFC_MAG;
/*
* now that we have the eeprom settings, apply the special cases
* where the eeprom may be wrong or the board simply won't support
* wake on lan on a particular port
*/
if (!(adapter->flags & FLAG_HAS_WOL))
adapter->eeprom_wol = 0;
/* initialize the wol settings based on the eeprom settings */
adapter->wol = adapter->eeprom_wol;
device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
/* save off EEPROM version number */
e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
/* reset the hardware with the new settings */
e1000e_reset(adapter);
/*
* If the controller has AMT, do not set DRV_LOAD until the interface
* is up. For all other cases, let the f/w know that the h/w is now
* under the control of the driver.
*/
if (!(adapter->flags & FLAG_HAS_AMT))
e1000e_get_hw_control(adapter);
strncpy(netdev->name, "eth%d", sizeof(netdev->name) - 1);
err = register_netdev(netdev);
if (err)
goto err_register;
/* carrier off reporting is important to ethtool even BEFORE open */
netif_carrier_off(netdev);
e1000_print_device_info(adapter);
if (pci_dev_run_wake(pdev))
pm_runtime_put_noidle(&pdev->dev);
return 0;
err_register:
if (!(adapter->flags & FLAG_HAS_AMT))
e1000e_release_hw_control(adapter);
err_eeprom:
if (!e1000_check_reset_block(&adapter->hw))
e1000_phy_hw_reset(&adapter->hw);
err_hw_init:
kfree(adapter->tx_ring);
kfree(adapter->rx_ring);
err_sw_init:
if (adapter->hw.flash_address)
iounmap(adapter->hw.flash_address);
e1000e_reset_interrupt_capability(adapter);
err_flashmap:
iounmap(adapter->hw.hw_addr);
err_ioremap:
free_netdev(netdev);
err_alloc_etherdev:
pci_release_selected_regions(pdev,
pci_select_bars(pdev, IORESOURCE_MEM));
err_pci_reg:
err_dma:
pci_disable_device(pdev);
return err;
}
/**
* e1000_remove - Device Removal Routine
* @pdev: PCI device information struct
*
* e1000_remove is called by the PCI subsystem to alert the driver
* that it should release a PCI device. The could be caused by a
* Hot-Plug event, or because the driver is going to be removed from
* memory.
**/
static void __devexit e1000_remove(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct e1000_adapter *adapter = netdev_priv(netdev);
bool down = test_bit(__E1000_DOWN, &adapter->state);
/*
* The timers may be rescheduled, so explicitly disable them
* from being rescheduled.
*/
if (!down)
set_bit(__E1000_DOWN, &adapter->state);
del_timer_sync(&adapter->watchdog_timer);
del_timer_sync(&adapter->phy_info_timer);
cancel_work_sync(&adapter->reset_task);
cancel_work_sync(&adapter->watchdog_task);
cancel_work_sync(&adapter->downshift_task);
cancel_work_sync(&adapter->update_phy_task);
cancel_work_sync(&adapter->print_hang_task);
if (!(netdev->flags & IFF_UP))
e1000_power_down_phy(adapter);
/* Don't lie to e1000_close() down the road. */
if (!down)
clear_bit(__E1000_DOWN, &adapter->state);
unregister_netdev(netdev);
if (pci_dev_run_wake(pdev))
pm_runtime_get_noresume(&pdev->dev);
/*
* Release control of h/w to f/w. If f/w is AMT enabled, this
* would have already happened in close and is redundant.
*/
e1000e_release_hw_control(adapter);
e1000e_reset_interrupt_capability(adapter);
kfree(adapter->tx_ring);
kfree(adapter->rx_ring);
iounmap(adapter->hw.hw_addr);
if (adapter->hw.flash_address)
iounmap(adapter->hw.flash_address);
pci_release_selected_regions(pdev,
pci_select_bars(pdev, IORESOURCE_MEM));
free_netdev(netdev);
/* AER disable */
pci_disable_pcie_error_reporting(pdev);
pci_disable_device(pdev);
}
/* PCI Error Recovery (ERS) */
static struct pci_error_handlers e1000_err_handler = {
.error_detected = e1000_io_error_detected,
.slot_reset = e1000_io_slot_reset,
.resume = e1000_io_resume,
};
static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
board_80003es2lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
board_80003es2lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
board_80003es2lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
board_80003es2lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
{ } /* terminate list */
};
MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
#ifdef CONFIG_PM
static const struct dev_pm_ops e1000_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
SET_RUNTIME_PM_OPS(e1000_runtime_suspend,
e1000_runtime_resume, e1000_idle)
};
#endif
/* PCI Device API Driver */
static struct pci_driver e1000_driver = {
.name = e1000e_driver_name,
.id_table = e1000_pci_tbl,
.probe = e1000_probe,
.remove = __devexit_p(e1000_remove),
#ifdef CONFIG_PM
.driver.pm = &e1000_pm_ops,
#endif
.shutdown = e1000_shutdown,
.err_handler = &e1000_err_handler
};
/**
* e1000_init_module - Driver Registration Routine
*
* e1000_init_module is the first routine called when the driver is
* loaded. All it does is register with the PCI subsystem.
**/
static int __init e1000_init_module(void)
{
int ret;
pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
e1000e_driver_version);
pr_info("Copyright(c) 1999 - 2011 Intel Corporation.\n");
ret = pci_register_driver(&e1000_driver);
return ret;
}
module_init(e1000_init_module);
/**
* e1000_exit_module - Driver Exit Cleanup Routine
*
* e1000_exit_module is called just before the driver is removed
* from memory.
**/
static void __exit e1000_exit_module(void)
{
pci_unregister_driver(&e1000_driver);
}
module_exit(e1000_exit_module);
MODULE_AUTHOR("Intel Corporation, <linux.nics at intel.com>");
MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);
/* e1000_main.c */
-------------- n?chster Teil --------------
/*******************************************************************************
Intel PRO/1000 Linux driver
Copyright(c) 1999 - 2011 Intel Corporation.
This program is free software; you can redistribute it and/or modify it
under the terms and conditions of the GNU General Public License,
version 2, as published by the Free Software Foundation.
This program is distributed in the hope it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
The full GNU General Public License is included in this distribution in
the file called "COPYING".
Contact Information:
Linux NICS <linux.nics at intel.com>
e1000-devel Mailing List <e1000-devel at lists.sourceforge.net>
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*******************************************************************************/
#include <linux/delay.h>
#include "e1000.h"
static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
static s32 e1000_wait_autoneg(struct e1000_hw *hw);
static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg);
static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
u16 *data, bool read, bool page_set);
static u32 e1000_get_phy_addr_for_hv_page(u32 page);
static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
u16 *data, bool read);
/* Cable length tables */
static const u16 e1000_m88_cable_length_table[] = {
0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
ARRAY_SIZE(e1000_m88_cable_length_table)
static const u16 e1000_igp_2_cable_length_table[] = {
0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
124};
#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
ARRAY_SIZE(e1000_igp_2_cable_length_table)
#define BM_PHY_REG_PAGE(offset) \
((u16)(((offset) >> PHY_PAGE_SHIFT) & 0xFFFF))
#define BM_PHY_REG_NUM(offset) \
((u16)(((offset) & MAX_PHY_REG_ADDRESS) |\
(((offset) >> (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)) &\
~MAX_PHY_REG_ADDRESS)))
#define HV_INTC_FC_PAGE_START 768
#define I82578_ADDR_REG 29
#define I82577_ADDR_REG 16
#define I82577_CFG_REG 22
#define I82577_CFG_ASSERT_CRS_ON_TX (1 << 15)
#define I82577_CFG_ENABLE_DOWNSHIFT (3 << 10) /* auto downshift 100/10 */
#define I82577_CTRL_REG 23
/* 82577 specific PHY registers */
#define I82577_PHY_CTRL_2 18
#define I82577_PHY_STATUS_2 26
#define I82577_PHY_DIAG_STATUS 31
/* I82577 PHY Status 2 */
#define I82577_PHY_STATUS2_REV_POLARITY 0x0400
#define I82577_PHY_STATUS2_MDIX 0x0800
#define I82577_PHY_STATUS2_SPEED_MASK 0x0300
#define I82577_PHY_STATUS2_SPEED_1000MBPS 0x0200
/* I82577 PHY Control 2 */
#define I82577_PHY_CTRL2_AUTO_MDIX 0x0400
#define I82577_PHY_CTRL2_FORCE_MDI_MDIX 0x0200
/* I82577 PHY Diagnostics Status */
#define I82577_DSTATUS_CABLE_LENGTH 0x03FC
#define I82577_DSTATUS_CABLE_LENGTH_SHIFT 2
/* BM PHY Copper Specific Control 1 */
#define BM_CS_CTRL1 16
#define HV_MUX_DATA_CTRL PHY_REG(776, 16)
#define HV_MUX_DATA_CTRL_GEN_TO_MAC 0x0400
#define HV_MUX_DATA_CTRL_FORCE_SPEED 0x0004
/**
* e1000e_check_reset_block_generic - Check if PHY reset is blocked
* @hw: pointer to the HW structure
*
* Read the PHY management control register and check whether a PHY reset
* is blocked. If a reset is not blocked return 0, otherwise
* return E1000_BLK_PHY_RESET (12).
**/
s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
{
u32 manc;
manc = er32(MANC);
return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
E1000_BLK_PHY_RESET : 0;
}
/**
* e1000e_get_phy_id - Retrieve the PHY ID and revision
* @hw: pointer to the HW structure
*
* Reads the PHY registers and stores the PHY ID and possibly the PHY
* revision in the hardware structure.
**/
s32 e1000e_get_phy_id(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val = 0;
u16 phy_id;
u16 retry_count = 0;
if (!(phy->ops.read_reg))
goto out;
while (retry_count < 2) {
ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
if (ret_val)
goto out;
phy->id = (u32)(phy_id << 16);
udelay(20);
ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
if (ret_val)
goto out;
phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
goto out;
retry_count++;
}
out:
return ret_val;
}
/**
* e1000e_phy_reset_dsp - Reset PHY DSP
* @hw: pointer to the HW structure
*
* Reset the digital signal processor.
**/
s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
{
s32 ret_val;
ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
if (ret_val)
return ret_val;
return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
}
/**
* e1000e_read_phy_reg_mdic - Read MDI control register
* @hw: pointer to the HW structure
* @offset: register offset to be read
* @data: pointer to the read data
*
* Reads the MDI control register in the PHY at offset and stores the
* information read to data.
**/
s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
{
struct e1000_phy_info *phy = &hw->phy;
u32 i, mdic = 0;
if (offset > MAX_PHY_REG_ADDRESS) {
e_dbg("PHY Address %d is out of range\n", offset);
return -E1000_ERR_PARAM;
}
/*
* Set up Op-code, Phy Address, and register offset in the MDI
* Control register. The MAC will take care of interfacing with the
* PHY to retrieve the desired data.
*/
mdic = ((offset << E1000_MDIC_REG_SHIFT) |
(phy->addr << E1000_MDIC_PHY_SHIFT) |
(E1000_MDIC_OP_READ));
ew32(MDIC, mdic);
/*
* Poll the ready bit to see if the MDI read completed
* Increasing the time out as testing showed failures with
* the lower time out
*/
for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
udelay(50);
mdic = er32(MDIC);
if (mdic & E1000_MDIC_READY)
break;
}
if (!(mdic & E1000_MDIC_READY)) {
e_dbg("MDI Read did not complete\n");
return -E1000_ERR_PHY;
}
if (mdic & E1000_MDIC_ERROR) {
e_dbg("MDI Error\n");
return -E1000_ERR_PHY;
}
*data = (u16) mdic;
/*
* Allow some time after each MDIC transaction to avoid
* reading duplicate data in the next MDIC transaction.
*/
if (hw->mac.type == e1000_pch2lan)
udelay(100);
return 0;
}
/**
* e1000e_write_phy_reg_mdic - Write MDI control register
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write to register at offset
*
* Writes data to MDI control register in the PHY at offset.
**/
s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
{
struct e1000_phy_info *phy = &hw->phy;
u32 i, mdic = 0;
if (offset > MAX_PHY_REG_ADDRESS) {
e_dbg("PHY Address %d is out of range\n", offset);
return -E1000_ERR_PARAM;
}
/*
* Set up Op-code, Phy Address, and register offset in the MDI
* Control register. The MAC will take care of interfacing with the
* PHY to retrieve the desired data.
*/
mdic = (((u32)data) |
(offset << E1000_MDIC_REG_SHIFT) |
(phy->addr << E1000_MDIC_PHY_SHIFT) |
(E1000_MDIC_OP_WRITE));
ew32(MDIC, mdic);
/*
* Poll the ready bit to see if the MDI read completed
* Increasing the time out as testing showed failures with
* the lower time out
*/
for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
udelay(50);
mdic = er32(MDIC);
if (mdic & E1000_MDIC_READY)
break;
}
if (!(mdic & E1000_MDIC_READY)) {
e_dbg("MDI Write did not complete\n");
return -E1000_ERR_PHY;
}
if (mdic & E1000_MDIC_ERROR) {
e_dbg("MDI Error\n");
return -E1000_ERR_PHY;
}
/*
* Allow some time after each MDIC transaction to avoid
* reading duplicate data in the next MDIC transaction.
*/
if (hw->mac.type == e1000_pch2lan)
udelay(100);
return 0;
}
/**
* e1000e_read_phy_reg_m88 - Read m88 PHY register
* @hw: pointer to the HW structure
* @offset: register offset to be read
* @data: pointer to the read data
*
* Acquires semaphore, if necessary, then reads the PHY register at offset
* and storing the retrieved information in data. Release any acquired
* semaphores before exiting.
**/
s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
{
s32 ret_val;
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return ret_val;
ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
data);
hw->phy.ops.release(hw);
return ret_val;
}
/**
* e1000e_write_phy_reg_m88 - Write m88 PHY register
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write at register offset
*
* Acquires semaphore, if necessary, then writes the data to PHY register
* at the offset. Release any acquired semaphores before exiting.
**/
s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
{
s32 ret_val;
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return ret_val;
ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
data);
hw->phy.ops.release(hw);
return ret_val;
}
/**
* e1000_set_page_igp - Set page as on IGP-like PHY(s)
* @hw: pointer to the HW structure
* @page: page to set (shifted left when necessary)
*
* Sets PHY page required for PHY register access. Assumes semaphore is
* already acquired. Note, this function sets phy.addr to 1 so the caller
* must set it appropriately (if necessary) after this function returns.
**/
s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
{
e_dbg("Setting page 0x%x\n", page);
hw->phy.addr = 1;
return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
}
/**
* __e1000e_read_phy_reg_igp - Read igp PHY register
* @hw: pointer to the HW structure
* @offset: register offset to be read
* @data: pointer to the read data
* @locked: semaphore has already been acquired or not
*
* Acquires semaphore, if necessary, then reads the PHY register at offset
* and stores the retrieved information in data. Release any acquired
* semaphores before exiting.
**/
static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
bool locked)
{
s32 ret_val = 0;
if (!locked) {
if (!(hw->phy.ops.acquire))
goto out;
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
goto out;
}
if (offset > MAX_PHY_MULTI_PAGE_REG) {
ret_val = e1000e_write_phy_reg_mdic(hw,
IGP01E1000_PHY_PAGE_SELECT,
(u16)offset);
if (ret_val)
goto release;
}
ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
data);
release:
if (!locked)
hw->phy.ops.release(hw);
out:
return ret_val;
}
/**
* e1000e_read_phy_reg_igp - Read igp PHY register
* @hw: pointer to the HW structure
* @offset: register offset to be read
* @data: pointer to the read data
*
* Acquires semaphore then reads the PHY register at offset and stores the
* retrieved information in data.
* Release the acquired semaphore before exiting.
**/
s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
{
return __e1000e_read_phy_reg_igp(hw, offset, data, false);
}
/**
* e1000e_read_phy_reg_igp_locked - Read igp PHY register
* @hw: pointer to the HW structure
* @offset: register offset to be read
* @data: pointer to the read data
*
* Reads the PHY register at offset and stores the retrieved information
* in data. Assumes semaphore already acquired.
**/
s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
{
return __e1000e_read_phy_reg_igp(hw, offset, data, true);
}
/**
* e1000e_write_phy_reg_igp - Write igp PHY register
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write at register offset
* @locked: semaphore has already been acquired or not
*
* Acquires semaphore, if necessary, then writes the data to PHY register
* at the offset. Release any acquired semaphores before exiting.
**/
static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
bool locked)
{
s32 ret_val = 0;
if (!locked) {
if (!(hw->phy.ops.acquire))
goto out;
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
goto out;
}
if (offset > MAX_PHY_MULTI_PAGE_REG) {
ret_val = e1000e_write_phy_reg_mdic(hw,
IGP01E1000_PHY_PAGE_SELECT,
(u16)offset);
if (ret_val)
goto release;
}
ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
data);
release:
if (!locked)
hw->phy.ops.release(hw);
out:
return ret_val;
}
/**
* e1000e_write_phy_reg_igp - Write igp PHY register
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write at register offset
*
* Acquires semaphore then writes the data to PHY register
* at the offset. Release any acquired semaphores before exiting.
**/
s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
{
return __e1000e_write_phy_reg_igp(hw, offset, data, false);
}
/**
* e1000e_write_phy_reg_igp_locked - Write igp PHY register
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write at register offset
*
* Writes the data to PHY register at the offset.
* Assumes semaphore already acquired.
**/
s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
{
return __e1000e_write_phy_reg_igp(hw, offset, data, true);
}
/**
* __e1000_read_kmrn_reg - Read kumeran register
* @hw: pointer to the HW structure
* @offset: register offset to be read
* @data: pointer to the read data
* @locked: semaphore has already been acquired or not
*
* Acquires semaphore, if necessary. Then reads the PHY register at offset
* using the kumeran interface. The information retrieved is stored in data.
* Release any acquired semaphores before exiting.
**/
static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
bool locked)
{
u32 kmrnctrlsta;
s32 ret_val = 0;
if (!locked) {
if (!(hw->phy.ops.acquire))
goto out;
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
goto out;
}
kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
ew32(KMRNCTRLSTA, kmrnctrlsta);
e1e_flush();
udelay(2);
kmrnctrlsta = er32(KMRNCTRLSTA);
*data = (u16)kmrnctrlsta;
if (!locked)
hw->phy.ops.release(hw);
out:
return ret_val;
}
/**
* e1000e_read_kmrn_reg - Read kumeran register
* @hw: pointer to the HW structure
* @offset: register offset to be read
* @data: pointer to the read data
*
* Acquires semaphore then reads the PHY register at offset using the
* kumeran interface. The information retrieved is stored in data.
* Release the acquired semaphore before exiting.
**/
s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
{
return __e1000_read_kmrn_reg(hw, offset, data, false);
}
/**
* e1000e_read_kmrn_reg_locked - Read kumeran register
* @hw: pointer to the HW structure
* @offset: register offset to be read
* @data: pointer to the read data
*
* Reads the PHY register at offset using the kumeran interface. The
* information retrieved is stored in data.
* Assumes semaphore already acquired.
**/
s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
{
return __e1000_read_kmrn_reg(hw, offset, data, true);
}
/**
* __e1000_write_kmrn_reg - Write kumeran register
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write at register offset
* @locked: semaphore has already been acquired or not
*
* Acquires semaphore, if necessary. Then write the data to PHY register
* at the offset using the kumeran interface. Release any acquired semaphores
* before exiting.
**/
static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
bool locked)
{
u32 kmrnctrlsta;
s32 ret_val = 0;
if (!locked) {
if (!(hw->phy.ops.acquire))
goto out;
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
goto out;
}
kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
E1000_KMRNCTRLSTA_OFFSET) | data;
ew32(KMRNCTRLSTA, kmrnctrlsta);
e1e_flush();
udelay(2);
if (!locked)
hw->phy.ops.release(hw);
out:
return ret_val;
}
/**
* e1000e_write_kmrn_reg - Write kumeran register
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write at register offset
*
* Acquires semaphore then writes the data to the PHY register at the offset
* using the kumeran interface. Release the acquired semaphore before exiting.
**/
s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
{
return __e1000_write_kmrn_reg(hw, offset, data, false);
}
/**
* e1000e_write_kmrn_reg_locked - Write kumeran register
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write at register offset
*
* Write the data to PHY register at the offset using the kumeran interface.
* Assumes semaphore already acquired.
**/
s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
{
return __e1000_write_kmrn_reg(hw, offset, data, true);
}
/**
* e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
* @hw: pointer to the HW structure
*
* Sets up Carrier-sense on Transmit and downshift values.
**/
s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
{
s32 ret_val;
u16 phy_data;
/* Enable CRS on Tx. This must be set for half-duplex operation. */
ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data);
if (ret_val)
goto out;
phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
/* Enable downshift */
phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data);
out:
return ret_val;
}
/**
* e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
* @hw: pointer to the HW structure
*
* Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
* and downshift values are set also.
**/
s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 phy_data;
/* Enable CRS on Tx. This must be set for half-duplex operation. */
ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
if (ret_val)
return ret_val;
/* For BM PHY this bit is downshift enable */
if (phy->type != e1000_phy_bm)
phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
/*
* Options:
* MDI/MDI-X = 0 (default)
* 0 - Auto for all speeds
* 1 - MDI mode
* 2 - MDI-X mode
* 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
*/
phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
switch (phy->mdix) {
case 1:
phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
break;
case 2:
phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
break;
case 3:
phy_data |= M88E1000_PSCR_AUTO_X_1000T;
break;
case 0:
default:
phy_data |= M88E1000_PSCR_AUTO_X_MODE;
break;
}
/*
* Options:
* disable_polarity_correction = 0 (default)
* Automatic Correction for Reversed Cable Polarity
* 0 - Disabled
* 1 - Enabled
*/
phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
if (phy->disable_polarity_correction == 1)
phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
/* Enable downshift on BM (disabled by default) */
if (phy->type == e1000_phy_bm)
phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
if (ret_val)
return ret_val;
if ((phy->type == e1000_phy_m88) &&
(phy->revision < E1000_REVISION_4) &&
(phy->id != BME1000_E_PHY_ID_R2)) {
/*
* Force TX_CLK in the Extended PHY Specific Control Register
* to 25MHz clock.
*/
ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
if (ret_val)
return ret_val;
phy_data |= M88E1000_EPSCR_TX_CLK_25;
if ((phy->revision == 2) &&
(phy->id == M88E1111_I_PHY_ID)) {
/* 82573L PHY - set the downshift counter to 5x. */
phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
} else {
/* Configure Master and Slave downshift values */
phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
}
ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
if (ret_val)
return ret_val;
}
if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
/* Set PHY page 0, register 29 to 0x0003 */
ret_val = e1e_wphy(hw, 29, 0x0003);
if (ret_val)
return ret_val;
/* Set PHY page 0, register 30 to 0x0000 */
ret_val = e1e_wphy(hw, 30, 0x0000);
if (ret_val)
return ret_val;
}
/* Commit the changes. */
ret_val = e1000e_commit_phy(hw);
if (ret_val) {
e_dbg("Error committing the PHY changes\n");
return ret_val;
}
if (phy->type == e1000_phy_82578) {
ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
if (ret_val)
return ret_val;
/* 82578 PHY - set the downshift count to 1x. */
phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
if (ret_val)
return ret_val;
}
return 0;
}
/**
* e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
* @hw: pointer to the HW structure
*
* Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
* igp PHY's.
**/
s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 data;
ret_val = e1000_phy_hw_reset(hw);
if (ret_val) {
e_dbg("Error resetting the PHY.\n");
return ret_val;
}
/*
* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
* timeout issues when LFS is enabled.
*/
msleep(100);
/* disable lplu d0 during driver init */
ret_val = e1000_set_d0_lplu_state(hw, false);
if (ret_val) {
e_dbg("Error Disabling LPLU D0\n");
return ret_val;
}
/* Configure mdi-mdix settings */
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
if (ret_val)
return ret_val;
data &= ~IGP01E1000_PSCR_AUTO_MDIX;
switch (phy->mdix) {
case 1:
data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
break;
case 2:
data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
break;
case 0:
default:
data |= IGP01E1000_PSCR_AUTO_MDIX;
break;
}
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
if (ret_val)
return ret_val;
/* set auto-master slave resolution settings */
if (hw->mac.autoneg) {
/*
* when autonegotiation advertisement is only 1000Mbps then we
* should disable SmartSpeed and enable Auto MasterSlave
* resolution as hardware default.
*/
if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
/* Disable SmartSpeed */
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
&data);
if (ret_val)
return ret_val;
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
data);
if (ret_val)
return ret_val;
/* Set auto Master/Slave resolution process */
ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
if (ret_val)
return ret_val;
data &= ~CR_1000T_MS_ENABLE;
ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
if (ret_val)
return ret_val;
}
ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
if (ret_val)
return ret_val;
/* load defaults for future use */
phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
((data & CR_1000T_MS_VALUE) ?
e1000_ms_force_master :
e1000_ms_force_slave) :
e1000_ms_auto;
switch (phy->ms_type) {
case e1000_ms_force_master:
data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
break;
case e1000_ms_force_slave:
data |= CR_1000T_MS_ENABLE;
data &= ~(CR_1000T_MS_VALUE);
break;
case e1000_ms_auto:
data &= ~CR_1000T_MS_ENABLE;
default:
break;
}
ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
}
return ret_val;
}
/**
* e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
* @hw: pointer to the HW structure
*
* Reads the MII auto-neg advertisement register and/or the 1000T control
* register and if the PHY is already setup for auto-negotiation, then
* return successful. Otherwise, setup advertisement and flow control to
* the appropriate values for the wanted auto-negotiation.
**/
static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 mii_autoneg_adv_reg;
u16 mii_1000t_ctrl_reg = 0;
phy->autoneg_advertised &= phy->autoneg_mask;
/* Read the MII Auto-Neg Advertisement Register (Address 4). */
ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
if (ret_val)
return ret_val;
if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
/* Read the MII 1000Base-T Control Register (Address 9). */
ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
if (ret_val)
return ret_val;
}
/*
* Need to parse both autoneg_advertised and fc and set up
* the appropriate PHY registers. First we will parse for
* autoneg_advertised software override. Since we can advertise
* a plethora of combinations, we need to check each bit
* individually.
*/
/*
* First we clear all the 10/100 mb speed bits in the Auto-Neg
* Advertisement Register (Address 4) and the 1000 mb speed bits in
* the 1000Base-T Control Register (Address 9).
*/
mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
NWAY_AR_100TX_HD_CAPS |
NWAY_AR_10T_FD_CAPS |
NWAY_AR_10T_HD_CAPS);
mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
/* Do we want to advertise 10 Mb Half Duplex? */
if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
e_dbg("Advertise 10mb Half duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
}
/* Do we want to advertise 10 Mb Full Duplex? */
if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
e_dbg("Advertise 10mb Full duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
}
/* Do we want to advertise 100 Mb Half Duplex? */
if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
e_dbg("Advertise 100mb Half duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
}
/* Do we want to advertise 100 Mb Full Duplex? */
if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
e_dbg("Advertise 100mb Full duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
}
/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
e_dbg("Advertise 1000mb Half duplex request denied!\n");
/* Do we want to advertise 1000 Mb Full Duplex? */
if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
e_dbg("Advertise 1000mb Full duplex\n");
mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
}
/*
* Check for a software override of the flow control settings, and
* setup the PHY advertisement registers accordingly. If
* auto-negotiation is enabled, then software will have to set the
* "PAUSE" bits to the correct value in the Auto-Negotiation
* Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
* negotiation.
*
* The possible values of the "fc" parameter are:
* 0: Flow control is completely disabled
* 1: Rx flow control is enabled (we can receive pause frames
* but not send pause frames).
* 2: Tx flow control is enabled (we can send pause frames
* but we do not support receiving pause frames).
* 3: Both Rx and Tx flow control (symmetric) are enabled.
* other: No software override. The flow control configuration
* in the EEPROM is used.
*/
switch (hw->fc.current_mode) {
case e1000_fc_none:
/*
* Flow control (Rx & Tx) is completely disabled by a
* software over-ride.
*/
mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
break;
case e1000_fc_rx_pause:
/*
* Rx Flow control is enabled, and Tx Flow control is
* disabled, by a software over-ride.
*
* Since there really isn't a way to advertise that we are
* capable of Rx Pause ONLY, we will advertise that we
* support both symmetric and asymmetric Rx PAUSE. Later
* (in e1000e_config_fc_after_link_up) we will disable the
* hw's ability to send PAUSE frames.
*/
mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
break;
case e1000_fc_tx_pause:
/*
* Tx Flow control is enabled, and Rx Flow control is
* disabled, by a software over-ride.
*/
mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
break;
case e1000_fc_full:
/*
* Flow control (both Rx and Tx) is enabled by a software
* over-ride.
*/
mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
break;
default:
e_dbg("Flow control param set incorrectly\n");
ret_val = -E1000_ERR_CONFIG;
return ret_val;
}
ret_val = e1e_wphy(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
if (ret_val)
return ret_val;
e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
if (phy->autoneg_mask & ADVERTISE_1000_FULL)
ret_val = e1e_wphy(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
return ret_val;
}
/**
* e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
* @hw: pointer to the HW structure
*
* Performs initial bounds checking on autoneg advertisement parameter, then
* configure to advertise the full capability. Setup the PHY to autoneg
* and restart the negotiation process between the link partner. If
* autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
**/
static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 phy_ctrl;
/*
* Perform some bounds checking on the autoneg advertisement
* parameter.
*/
phy->autoneg_advertised &= phy->autoneg_mask;
/*
* If autoneg_advertised is zero, we assume it was not defaulted
* by the calling code so we set to advertise full capability.
*/
if (phy->autoneg_advertised == 0)
phy->autoneg_advertised = phy->autoneg_mask;
e_dbg("Reconfiguring auto-neg advertisement params\n");
ret_val = e1000_phy_setup_autoneg(hw);
if (ret_val) {
e_dbg("Error Setting up Auto-Negotiation\n");
return ret_val;
}
e_dbg("Restarting Auto-Neg\n");
/*
* Restart auto-negotiation by setting the Auto Neg Enable bit and
* the Auto Neg Restart bit in the PHY control register.
*/
ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
if (ret_val)
return ret_val;
phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
if (ret_val)
return ret_val;
/*
* Does the user want to wait for Auto-Neg to complete here, or
* check at a later time (for example, callback routine).
*/
if (phy->autoneg_wait_to_complete) {
ret_val = e1000_wait_autoneg(hw);
if (ret_val) {
e_dbg("Error while waiting for "
"autoneg to complete\n");
return ret_val;
}
}
hw->mac.get_link_status = 1;
return ret_val;
}
/**
* e1000e_setup_copper_link - Configure copper link settings
* @hw: pointer to the HW structure
*
* Calls the appropriate function to configure the link for auto-neg or forced
* speed and duplex. Then we check for link, once link is established calls
* to configure collision distance and flow control are called. If link is
* not established, we return -E1000_ERR_PHY (-2).
**/
s32 e1000e_setup_copper_link(struct e1000_hw *hw)
{
s32 ret_val;
bool link;
if (hw->mac.autoneg) {
/*
* Setup autoneg and flow control advertisement and perform
* autonegotiation.
*/
ret_val = e1000_copper_link_autoneg(hw);
if (ret_val)
return ret_val;
} else {
/*
* PHY will be set to 10H, 10F, 100H or 100F
* depending on user settings.
*/
e_dbg("Forcing Speed and Duplex\n");
ret_val = e1000_phy_force_speed_duplex(hw);
if (ret_val) {
e_dbg("Error Forcing Speed and Duplex\n");
return ret_val;
}
}
/*
* Check link status. Wait up to 100 microseconds for link to become
* valid.
*/
ret_val = e1000e_phy_has_link_generic(hw,
COPPER_LINK_UP_LIMIT,
10,
&link);
if (ret_val)
return ret_val;
if (link) {
e_dbg("Valid link established!!!\n");
e1000e_config_collision_dist(hw);
ret_val = e1000e_config_fc_after_link_up(hw);
} else {
e_dbg("Unable to establish link!!!\n");
}
return ret_val;
}
/**
* e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
* @hw: pointer to the HW structure
*
* Calls the PHY setup function to force speed and duplex. Clears the
* auto-crossover to force MDI manually. Waits for link and returns
* successful if link up is successful, else -E1000_ERR_PHY (-2).
**/
s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 phy_data;
bool link;
ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
if (ret_val)
return ret_val;
e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
if (ret_val)
return ret_val;
/*
* Clear Auto-Crossover to force MDI manually. IGP requires MDI
* forced whenever speed and duplex are forced.
*/
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
if (ret_val)
return ret_val;
phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
if (ret_val)
return ret_val;
e_dbg("IGP PSCR: %X\n", phy_data);
udelay(1);
if (phy->autoneg_wait_to_complete) {
e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
ret_val = e1000e_phy_has_link_generic(hw,
PHY_FORCE_LIMIT,
100000,
&link);
if (ret_val)
return ret_val;
if (!link)
e_dbg("Link taking longer than expected.\n");
/* Try once more */
ret_val = e1000e_phy_has_link_generic(hw,
PHY_FORCE_LIMIT,
100000,
&link);
if (ret_val)
return ret_val;
}
return ret_val;
}
/**
* e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
* @hw: pointer to the HW structure
*
* Calls the PHY setup function to force speed and duplex. Clears the
* auto-crossover to force MDI manually. Resets the PHY to commit the
* changes. If time expires while waiting for link up, we reset the DSP.
* After reset, TX_CLK and CRS on Tx must be set. Return successful upon
* successful completion, else return corresponding error code.
**/
s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 phy_data;
bool link;
/*
* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
* forced whenever speed and duplex are forced.
*/
ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
if (ret_val)
return ret_val;
phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
if (ret_val)
return ret_val;
e_dbg("M88E1000 PSCR: %X\n", phy_data);
ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
if (ret_val)
return ret_val;
e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
if (ret_val)
return ret_val;
/* Reset the phy to commit changes. */
ret_val = e1000e_commit_phy(hw);
if (ret_val)
return ret_val;
if (phy->autoneg_wait_to_complete) {
e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
100000, &link);
if (ret_val)
return ret_val;
if (!link) {
if (hw->phy.type != e1000_phy_m88) {
e_dbg("Link taking longer than expected.\n");
} else {
/*
* We didn't get link.
* Reset the DSP and cross our fingers.
*/
ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
0x001d);
if (ret_val)
return ret_val;
ret_val = e1000e_phy_reset_dsp(hw);
if (ret_val)
return ret_val;
}
}
/* Try once more */
ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
100000, &link);
if (ret_val)
return ret_val;
}
if (hw->phy.type != e1000_phy_m88)
return 0;
ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
if (ret_val)
return ret_val;
/*
* Resetting the phy means we need to re-force TX_CLK in the
* Extended PHY Specific Control Register to 25MHz clock from
* the reset value of 2.5MHz.
*/
phy_data |= M88E1000_EPSCR_TX_CLK_25;
ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
if (ret_val)
return ret_val;
/*
* In addition, we must re-enable CRS on Tx for both half and full
* duplex.
*/
ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
if (ret_val)
return ret_val;
phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
return ret_val;
}
/**
* e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
* @hw: pointer to the HW structure
*
* Forces the speed and duplex settings of the PHY.
* This is a function pointer entry point only called by
* PHY setup routines.
**/
s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 data;
bool link;
ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
if (ret_val)
goto out;
e1000e_phy_force_speed_duplex_setup(hw, &data);
ret_val = e1e_wphy(hw, PHY_CONTROL, data);
if (ret_val)
goto out;
/* Disable MDI-X support for 10/100 */
ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
if (ret_val)
goto out;
data &= ~IFE_PMC_AUTO_MDIX;
data &= ~IFE_PMC_FORCE_MDIX;
ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
if (ret_val)
goto out;
e_dbg("IFE PMC: %X\n", data);
udelay(1);
if (phy->autoneg_wait_to_complete) {
e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
ret_val = e1000e_phy_has_link_generic(hw,
PHY_FORCE_LIMIT,
100000,
&link);
if (ret_val)
goto out;
if (!link)
e_dbg("Link taking longer than expected.\n");
/* Try once more */
ret_val = e1000e_phy_has_link_generic(hw,
PHY_FORCE_LIMIT,
100000,
&link);
if (ret_val)
goto out;
}
out:
return ret_val;
}
/**
* e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
* @hw: pointer to the HW structure
* @phy_ctrl: pointer to current value of PHY_CONTROL
*
* Forces speed and duplex on the PHY by doing the following: disable flow
* control, force speed/duplex on the MAC, disable auto speed detection,
* disable auto-negotiation, configure duplex, configure speed, configure
* the collision distance, write configuration to CTRL register. The
* caller must write to the PHY_CONTROL register for these settings to
* take affect.
**/
void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
{
struct e1000_mac_info *mac = &hw->mac;
u32 ctrl;
/* Turn off flow control when forcing speed/duplex */
hw->fc.current_mode = e1000_fc_none;
/* Force speed/duplex on the mac */
ctrl = er32(CTRL);
ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
ctrl &= ~E1000_CTRL_SPD_SEL;
/* Disable Auto Speed Detection */
ctrl &= ~E1000_CTRL_ASDE;
/* Disable autoneg on the phy */
*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
/* Forcing Full or Half Duplex? */
if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
ctrl &= ~E1000_CTRL_FD;
*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
e_dbg("Half Duplex\n");
} else {
ctrl |= E1000_CTRL_FD;
*phy_ctrl |= MII_CR_FULL_DUPLEX;
e_dbg("Full Duplex\n");
}
/* Forcing 10mb or 100mb? */
if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
ctrl |= E1000_CTRL_SPD_100;
*phy_ctrl |= MII_CR_SPEED_100;
*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
e_dbg("Forcing 100mb\n");
} else {
ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
*phy_ctrl |= MII_CR_SPEED_10;
*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
e_dbg("Forcing 10mb\n");
}
e1000e_config_collision_dist(hw);
ew32(CTRL, ctrl);
}
/**
* e1000e_set_d3_lplu_state - Sets low power link up state for D3
* @hw: pointer to the HW structure
* @active: boolean used to enable/disable lplu
*
* Success returns 0, Failure returns 1
*
* The low power link up (lplu) state is set to the power management level D3
* and SmartSpeed is disabled when active is true, else clear lplu for D3
* and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
* is used during Dx states where the power conservation is most important.
* During driver activity, SmartSpeed should be enabled so performance is
* maintained.
**/
s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 data;
ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
if (ret_val)
return ret_val;
if (!active) {
data &= ~IGP02E1000_PM_D3_LPLU;
ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
if (ret_val)
return ret_val;
/*
* LPLU and SmartSpeed are mutually exclusive. LPLU is used
* during Dx states where the power conservation is most
* important. During driver activity we should enable
* SmartSpeed, so performance is maintained.
*/
if (phy->smart_speed == e1000_smart_speed_on) {
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
&data);
if (ret_val)
return ret_val;
data |= IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
data);
if (ret_val)
return ret_val;
} else if (phy->smart_speed == e1000_smart_speed_off) {
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
&data);
if (ret_val)
return ret_val;
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
data);
if (ret_val)
return ret_val;
}
} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
(phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
(phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
data |= IGP02E1000_PM_D3_LPLU;
ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
if (ret_val)
return ret_val;
/* When LPLU is enabled, we should disable SmartSpeed */
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
if (ret_val)
return ret_val;
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
}
return ret_val;
}
/**
* e1000e_check_downshift - Checks whether a downshift in speed occurred
* @hw: pointer to the HW structure
*
* Success returns 0, Failure returns 1
*
* A downshift is detected by querying the PHY link health.
**/
s32 e1000e_check_downshift(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 phy_data, offset, mask;
switch (phy->type) {
case e1000_phy_m88:
case e1000_phy_gg82563:
case e1000_phy_bm:
case e1000_phy_82578:
offset = M88E1000_PHY_SPEC_STATUS;
mask = M88E1000_PSSR_DOWNSHIFT;
break;
case e1000_phy_igp_2:
case e1000_phy_igp_3:
offset = IGP01E1000_PHY_LINK_HEALTH;
mask = IGP01E1000_PLHR_SS_DOWNGRADE;
break;
default:
/* speed downshift not supported */
phy->speed_downgraded = false;
return 0;
}
ret_val = e1e_rphy(hw, offset, &phy_data);
if (!ret_val)
phy->speed_downgraded = (phy_data & mask);
return ret_val;
}
/**
* e1000_check_polarity_m88 - Checks the polarity.
* @hw: pointer to the HW structure
*
* Success returns 0, Failure returns -E1000_ERR_PHY (-2)
*
* Polarity is determined based on the PHY specific status register.
**/
s32 e1000_check_polarity_m88(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 data;
ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
if (!ret_val)
phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
? e1000_rev_polarity_reversed
: e1000_rev_polarity_normal;
return ret_val;
}
/**
* e1000_check_polarity_igp - Checks the polarity.
* @hw: pointer to the HW structure
*
* Success returns 0, Failure returns -E1000_ERR_PHY (-2)
*
* Polarity is determined based on the PHY port status register, and the
* current speed (since there is no polarity at 100Mbps).
**/
s32 e1000_check_polarity_igp(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 data, offset, mask;
/*
* Polarity is determined based on the speed of
* our connection.
*/
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
if (ret_val)
return ret_val;
if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
IGP01E1000_PSSR_SPEED_1000MBPS) {
offset = IGP01E1000_PHY_PCS_INIT_REG;
mask = IGP01E1000_PHY_POLARITY_MASK;
} else {
/*
* This really only applies to 10Mbps since
* there is no polarity for 100Mbps (always 0).
*/
offset = IGP01E1000_PHY_PORT_STATUS;
mask = IGP01E1000_PSSR_POLARITY_REVERSED;
}
ret_val = e1e_rphy(hw, offset, &data);
if (!ret_val)
phy->cable_polarity = (data & mask)
? e1000_rev_polarity_reversed
: e1000_rev_polarity_normal;
return ret_val;
}
/**
* e1000_check_polarity_ife - Check cable polarity for IFE PHY
* @hw: pointer to the HW structure
*
* Polarity is determined on the polarity reversal feature being enabled.
**/
s32 e1000_check_polarity_ife(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 phy_data, offset, mask;
/*
* Polarity is determined based on the reversal feature being enabled.
*/
if (phy->polarity_correction) {
offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
mask = IFE_PESC_POLARITY_REVERSED;
} else {
offset = IFE_PHY_SPECIAL_CONTROL;
mask = IFE_PSC_FORCE_POLARITY;
}
ret_val = e1e_rphy(hw, offset, &phy_data);
if (!ret_val)
phy->cable_polarity = (phy_data & mask)
? e1000_rev_polarity_reversed
: e1000_rev_polarity_normal;
return ret_val;
}
/**
* e1000_wait_autoneg - Wait for auto-neg completion
* @hw: pointer to the HW structure
*
* Waits for auto-negotiation to complete or for the auto-negotiation time
* limit to expire, which ever happens first.
**/
static s32 e1000_wait_autoneg(struct e1000_hw *hw)
{
s32 ret_val = 0;
u16 i, phy_status;
/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
if (ret_val)
break;
ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
if (ret_val)
break;
if (phy_status & MII_SR_AUTONEG_COMPLETE)
break;
msleep(100);
}
/*
* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
* has completed.
*/
return ret_val;
}
/**
* e1000e_phy_has_link_generic - Polls PHY for link
* @hw: pointer to the HW structure
* @iterations: number of times to poll for link
* @usec_interval: delay between polling attempts
* @success: pointer to whether polling was successful or not
*
* Polls the PHY status register for link, 'iterations' number of times.
**/
s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
u32 usec_interval, bool *success)
{
s32 ret_val = 0;
u16 i, phy_status;
for (i = 0; i < iterations; i++) {
/*
* Some PHYs require the PHY_STATUS register to be read
* twice due to the link bit being sticky. No harm doing
* it across the board.
*/
ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
if (ret_val)
/*
* If the first read fails, another entity may have
* ownership of the resources, wait and try again to
* see if they have relinquished the resources yet.
*/
udelay(usec_interval);
ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
if (ret_val)
break;
if (phy_status & MII_SR_LINK_STATUS)
break;
if (usec_interval >= 1000)
mdelay(usec_interval/1000);
else
udelay(usec_interval);
}
*success = (i < iterations);
return ret_val;
}
/**
* e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
* @hw: pointer to the HW structure
*
* Reads the PHY specific status register to retrieve the cable length
* information. The cable length is determined by averaging the minimum and
* maximum values to get the "average" cable length. The m88 PHY has four
* possible cable length values, which are:
* Register Value Cable Length
* 0 < 50 meters
* 1 50 - 80 meters
* 2 80 - 110 meters
* 3 110 - 140 meters
* 4 > 140 meters
**/
s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 phy_data, index;
ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
if (ret_val)
goto out;
index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
M88E1000_PSSR_CABLE_LENGTH_SHIFT;
if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
ret_val = -E1000_ERR_PHY;
goto out;
}
phy->min_cable_length = e1000_m88_cable_length_table[index];
phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
out:
return ret_val;
}
/**
* e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
* @hw: pointer to the HW structure
*
* The automatic gain control (agc) normalizes the amplitude of the
* received signal, adjusting for the attenuation produced by the
* cable. By reading the AGC registers, which represent the
* combination of coarse and fine gain value, the value can be put
* into a lookup table to obtain the approximate cable length
* for each channel.
**/
s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 phy_data, i, agc_value = 0;
u16 cur_agc_index, max_agc_index = 0;
u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
IGP02E1000_PHY_AGC_A,
IGP02E1000_PHY_AGC_B,
IGP02E1000_PHY_AGC_C,
IGP02E1000_PHY_AGC_D
};
/* Read the AGC registers for all channels */
for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
if (ret_val)
return ret_val;
/*
* Getting bits 15:9, which represent the combination of
* coarse and fine gain values. The result is a number
* that can be put into the lookup table to obtain the
* approximate cable length.
*/
cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
IGP02E1000_AGC_LENGTH_MASK;
/* Array index bound check. */
if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
(cur_agc_index == 0))
return -E1000_ERR_PHY;
/* Remove min & max AGC values from calculation. */
if (e1000_igp_2_cable_length_table[min_agc_index] >
e1000_igp_2_cable_length_table[cur_agc_index])
min_agc_index = cur_agc_index;
if (e1000_igp_2_cable_length_table[max_agc_index] <
e1000_igp_2_cable_length_table[cur_agc_index])
max_agc_index = cur_agc_index;
agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
}
agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
e1000_igp_2_cable_length_table[max_agc_index]);
agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
/* Calculate cable length with the error range of +/- 10 meters. */
phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
(agc_value - IGP02E1000_AGC_RANGE) : 0;
phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
return ret_val;
}
/**
* e1000e_get_phy_info_m88 - Retrieve PHY information
* @hw: pointer to the HW structure
*
* Valid for only copper links. Read the PHY status register (sticky read)
* to verify that link is up. Read the PHY special control register to
* determine the polarity and 10base-T extended distance. Read the PHY
* special status register to determine MDI/MDIx and current speed. If
* speed is 1000, then determine cable length, local and remote receiver.
**/
s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 phy_data;
bool link;
if (phy->media_type != e1000_media_type_copper) {
e_dbg("Phy info is only valid for copper media\n");
return -E1000_ERR_CONFIG;
}
ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
if (ret_val)
return ret_val;
if (!link) {
e_dbg("Phy info is only valid if link is up\n");
return -E1000_ERR_CONFIG;
}
ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
if (ret_val)
return ret_val;
phy->polarity_correction = (phy_data &
M88E1000_PSCR_POLARITY_REVERSAL);
ret_val = e1000_check_polarity_m88(hw);
if (ret_val)
return ret_val;
ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
if (ret_val)
return ret_val;
phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX);
if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
ret_val = e1000_get_cable_length(hw);
if (ret_val)
return ret_val;
ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
if (ret_val)
return ret_val;
phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
? e1000_1000t_rx_status_ok
: e1000_1000t_rx_status_not_ok;
phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
? e1000_1000t_rx_status_ok
: e1000_1000t_rx_status_not_ok;
} else {
/* Set values to "undefined" */
phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
phy->local_rx = e1000_1000t_rx_status_undefined;
phy->remote_rx = e1000_1000t_rx_status_undefined;
}
return ret_val;
}
/**
* e1000e_get_phy_info_igp - Retrieve igp PHY information
* @hw: pointer to the HW structure
*
* Read PHY status to determine if link is up. If link is up, then
* set/determine 10base-T extended distance and polarity correction. Read
* PHY port status to determine MDI/MDIx and speed. Based on the speed,
* determine on the cable length, local and remote receiver.
**/
s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 data;
bool link;
ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
if (ret_val)
return ret_val;
if (!link) {
e_dbg("Phy info is only valid if link is up\n");
return -E1000_ERR_CONFIG;
}
phy->polarity_correction = true;
ret_val = e1000_check_polarity_igp(hw);
if (ret_val)
return ret_val;
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
if (ret_val)
return ret_val;
phy->is_mdix = (data & IGP01E1000_PSSR_MDIX);
if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
IGP01E1000_PSSR_SPEED_1000MBPS) {
ret_val = e1000_get_cable_length(hw);
if (ret_val)
return ret_val;
ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
if (ret_val)
return ret_val;
phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
? e1000_1000t_rx_status_ok
: e1000_1000t_rx_status_not_ok;
phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
? e1000_1000t_rx_status_ok
: e1000_1000t_rx_status_not_ok;
} else {
phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
phy->local_rx = e1000_1000t_rx_status_undefined;
phy->remote_rx = e1000_1000t_rx_status_undefined;
}
return ret_val;
}
/**
* e1000_get_phy_info_ife - Retrieves various IFE PHY states
* @hw: pointer to the HW structure
*
* Populates "phy" structure with various feature states.
**/
s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 data;
bool link;
ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
if (ret_val)
goto out;
if (!link) {
e_dbg("Phy info is only valid if link is up\n");
ret_val = -E1000_ERR_CONFIG;
goto out;
}
ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
if (ret_val)
goto out;
phy->polarity_correction = (data & IFE_PSC_AUTO_POLARITY_DISABLE)
? false : true;
if (phy->polarity_correction) {
ret_val = e1000_check_polarity_ife(hw);
if (ret_val)
goto out;
} else {
/* Polarity is forced */
phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
? e1000_rev_polarity_reversed
: e1000_rev_polarity_normal;
}
ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
if (ret_val)
goto out;
phy->is_mdix = (data & IFE_PMC_MDIX_STATUS) ? true : false;
/* The following parameters are undefined for 10/100 operation. */
phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
phy->local_rx = e1000_1000t_rx_status_undefined;
phy->remote_rx = e1000_1000t_rx_status_undefined;
out:
return ret_val;
}
/**
* e1000e_phy_sw_reset - PHY software reset
* @hw: pointer to the HW structure
*
* Does a software reset of the PHY by reading the PHY control register and
* setting/write the control register reset bit to the PHY.
**/
s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
{
s32 ret_val;
u16 phy_ctrl;
ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
if (ret_val)
return ret_val;
phy_ctrl |= MII_CR_RESET;
ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
if (ret_val)
return ret_val;
udelay(1);
return ret_val;
}
/**
* e1000e_phy_hw_reset_generic - PHY hardware reset
* @hw: pointer to the HW structure
*
* Verify the reset block is not blocking us from resetting. Acquire
* semaphore (if necessary) and read/set/write the device control reset
* bit in the PHY. Wait the appropriate delay time for the device to
* reset and release the semaphore (if necessary).
**/
s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u32 ctrl;
ret_val = e1000_check_reset_block(hw);
if (ret_val)
return 0;
ret_val = phy->ops.acquire(hw);
if (ret_val)
return ret_val;
ctrl = er32(CTRL);
ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
e1e_flush();
udelay(phy->reset_delay_us);
ew32(CTRL, ctrl);
e1e_flush();
udelay(150);
phy->ops.release(hw);
return e1000_get_phy_cfg_done(hw);
}
/**
* e1000e_get_cfg_done - Generic configuration done
* @hw: pointer to the HW structure
*
* Generic function to wait 10 milli-seconds for configuration to complete
* and return success.
**/
s32 e1000e_get_cfg_done(struct e1000_hw *hw)
{
mdelay(10);
return 0;
}
/**
* e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
* @hw: pointer to the HW structure
*
* Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
**/
s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
{
e_dbg("Running IGP 3 PHY init script\n");
/* PHY init IGP 3 */
/* Enable rise/fall, 10-mode work in class-A */
e1e_wphy(hw, 0x2F5B, 0x9018);
/* Remove all caps from Replica path filter */
e1e_wphy(hw, 0x2F52, 0x0000);
/* Bias trimming for ADC, AFE and Driver (Default) */
e1e_wphy(hw, 0x2FB1, 0x8B24);
/* Increase Hybrid poly bias */
e1e_wphy(hw, 0x2FB2, 0xF8F0);
/* Add 4% to Tx amplitude in Gig mode */
e1e_wphy(hw, 0x2010, 0x10B0);
/* Disable trimming (TTT) */
e1e_wphy(hw, 0x2011, 0x0000);
/* Poly DC correction to 94.6% + 2% for all channels */
e1e_wphy(hw, 0x20DD, 0x249A);
/* ABS DC correction to 95.9% */
e1e_wphy(hw, 0x20DE, 0x00D3);
/* BG temp curve trim */
e1e_wphy(hw, 0x28B4, 0x04CE);
/* Increasing ADC OPAMP stage 1 currents to max */
e1e_wphy(hw, 0x2F70, 0x29E4);
/* Force 1000 ( required for enabling PHY regs configuration) */
e1e_wphy(hw, 0x0000, 0x0140);
/* Set upd_freq to 6 */
e1e_wphy(hw, 0x1F30, 0x1606);
/* Disable NPDFE */
e1e_wphy(hw, 0x1F31, 0xB814);
/* Disable adaptive fixed FFE (Default) */
e1e_wphy(hw, 0x1F35, 0x002A);
/* Enable FFE hysteresis */
e1e_wphy(hw, 0x1F3E, 0x0067);
/* Fixed FFE for short cable lengths */
e1e_wphy(hw, 0x1F54, 0x0065);
/* Fixed FFE for medium cable lengths */
e1e_wphy(hw, 0x1F55, 0x002A);
/* Fixed FFE for long cable lengths */
e1e_wphy(hw, 0x1F56, 0x002A);
/* Enable Adaptive Clip Threshold */
e1e_wphy(hw, 0x1F72, 0x3FB0);
/* AHT reset limit to 1 */
e1e_wphy(hw, 0x1F76, 0xC0FF);
/* Set AHT master delay to 127 msec */
e1e_wphy(hw, 0x1F77, 0x1DEC);
/* Set scan bits for AHT */
e1e_wphy(hw, 0x1F78, 0xF9EF);
/* Set AHT Preset bits */
e1e_wphy(hw, 0x1F79, 0x0210);
/* Change integ_factor of channel A to 3 */
e1e_wphy(hw, 0x1895, 0x0003);
/* Change prop_factor of channels BCD to 8 */
e1e_wphy(hw, 0x1796, 0x0008);
/* Change cg_icount + enable integbp for channels BCD */
e1e_wphy(hw, 0x1798, 0xD008);
/*
* Change cg_icount + enable integbp + change prop_factor_master
* to 8 for channel A
*/
e1e_wphy(hw, 0x1898, 0xD918);
/* Disable AHT in Slave mode on channel A */
e1e_wphy(hw, 0x187A, 0x0800);
/*
* Enable LPLU and disable AN to 1000 in non-D0a states,
* Enable SPD+B2B
*/
e1e_wphy(hw, 0x0019, 0x008D);
/* Enable restart AN on an1000_dis change */
e1e_wphy(hw, 0x001B, 0x2080);
/* Enable wh_fifo read clock in 10/100 modes */
e1e_wphy(hw, 0x0014, 0x0045);
/* Restart AN, Speed selection is 1000 */
e1e_wphy(hw, 0x0000, 0x1340);
return 0;
}
/* Internal function pointers */
/**
* e1000_get_phy_cfg_done - Generic PHY configuration done
* @hw: pointer to the HW structure
*
* Return success if silicon family did not implement a family specific
* get_cfg_done function.
**/
static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
{
if (hw->phy.ops.get_cfg_done)
return hw->phy.ops.get_cfg_done(hw);
return 0;
}
/**
* e1000_phy_force_speed_duplex - Generic force PHY speed/duplex
* @hw: pointer to the HW structure
*
* When the silicon family has not implemented a forced speed/duplex
* function for the PHY, simply return 0.
**/
static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
{
if (hw->phy.ops.force_speed_duplex)
return hw->phy.ops.force_speed_duplex(hw);
return 0;
}
/**
* e1000e_get_phy_type_from_id - Get PHY type from id
* @phy_id: phy_id read from the phy
*
* Returns the phy type from the id.
**/
enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
{
enum e1000_phy_type phy_type = e1000_phy_unknown;
switch (phy_id) {
case M88E1000_I_PHY_ID:
case M88E1000_E_PHY_ID:
case M88E1111_I_PHY_ID:
case M88E1011_I_PHY_ID:
phy_type = e1000_phy_m88;
break;
case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
phy_type = e1000_phy_igp_2;
break;
case GG82563_E_PHY_ID:
phy_type = e1000_phy_gg82563;
break;
case IGP03E1000_E_PHY_ID:
phy_type = e1000_phy_igp_3;
break;
case IFE_E_PHY_ID:
case IFE_PLUS_E_PHY_ID:
case IFE_C_E_PHY_ID:
phy_type = e1000_phy_ife;
break;
case BME1000_E_PHY_ID:
case BME1000_E_PHY_ID_R2:
phy_type = e1000_phy_bm;
break;
case I82578_E_PHY_ID:
phy_type = e1000_phy_82578;
break;
case I82577_E_PHY_ID:
phy_type = e1000_phy_82577;
break;
case I82579_E_PHY_ID:
phy_type = e1000_phy_82579;
break;
default:
phy_type = e1000_phy_unknown;
break;
}
return phy_type;
}
/**
* e1000e_determine_phy_address - Determines PHY address.
* @hw: pointer to the HW structure
*
* This uses a trial and error method to loop through possible PHY
* addresses. It tests each by reading the PHY ID registers and
* checking for a match.
**/
s32 e1000e_determine_phy_address(struct e1000_hw *hw)
{
s32 ret_val = -E1000_ERR_PHY_TYPE;
u32 phy_addr = 0;
u32 i;
enum e1000_phy_type phy_type = e1000_phy_unknown;
hw->phy.id = phy_type;
for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
hw->phy.addr = phy_addr;
i = 0;
do {
e1000e_get_phy_id(hw);
phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
/*
* If phy_type is valid, break - we found our
* PHY address
*/
if (phy_type != e1000_phy_unknown) {
ret_val = 0;
goto out;
}
usleep_range(1000, 2000);
i++;
} while (i < 10);
}
out:
return ret_val;
}
/**
* e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
* @page: page to access
*
* Returns the phy address for the page requested.
**/
static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
{
u32 phy_addr = 2;
if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
phy_addr = 1;
return phy_addr;
}
/**
* e1000e_write_phy_reg_bm - Write BM PHY register
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write at register offset
*
* Acquires semaphore, if necessary, then writes the data to PHY register
* at the offset. Release any acquired semaphores before exiting.
**/
s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
{
s32 ret_val;
u32 page = offset >> IGP_PAGE_SHIFT;
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return ret_val;
/* Page 800 works differently than the rest so it has its own func */
if (page == BM_WUC_PAGE) {
ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
false, false);
goto out;
}
hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
if (offset > MAX_PHY_MULTI_PAGE_REG) {
u32 page_shift, page_select;
/*
* Page select is register 31 for phy address 1 and 22 for
* phy address 2 and 3. Page select is shifted only for
* phy address 1.
*/
if (hw->phy.addr == 1) {
page_shift = IGP_PAGE_SHIFT;
page_select = IGP01E1000_PHY_PAGE_SELECT;
} else {
page_shift = 0;
page_select = BM_PHY_PAGE_SELECT;
}
/* Page is shifted left, PHY expects (page x 32) */
ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
(page << page_shift));
if (ret_val)
goto out;
}
ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
data);
out:
hw->phy.ops.release(hw);
return ret_val;
}
/**
* e1000e_read_phy_reg_bm - Read BM PHY register
* @hw: pointer to the HW structure
* @offset: register offset to be read
* @data: pointer to the read data
*
* Acquires semaphore, if necessary, then reads the PHY register at offset
* and storing the retrieved information in data. Release any acquired
* semaphores before exiting.
**/
s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
{
s32 ret_val;
u32 page = offset >> IGP_PAGE_SHIFT;
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return ret_val;
/* Page 800 works differently than the rest so it has its own func */
if (page == BM_WUC_PAGE) {
ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
true, false);
goto out;
}
hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
if (offset > MAX_PHY_MULTI_PAGE_REG) {
u32 page_shift, page_select;
/*
* Page select is register 31 for phy address 1 and 22 for
* phy address 2 and 3. Page select is shifted only for
* phy address 1.
*/
if (hw->phy.addr == 1) {
page_shift = IGP_PAGE_SHIFT;
page_select = IGP01E1000_PHY_PAGE_SELECT;
} else {
page_shift = 0;
page_select = BM_PHY_PAGE_SELECT;
}
/* Page is shifted left, PHY expects (page x 32) */
ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
(page << page_shift));
if (ret_val)
goto out;
}
ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
data);
out:
hw->phy.ops.release(hw);
return ret_val;
}
/**
* e1000e_read_phy_reg_bm2 - Read BM PHY register
* @hw: pointer to the HW structure
* @offset: register offset to be read
* @data: pointer to the read data
*
* Acquires semaphore, if necessary, then reads the PHY register at offset
* and storing the retrieved information in data. Release any acquired
* semaphores before exiting.
**/
s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
{
s32 ret_val;
u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return ret_val;
/* Page 800 works differently than the rest so it has its own func */
if (page == BM_WUC_PAGE) {
ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
true, false);
goto out;
}
hw->phy.addr = 1;
if (offset > MAX_PHY_MULTI_PAGE_REG) {
/* Page is shifted left, PHY expects (page x 32) */
ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
page);
if (ret_val)
goto out;
}
ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
data);
out:
hw->phy.ops.release(hw);
return ret_val;
}
/**
* e1000e_write_phy_reg_bm2 - Write BM PHY register
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write at register offset
*
* Acquires semaphore, if necessary, then writes the data to PHY register
* at the offset. Release any acquired semaphores before exiting.
**/
s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
{
s32 ret_val;
u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return ret_val;
/* Page 800 works differently than the rest so it has its own func */
if (page == BM_WUC_PAGE) {
ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
false, false);
goto out;
}
hw->phy.addr = 1;
if (offset > MAX_PHY_MULTI_PAGE_REG) {
/* Page is shifted left, PHY expects (page x 32) */
ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
page);
if (ret_val)
goto out;
}
ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
data);
out:
hw->phy.ops.release(hw);
return ret_val;
}
/**
* e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
* @hw: pointer to the HW structure
* @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
*
* Assumes semaphore already acquired and phy_reg points to a valid memory
* address to store contents of the BM_WUC_ENABLE_REG register.
**/
s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
{
s32 ret_val;
u16 temp;
/* All page select, port ctrl and wakeup registers use phy address 1 */
hw->phy.addr = 1;
/* Select Port Control Registers page */
ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
if (ret_val) {
e_dbg("Could not set Port Control page\n");
goto out;
}
ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
if (ret_val) {
e_dbg("Could not read PHY register %d.%d\n",
BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
goto out;
}
/*
* Enable both PHY wakeup mode and Wakeup register page writes.
* Prevent a power state change by disabling ME and Host PHY wakeup.
*/
temp = *phy_reg;
temp |= BM_WUC_ENABLE_BIT;
temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
if (ret_val) {
e_dbg("Could not write PHY register %d.%d\n",
BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
goto out;
}
/* Select Host Wakeup Registers page */
ret_val = e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
/* caller now able to write registers on the Wakeup registers page */
out:
return ret_val;
}
/**
* e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
* @hw: pointer to the HW structure
* @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
*
* Restore BM_WUC_ENABLE_REG to its original value.
*
* Assumes semaphore already acquired and *phy_reg is the contents of the
* BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
* caller.
**/
s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
{
s32 ret_val = 0;
/* Select Port Control Registers page */
ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
if (ret_val) {
e_dbg("Could not set Port Control page\n");
goto out;
}
/* Restore 769.17 to its original value */
ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
if (ret_val)
e_dbg("Could not restore PHY register %d.%d\n",
BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
out:
return ret_val;
}
/**
* e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
* @hw: pointer to the HW structure
* @offset: register offset to be read or written
* @data: pointer to the data to read or write
* @read: determines if operation is read or write
* @page_set: BM_WUC_PAGE already set and access enabled
*
* Read the PHY register at offset and store the retrieved information in
* data, or write data to PHY register at offset. Note the procedure to
* access the PHY wakeup registers is different than reading the other PHY
* registers. It works as such:
* 1) Set 769.17.2 (page 769, register 17, bit 2) = 1
* 2) Set page to 800 for host (801 if we were manageability)
* 3) Write the address using the address opcode (0x11)
* 4) Read or write the data using the data opcode (0x12)
* 5) Restore 769.17.2 to its original value
*
* Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
* step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
*
* Assumes semaphore is already acquired. When page_set==true, assumes
* the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
* is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
**/
static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
u16 *data, bool read, bool page_set)
{
s32 ret_val;
u16 reg = BM_PHY_REG_NUM(offset);
u16 page = BM_PHY_REG_PAGE(offset);
u16 phy_reg = 0;
/* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
if ((hw->mac.type == e1000_pchlan) &&
(!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
e_dbg("Attempting to access page %d while gig enabled.\n",
page);
if (!page_set) {
/* Enable access to PHY wakeup registers */
ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
if (ret_val) {
e_dbg("Could not enable PHY wakeup reg access\n");
goto out;
}
}
e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg);
/* Write the Wakeup register page offset value using opcode 0x11 */
ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
if (ret_val) {
e_dbg("Could not write address opcode to page %d\n", page);
goto out;
}
if (read) {
/* Read the Wakeup register page value using opcode 0x12 */
ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
data);
} else {
/* Write the Wakeup register page value using opcode 0x12 */
ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
*data);
}
if (ret_val) {
e_dbg("Could not access PHY reg %d.%d\n", page, reg);
goto out;
}
if (!page_set)
ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
out:
return ret_val;
}
/**
* e1000_power_up_phy_copper - Restore copper link in case of PHY power down
* @hw: pointer to the HW structure
*
* In the case of a PHY power down to save power, or to turn off link during a
* driver unload, or wake on lan is not enabled, restore the link to previous
* settings.
**/
void e1000_power_up_phy_copper(struct e1000_hw *hw)
{
u16 mii_reg = 0;
/* The PHY will retain its settings across a power down/up cycle */
e1e_rphy(hw, PHY_CONTROL, &mii_reg);
mii_reg &= ~MII_CR_POWER_DOWN;
e1e_wphy(hw, PHY_CONTROL, mii_reg);
}
/**
* e1000_power_down_phy_copper - Restore copper link in case of PHY power down
* @hw: pointer to the HW structure
*
* In the case of a PHY power down to save power, or to turn off link during a
* driver unload, or wake on lan is not enabled, restore the link to previous
* settings.
**/
void e1000_power_down_phy_copper(struct e1000_hw *hw)
{
u16 mii_reg = 0;
/* The PHY will retain its settings across a power down/up cycle */
e1e_rphy(hw, PHY_CONTROL, &mii_reg);
mii_reg |= MII_CR_POWER_DOWN;
e1e_wphy(hw, PHY_CONTROL, mii_reg);
usleep_range(1000, 2000);
}
/**
* e1000e_commit_phy - Soft PHY reset
* @hw: pointer to the HW structure
*
* Performs a soft PHY reset on those that apply. This is a function pointer
* entry point called by drivers.
**/
s32 e1000e_commit_phy(struct e1000_hw *hw)
{
if (hw->phy.ops.commit)
return hw->phy.ops.commit(hw);
return 0;
}
/**
* e1000_set_d0_lplu_state - Sets low power link up state for D0
* @hw: pointer to the HW structure
* @active: boolean used to enable/disable lplu
*
* Success returns 0, Failure returns 1
*
* The low power link up (lplu) state is set to the power management level D0
* and SmartSpeed is disabled when active is true, else clear lplu for D0
* and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
* is used during Dx states where the power conservation is most important.
* During driver activity, SmartSpeed should be enabled so performance is
* maintained. This is a function pointer entry point called by drivers.
**/
static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
{
if (hw->phy.ops.set_d0_lplu_state)
return hw->phy.ops.set_d0_lplu_state(hw, active);
return 0;
}
/**
* __e1000_read_phy_reg_hv - Read HV PHY register
* @hw: pointer to the HW structure
* @offset: register offset to be read
* @data: pointer to the read data
* @locked: semaphore has already been acquired or not
*
* Acquires semaphore, if necessary, then reads the PHY register at offset
* and stores the retrieved information in data. Release any acquired
* semaphore before exiting.
**/
static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
bool locked, bool page_set)
{
s32 ret_val;
u16 page = BM_PHY_REG_PAGE(offset);
u16 reg = BM_PHY_REG_NUM(offset);
u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
if (!locked) {
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return ret_val;
}
/* Page 800 works differently than the rest so it has its own func */
if (page == BM_WUC_PAGE) {
ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
true, page_set);
goto out;
}
if (page > 0 && page < HV_INTC_FC_PAGE_START) {
ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
data, true);
goto out;
}
if (!page_set) {
if (page == HV_INTC_FC_PAGE_START)
page = 0;
if (reg > MAX_PHY_MULTI_PAGE_REG) {
/* Page is shifted left, PHY expects (page x 32) */
ret_val = e1000_set_page_igp(hw,
(page << IGP_PAGE_SHIFT));
hw->phy.addr = phy_addr;
if (ret_val)
goto out;
}
}
e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
page << IGP_PAGE_SHIFT, reg);
ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
data);
out:
if (!locked)
hw->phy.ops.release(hw);
return ret_val;
}
/**
* e1000_read_phy_reg_hv - Read HV PHY register
* @hw: pointer to the HW structure
* @offset: register offset to be read
* @data: pointer to the read data
*
* Acquires semaphore then reads the PHY register at offset and stores
* the retrieved information in data. Release the acquired semaphore
* before exiting.
**/
s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
{
return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
}
/**
* e1000_read_phy_reg_hv_locked - Read HV PHY register
* @hw: pointer to the HW structure
* @offset: register offset to be read
* @data: pointer to the read data
*
* Reads the PHY register at offset and stores the retrieved information
* in data. Assumes semaphore already acquired.
**/
s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
{
return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
}
/**
* e1000_read_phy_reg_page_hv - Read HV PHY register
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write at register offset
*
* Reads the PHY register at offset and stores the retrieved information
* in data. Assumes semaphore already acquired and page already set.
**/
s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
{
return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
}
/**
* __e1000_write_phy_reg_hv - Write HV PHY register
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write at register offset
* @locked: semaphore has already been acquired or not
*
* Acquires semaphore, if necessary, then writes the data to PHY register
* at the offset. Release any acquired semaphores before exiting.
**/
static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
bool locked, bool page_set)
{
s32 ret_val;
u16 page = BM_PHY_REG_PAGE(offset);
u16 reg = BM_PHY_REG_NUM(offset);
u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
if (!locked) {
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return ret_val;
}
/* Page 800 works differently than the rest so it has its own func */
if (page == BM_WUC_PAGE) {
ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
false, page_set);
goto out;
}
if (page > 0 && page < HV_INTC_FC_PAGE_START) {
ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
&data, false);
goto out;
}
if (!page_set) {
if (page == HV_INTC_FC_PAGE_START)
page = 0;
/*
* Workaround MDIO accesses being disabled after entering IEEE
* Power Down (when bit 11 of the PHY Control register is set)
*/
if ((hw->phy.type == e1000_phy_82578) &&
(hw->phy.revision >= 1) &&
(hw->phy.addr == 2) &&
((MAX_PHY_REG_ADDRESS & reg) == 0) && (data & (1 << 11))) {
u16 data2 = 0x7EFF;
ret_val = e1000_access_phy_debug_regs_hv(hw,
(1 << 6) | 0x3,
&data2, false);
if (ret_val)
goto out;
}
if (reg > MAX_PHY_MULTI_PAGE_REG) {
/* Page is shifted left, PHY expects (page x 32) */
ret_val = e1000_set_page_igp(hw,
(page << IGP_PAGE_SHIFT));
hw->phy.addr = phy_addr;
if (ret_val)
goto out;
}
}
e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
page << IGP_PAGE_SHIFT, reg);
ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
data);
out:
if (!locked)
hw->phy.ops.release(hw);
return ret_val;
}
/**
* e1000_write_phy_reg_hv - Write HV PHY register
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write at register offset
*
* Acquires semaphore then writes the data to PHY register at the offset.
* Release the acquired semaphores before exiting.
**/
s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
{
return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
}
/**
* e1000_write_phy_reg_hv_locked - Write HV PHY register
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write at register offset
*
* Writes the data to PHY register at the offset. Assumes semaphore
* already acquired.
**/
s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
{
return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
}
/**
* e1000_write_phy_reg_page_hv - Write HV PHY register
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write at register offset
*
* Writes the data to PHY register at the offset. Assumes semaphore
* already acquired and page already set.
**/
s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
{
return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
}
/**
* e1000_get_phy_addr_for_hv_page - Get PHY address based on page
* @page: page to be accessed
**/
static u32 e1000_get_phy_addr_for_hv_page(u32 page)
{
u32 phy_addr = 2;
if (page >= HV_INTC_FC_PAGE_START)
phy_addr = 1;
return phy_addr;
}
/**
* e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
* @hw: pointer to the HW structure
* @offset: register offset to be read or written
* @data: pointer to the data to be read or written
* @read: determines if operation is read or write
*
* Reads the PHY register at offset and stores the retreived information
* in data. Assumes semaphore already acquired. Note that the procedure
* to access these regs uses the address port and data port to read/write.
* These accesses done with PHY address 2 and without using pages.
**/
static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
u16 *data, bool read)
{
s32 ret_val;
u32 addr_reg = 0;
u32 data_reg = 0;
/* This takes care of the difference with desktop vs mobile phy */
addr_reg = (hw->phy.type == e1000_phy_82578) ?
I82578_ADDR_REG : I82577_ADDR_REG;
data_reg = addr_reg + 1;
/* All operations in this function are phy address 2 */
hw->phy.addr = 2;
/* masking with 0x3F to remove the page from offset */
ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
if (ret_val) {
e_dbg("Could not write the Address Offset port register\n");
goto out;
}
/* Read or write the data value next */
if (read)
ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
else
ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
if (ret_val) {
e_dbg("Could not access the Data port register\n");
goto out;
}
out:
return ret_val;
}
/**
* e1000_link_stall_workaround_hv - Si workaround
* @hw: pointer to the HW structure
*
* This function works around a Si bug where the link partner can get
* a link up indication before the PHY does. If small packets are sent
* by the link partner they can be placed in the packet buffer without
* being properly accounted for by the PHY and will stall preventing
* further packets from being received. The workaround is to clear the
* packet buffer after the PHY detects link up.
**/
s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
{
s32 ret_val = 0;
u16 data;
if (hw->phy.type != e1000_phy_82578)
goto out;
/* Do not apply workaround if in PHY loopback bit 14 set */
e1e_rphy(hw, PHY_CONTROL, &data);
if (data & PHY_CONTROL_LB)
goto out;
/* check if link is up and at 1Gbps */
ret_val = e1e_rphy(hw, BM_CS_STATUS, &data);
if (ret_val)
goto out;
data &= BM_CS_STATUS_LINK_UP |
BM_CS_STATUS_RESOLVED |
BM_CS_STATUS_SPEED_MASK;
if (data != (BM_CS_STATUS_LINK_UP |
BM_CS_STATUS_RESOLVED |
BM_CS_STATUS_SPEED_1000))
goto out;
mdelay(200);
/* flush the packets in the fifo buffer */
ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC |
HV_MUX_DATA_CTRL_FORCE_SPEED);
if (ret_val)
goto out;
ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC);
out:
return ret_val;
}
/**
* e1000_check_polarity_82577 - Checks the polarity.
* @hw: pointer to the HW structure
*
* Success returns 0, Failure returns -E1000_ERR_PHY (-2)
*
* Polarity is determined based on the PHY specific status register.
**/
s32 e1000_check_polarity_82577(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 data;
ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
if (!ret_val)
phy->cable_polarity = (data & I82577_PHY_STATUS2_REV_POLARITY)
? e1000_rev_polarity_reversed
: e1000_rev_polarity_normal;
return ret_val;
}
/**
* e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
* @hw: pointer to the HW structure
*
* Calls the PHY setup function to force speed and duplex.
**/
s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 phy_data;
bool link;
ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
if (ret_val)
goto out;
e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
if (ret_val)
goto out;
udelay(1);
if (phy->autoneg_wait_to_complete) {
e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
ret_val = e1000e_phy_has_link_generic(hw,
PHY_FORCE_LIMIT,
100000,
&link);
if (ret_val)
goto out;
if (!link)
e_dbg("Link taking longer than expected.\n");
/* Try once more */
ret_val = e1000e_phy_has_link_generic(hw,
PHY_FORCE_LIMIT,
100000,
&link);
if (ret_val)
goto out;
}
out:
return ret_val;
}
/**
* e1000_get_phy_info_82577 - Retrieve I82577 PHY information
* @hw: pointer to the HW structure
*
* Read PHY status to determine if link is up. If link is up, then
* set/determine 10base-T extended distance and polarity correction. Read
* PHY port status to determine MDI/MDIx and speed. Based on the speed,
* determine on the cable length, local and remote receiver.
**/
s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 data;
bool link;
ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
if (ret_val)
goto out;
if (!link) {
e_dbg("Phy info is only valid if link is up\n");
ret_val = -E1000_ERR_CONFIG;
goto out;
}
phy->polarity_correction = true;
ret_val = e1000_check_polarity_82577(hw);
if (ret_val)
goto out;
ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
if (ret_val)
goto out;
phy->is_mdix = (data & I82577_PHY_STATUS2_MDIX) ? true : false;
if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
I82577_PHY_STATUS2_SPEED_1000MBPS) {
ret_val = hw->phy.ops.get_cable_length(hw);
if (ret_val)
goto out;
ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
if (ret_val)
goto out;
phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
? e1000_1000t_rx_status_ok
: e1000_1000t_rx_status_not_ok;
phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
? e1000_1000t_rx_status_ok
: e1000_1000t_rx_status_not_ok;
} else {
phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
phy->local_rx = e1000_1000t_rx_status_undefined;
phy->remote_rx = e1000_1000t_rx_status_undefined;
}
out:
return ret_val;
}
/**
* e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
* @hw: pointer to the HW structure
*
* Reads the diagnostic status register and verifies result is valid before
* placing it in the phy_cable_length field.
**/
s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 phy_data, length;
ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data);
if (ret_val)
goto out;
length = (phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
I82577_DSTATUS_CABLE_LENGTH_SHIFT;
if (length == E1000_CABLE_LENGTH_UNDEFINED)
ret_val = -E1000_ERR_PHY;
phy->cable_length = length;
out:
return ret_val;
}
-------------- n?chster Teil --------------
/*******************************************************************************
Intel PRO/1000 Linux driver
Copyright(c) 1999 - 2011 Intel Corporation.
This program is free software; you can redistribute it and/or modify it
under the terms and conditions of the GNU General Public License,
version 2, as published by the Free Software Foundation.
This program is distributed in the hope it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
The full GNU General Public License is included in this distribution in
the file called "COPYING".
Contact Information:
Linux NICS <linux.nics at intel.com>
e1000-devel Mailing List <e1000-devel at lists.sourceforge.net>
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*******************************************************************************/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/interrupt.h>
#include <linux/tcp.h>
#include <linux/ipv6.h>
#include <linux/slab.h>
#include <net/checksum.h>
#include <net/ip6_checksum.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/if_vlan.h>
#include <linux/cpu.h>
#include <linux/smp.h>
#include <linux/pm_qos.h>
#include <linux/pm_runtime.h>
#include <linux/aer.h>
#include <linux/prefetch.h>
#include "e1000-3.2.0-ethercat.h"
#define DRV_EXTRAVERSION "-k-EtherCAT"
#define DRV_VERSION "1.5.1" DRV_EXTRAVERSION
char e1000e_driver_name[] = "ec_e1000e";
const char e1000e_driver_version[] = DRV_VERSION;
static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state);
static const struct e1000_info *e1000_info_tbl[] = {
[board_82571] = &e1000_82571_info,
[board_82572] = &e1000_82572_info,
[board_82573] = &e1000_82573_info,
[board_82574] = &e1000_82574_info,
[board_82583] = &e1000_82583_info,
[board_80003es2lan] = &e1000_es2_info,
[board_ich8lan] = &e1000_ich8_info,
[board_ich9lan] = &e1000_ich9_info,
[board_ich10lan] = &e1000_ich10_info,
[board_pchlan] = &e1000_pch_info,
[board_pch2lan] = &e1000_pch2_info,
};
struct e1000_reg_info {
u32 ofs;
char *name;
};
#define E1000_RDFH 0x02410 /* Rx Data FIFO Head - RW */
#define E1000_RDFT 0x02418 /* Rx Data FIFO Tail - RW */
#define E1000_RDFHS 0x02420 /* Rx Data FIFO Head Saved - RW */
#define E1000_RDFTS 0x02428 /* Rx Data FIFO Tail Saved - RW */
#define E1000_RDFPC 0x02430 /* Rx Data FIFO Packet Count - RW */
#define E1000_TDFH 0x03410 /* Tx Data FIFO Head - RW */
#define E1000_TDFT 0x03418 /* Tx Data FIFO Tail - RW */
#define E1000_TDFHS 0x03420 /* Tx Data FIFO Head Saved - RW */
#define E1000_TDFTS 0x03428 /* Tx Data FIFO Tail Saved - RW */
#define E1000_TDFPC 0x03430 /* Tx Data FIFO Packet Count - RW */
static const struct e1000_reg_info e1000_reg_info_tbl[] = {
/* General Registers */
{E1000_CTRL, "CTRL"},
{E1000_STATUS, "STATUS"},
{E1000_CTRL_EXT, "CTRL_EXT"},
/* Interrupt Registers */
{E1000_ICR, "ICR"},
/* Rx Registers */
{E1000_RCTL, "RCTL"},
{E1000_RDLEN, "RDLEN"},
{E1000_RDH, "RDH"},
{E1000_RDT, "RDT"},
{E1000_RDTR, "RDTR"},
{E1000_RXDCTL(0), "RXDCTL"},
{E1000_ERT, "ERT"},
{E1000_RDBAL, "RDBAL"},
{E1000_RDBAH, "RDBAH"},
{E1000_RDFH, "RDFH"},
{E1000_RDFT, "RDFT"},
{E1000_RDFHS, "RDFHS"},
{E1000_RDFTS, "RDFTS"},
{E1000_RDFPC, "RDFPC"},
/* Tx Registers */
{E1000_TCTL, "TCTL"},
{E1000_TDBAL, "TDBAL"},
{E1000_TDBAH, "TDBAH"},
{E1000_TDLEN, "TDLEN"},
{E1000_TDH, "TDH"},
{E1000_TDT, "TDT"},
{E1000_TIDV, "TIDV"},
{E1000_TXDCTL(0), "TXDCTL"},
{E1000_TADV, "TADV"},
{E1000_TARC(0), "TARC"},
{E1000_TDFH, "TDFH"},
{E1000_TDFT, "TDFT"},
{E1000_TDFHS, "TDFHS"},
{E1000_TDFTS, "TDFTS"},
{E1000_TDFPC, "TDFPC"},
/* List Terminator */
{}
};
/*
* e1000_regdump - register printout routine
*/
static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
{
int n = 0;
char rname[16];
u32 regs[8];
switch (reginfo->ofs) {
case E1000_RXDCTL(0):
for (n = 0; n < 2; n++)
regs[n] = __er32(hw, E1000_RXDCTL(n));
break;
case E1000_TXDCTL(0):
for (n = 0; n < 2; n++)
regs[n] = __er32(hw, E1000_TXDCTL(n));
break;
case E1000_TARC(0):
for (n = 0; n < 2; n++)
regs[n] = __er32(hw, E1000_TARC(n));
break;
default:
printk(KERN_INFO "%-15s %08x\n",
reginfo->name, __er32(hw, reginfo->ofs));
return;
}
snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
printk(KERN_INFO "%-15s ", rname);
for (n = 0; n < 2; n++)
printk(KERN_CONT "%08x ", regs[n]);
printk(KERN_CONT "\n");
}
/*
* e1000e_dump - Print registers, Tx-ring and Rx-ring
*/
static void e1000e_dump(struct e1000_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct e1000_hw *hw = &adapter->hw;
struct e1000_reg_info *reginfo;
struct e1000_ring *tx_ring = adapter->tx_ring;
struct e1000_tx_desc *tx_desc;
struct my_u0 {
u64 a;
u64 b;
} *u0;
struct e1000_buffer *buffer_info;
struct e1000_ring *rx_ring = adapter->rx_ring;
union e1000_rx_desc_packet_split *rx_desc_ps;
union e1000_rx_desc_extended *rx_desc;
struct my_u1 {
u64 a;
u64 b;
u64 c;
u64 d;
} *u1;
u32 staterr;
int i = 0;
if (!netif_msg_hw(adapter))
return;
/* Print netdevice Info */
if (netdev) {
dev_info(&adapter->pdev->dev, "Net device Info\n");
printk(KERN_INFO "Device Name state "
"trans_start last_rx\n");
printk(KERN_INFO "%-15s %016lX %016lX %016lX\n",
netdev->name, netdev->state, netdev->trans_start,
netdev->last_rx);
}
/* Print Registers */
dev_info(&adapter->pdev->dev, "Register Dump\n");
printk(KERN_INFO " Register Name Value\n");
for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
reginfo->name; reginfo++) {
e1000_regdump(hw, reginfo);
}
/* Print Tx Ring Summary */
if (!netdev || !netif_running(netdev))
goto exit;
dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma ]"
" leng ntw timestamp\n");
buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
printk(KERN_INFO " %5d %5X %5X %016llX %04X %3X %016llX\n",
0, tx_ring->next_to_use, tx_ring->next_to_clean,
(unsigned long long)buffer_info->dma,
buffer_info->length,
buffer_info->next_to_watch,
(unsigned long long)buffer_info->time_stamp);
/* Print Tx Ring */
if (!netif_msg_tx_done(adapter))
goto rx_ring_summary;
dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
*
* Legacy Transmit Descriptor
* +--------------------------------------------------------------+
* 0 | Buffer Address [63:0] (Reserved on Write Back) |
* +--------------------------------------------------------------+
* 8 | Special | CSS | Status | CMD | CSO | Length |
* +--------------------------------------------------------------+
* 63 48 47 36 35 32 31 24 23 16 15 0
*
* Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
* 63 48 47 40 39 32 31 16 15 8 7 0
* +----------------------------------------------------------------+
* 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
* +----------------------------------------------------------------+
* 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
* +----------------------------------------------------------------+
* 63 48 47 40 39 36 35 32 31 24 23 20 19 0
*
* Extended Data Descriptor (DTYP=0x1)
* +----------------------------------------------------------------+
* 0 | Buffer Address [63:0] |
* +----------------------------------------------------------------+
* 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
* +----------------------------------------------------------------+
* 63 48 47 40 39 36 35 32 31 24 23 20 19 0
*/
printk(KERN_INFO "Tl[desc] [address 63:0 ] [SpeCssSCmCsLen]"
" [bi->dma ] leng ntw timestamp bi->skb "
"<-- Legacy format\n");
printk(KERN_INFO "Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen]"
" [bi->dma ] leng ntw timestamp bi->skb "
"<-- Ext Context format\n");
printk(KERN_INFO "Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen]"
" [bi->dma ] leng ntw timestamp bi->skb "
"<-- Ext Data format\n");
for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
tx_desc = E1000_TX_DESC(*tx_ring, i);
buffer_info = &tx_ring->buffer_info[i];
u0 = (struct my_u0 *)tx_desc;
printk(KERN_INFO "T%c[0x%03X] %016llX %016llX %016llX "
"%04X %3X %016llX %p",
(!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')), i,
(unsigned long long)le64_to_cpu(u0->a),
(unsigned long long)le64_to_cpu(u0->b),
(unsigned long long)buffer_info->dma,
buffer_info->length, buffer_info->next_to_watch,
(unsigned long long)buffer_info->time_stamp,
buffer_info->skb);
if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
printk(KERN_CONT " NTC/U\n");
else if (i == tx_ring->next_to_use)
printk(KERN_CONT " NTU\n");
else if (i == tx_ring->next_to_clean)
printk(KERN_CONT " NTC\n");
else
printk(KERN_CONT "\n");
if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
16, 1, phys_to_virt(buffer_info->dma),
buffer_info->length, true);
}
/* Print Rx Ring Summary */
rx_ring_summary:
dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
printk(KERN_INFO "Queue [NTU] [NTC]\n");
printk(KERN_INFO " %5d %5X %5X\n", 0,
rx_ring->next_to_use, rx_ring->next_to_clean);
/* Print Rx Ring */
if (!netif_msg_rx_status(adapter))
goto exit;
dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
switch (adapter->rx_ps_pages) {
case 1:
case 2:
case 3:
/* [Extended] Packet Split Receive Descriptor Format
*
* +-----------------------------------------------------+
* 0 | Buffer Address 0 [63:0] |
* +-----------------------------------------------------+
* 8 | Buffer Address 1 [63:0] |
* +-----------------------------------------------------+
* 16 | Buffer Address 2 [63:0] |
* +-----------------------------------------------------+
* 24 | Buffer Address 3 [63:0] |
* +-----------------------------------------------------+
*/
printk(KERN_INFO "R [desc] [buffer 0 63:0 ] "
"[buffer 1 63:0 ] "
"[buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] "
"[bi->skb] <-- Ext Pkt Split format\n");
/* [Extended] Receive Descriptor (Write-Back) Format
*
* 63 48 47 32 31 13 12 8 7 4 3 0
* +------------------------------------------------------+
* 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS |
* | Checksum | Ident | | Queue | | Type |
* +------------------------------------------------------+
* 8 | VLAN Tag | Length | Extended Error | Extended Status |
* +------------------------------------------------------+
* 63 48 47 32 31 20 19 0
*/
printk(KERN_INFO "RWB[desc] [ck ipid mrqhsh] "
"[vl l0 ee es] "
"[ l3 l2 l1 hs] [reserved ] ---------------- "
"[bi->skb] <-- Ext Rx Write-Back format\n");
for (i = 0; i < rx_ring->count; i++) {
buffer_info = &rx_ring->buffer_info[i];
rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
u1 = (struct my_u1 *)rx_desc_ps;
staterr =
le32_to_cpu(rx_desc_ps->wb.middle.status_error);
if (staterr & E1000_RXD_STAT_DD) {
/* Descriptor Done */
printk(KERN_INFO "RWB[0x%03X] %016llX "
"%016llX %016llX %016llX "
"---------------- %p", i,
(unsigned long long)le64_to_cpu(u1->a),
(unsigned long long)le64_to_cpu(u1->b),
(unsigned long long)le64_to_cpu(u1->c),
(unsigned long long)le64_to_cpu(u1->d),
buffer_info->skb);
} else {
printk(KERN_INFO "R [0x%03X] %016llX "
"%016llX %016llX %016llX %016llX %p", i,
(unsigned long long)le64_to_cpu(u1->a),
(unsigned long long)le64_to_cpu(u1->b),
(unsigned long long)le64_to_cpu(u1->c),
(unsigned long long)le64_to_cpu(u1->d),
(unsigned long long)buffer_info->dma,
buffer_info->skb);
if (netif_msg_pktdata(adapter))
print_hex_dump(KERN_INFO, "",
DUMP_PREFIX_ADDRESS, 16, 1,
phys_to_virt(buffer_info->dma),
adapter->rx_ps_bsize0, true);
}
if (i == rx_ring->next_to_use)
printk(KERN_CONT " NTU\n");
else if (i == rx_ring->next_to_clean)
printk(KERN_CONT " NTC\n");
else
printk(KERN_CONT "\n");
}
break;
default:
case 0:
/* Extended Receive Descriptor (Read) Format
*
* +-----------------------------------------------------+
* 0 | Buffer Address [63:0] |
* +-----------------------------------------------------+
* 8 | Reserved |
* +-----------------------------------------------------+
*/
printk(KERN_INFO "R [desc] [buf addr 63:0 ] "
"[reserved 63:0 ] [bi->dma ] "
"[bi->skb] <-- Ext (Read) format\n");
/* Extended Receive Descriptor (Write-Back) Format
*
* 63 48 47 32 31 24 23 4 3 0
* +------------------------------------------------------+
* | RSS Hash | | | |
* 0 +-------------------+ Rsvd | Reserved | MRQ RSS |
* | Packet | IP | | | Type |
* | Checksum | Ident | | | |
* +------------------------------------------------------+
* 8 | VLAN Tag | Length | Extended Error | Extended Status |
* +------------------------------------------------------+
* 63 48 47 32 31 20 19 0
*/
printk(KERN_INFO "RWB[desc] [cs ipid mrq] "
"[vt ln xe xs] "
"[bi->skb] <-- Ext (Write-Back) format\n");
for (i = 0; i < rx_ring->count; i++) {
buffer_info = &rx_ring->buffer_info[i];
rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
u1 = (struct my_u1 *)rx_desc;
staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
if (staterr & E1000_RXD_STAT_DD) {
/* Descriptor Done */
printk(KERN_INFO "RWB[0x%03X] %016llX "
"%016llX ---------------- %p", i,
(unsigned long long)le64_to_cpu(u1->a),
(unsigned long long)le64_to_cpu(u1->b),
buffer_info->skb);
} else {
printk(KERN_INFO "R [0x%03X] %016llX "
"%016llX %016llX %p", i,
(unsigned long long)le64_to_cpu(u1->a),
(unsigned long long)le64_to_cpu(u1->b),
(unsigned long long)buffer_info->dma,
buffer_info->skb);
if (netif_msg_pktdata(adapter))
print_hex_dump(KERN_INFO, "",
DUMP_PREFIX_ADDRESS, 16,
1,
phys_to_virt
(buffer_info->dma),
adapter->rx_buffer_len,
true);
}
if (i == rx_ring->next_to_use)
printk(KERN_CONT " NTU\n");
else if (i == rx_ring->next_to_clean)
printk(KERN_CONT " NTC\n");
else
printk(KERN_CONT "\n");
}
}
exit:
return;
}
/**
* e1000_desc_unused - calculate if we have unused descriptors
**/
static int e1000_desc_unused(struct e1000_ring *ring)
{
if (ring->next_to_clean > ring->next_to_use)
return ring->next_to_clean - ring->next_to_use - 1;
return ring->count + ring->next_to_clean - ring->next_to_use - 1;
}
/**
* e1000_receive_skb - helper function to handle Rx indications
* @adapter: board private structure
* @status: descriptor status field as written by hardware
* @vlan: descriptor vlan field as written by hardware (no le/be conversion)
* @skb: pointer to sk_buff to be indicated to stack
**/
static void e1000_receive_skb(struct e1000_adapter *adapter,
struct net_device *netdev, struct sk_buff *skb,
u8 status, __le16 vlan)
{
u16 tag = le16_to_cpu(vlan);
skb->protocol = eth_type_trans(skb, netdev);
if (status & E1000_RXD_STAT_VP)
__vlan_hwaccel_put_tag(skb, tag);
napi_gro_receive(&adapter->napi, skb);
}
/**
* e1000_rx_checksum - Receive Checksum Offload
* @adapter: board private structure
* @status_err: receive descriptor status and error fields
* @csum: receive descriptor csum field
* @sk_buff: socket buffer with received data
**/
static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
u32 csum, struct sk_buff *skb)
{
u16 status = (u16)status_err;
u8 errors = (u8)(status_err >> 24);
skb_checksum_none_assert(skb);
/* Ignore Checksum bit is set */
if (status & E1000_RXD_STAT_IXSM)
return;
/* TCP/UDP checksum error bit is set */
if (errors & E1000_RXD_ERR_TCPE) {
/* let the stack verify checksum errors */
adapter->hw_csum_err++;
return;
}
/* TCP/UDP Checksum has not been calculated */
if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
return;
/* It must be a TCP or UDP packet with a valid checksum */
if (status & E1000_RXD_STAT_TCPCS) {
/* TCP checksum is good */
skb->ip_summed = CHECKSUM_UNNECESSARY;
} else {
/*
* IP fragment with UDP payload
* Hardware complements the payload checksum, so we undo it
* and then put the value in host order for further stack use.
*/
__sum16 sum = (__force __sum16)htons(csum);
skb->csum = csum_unfold(~sum);
skb->ip_summed = CHECKSUM_COMPLETE;
}
adapter->hw_csum_good++;
}
/**
* e1000e_update_tail_wa - helper function for e1000e_update_[rt]dt_wa()
* @hw: pointer to the HW structure
* @tail: address of tail descriptor register
* @i: value to write to tail descriptor register
*
* When updating the tail register, the ME could be accessing Host CSR
* registers at the same time. Normally, this is handled in h/w by an
* arbiter but on some parts there is a bug that acknowledges Host accesses
* later than it should which could result in the descriptor register to
* have an incorrect value. Workaround this by checking the FWSM register
* which has bit 24 set while ME is accessing Host CSR registers, wait
* if it is set and try again a number of times.
**/
static inline s32 e1000e_update_tail_wa(struct e1000_hw *hw, u8 __iomem * tail,
unsigned int i)
{
unsigned int j = 0;
while ((j++ < E1000_ICH_FWSM_PCIM2PCI_COUNT) &&
(er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI))
udelay(50);
writel(i, tail);
if ((j == E1000_ICH_FWSM_PCIM2PCI_COUNT) && (i != readl(tail)))
return E1000_ERR_SWFW_SYNC;
return 0;
}
static void e1000e_update_rdt_wa(struct e1000_adapter *adapter, unsigned int i)
{
u8 __iomem *tail = (adapter->hw.hw_addr + adapter->rx_ring->tail);
struct e1000_hw *hw = &adapter->hw;
if (e1000e_update_tail_wa(hw, tail, i)) {
u32 rctl = er32(RCTL);
ew32(RCTL, rctl & ~E1000_RCTL_EN);
e_err("ME firmware caused invalid RDT - resetting\n");
schedule_work(&adapter->reset_task);
}
}
static void e1000e_update_tdt_wa(struct e1000_adapter *adapter, unsigned int i)
{
u8 __iomem *tail = (adapter->hw.hw_addr + adapter->tx_ring->tail);
struct e1000_hw *hw = &adapter->hw;
if (e1000e_update_tail_wa(hw, tail, i)) {
u32 tctl = er32(TCTL);
ew32(TCTL, tctl & ~E1000_TCTL_EN);
e_err("ME firmware caused invalid TDT - resetting\n");
schedule_work(&adapter->reset_task);
}
}
/**
* e1000_alloc_rx_buffers - Replace used receive buffers
* @adapter: address of board private structure
**/
static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
int cleaned_count, gfp_t gfp)
{
struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev;
struct e1000_ring *rx_ring = adapter->rx_ring;
union e1000_rx_desc_extended *rx_desc;
struct e1000_buffer *buffer_info;
struct sk_buff *skb;
unsigned int i;
unsigned int bufsz = adapter->rx_buffer_len;
i = rx_ring->next_to_use;
buffer_info = &rx_ring->buffer_info[i];
while (cleaned_count--) {
skb = buffer_info->skb;
if (skb) {
skb_trim(skb, 0);
goto map_skb;
}
skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
if (!skb) {
/* Better luck next round */
adapter->alloc_rx_buff_failed++;
break;
}
buffer_info->skb = skb;
map_skb:
buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
adapter->rx_buffer_len,
DMA_FROM_DEVICE);
if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
dev_err(&pdev->dev, "Rx DMA map failed\n");
adapter->rx_dma_failed++;
break;
}
rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
/*
* Force memory writes to complete before letting h/w
* know there are new descriptors to fetch. (Only
* applicable for weak-ordered memory model archs,
* such as IA-64).
*/
wmb();
if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
e1000e_update_rdt_wa(adapter, i);
else
writel(i, adapter->hw.hw_addr + rx_ring->tail);
}
i++;
if (i == rx_ring->count)
i = 0;
buffer_info = &rx_ring->buffer_info[i];
}
rx_ring->next_to_use = i;
}
/**
* e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
* @adapter: address of board private structure
**/
static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
int cleaned_count, gfp_t gfp)
{
struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev;
union e1000_rx_desc_packet_split *rx_desc;
struct e1000_ring *rx_ring = adapter->rx_ring;
struct e1000_buffer *buffer_info;
struct e1000_ps_page *ps_page;
struct sk_buff *skb;
unsigned int i, j;
i = rx_ring->next_to_use;
buffer_info = &rx_ring->buffer_info[i];
while (cleaned_count--) {
rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
for (j = 0; j < PS_PAGE_BUFFERS; j++) {
ps_page = &buffer_info->ps_pages[j];
if (j >= adapter->rx_ps_pages) {
/* all unused desc entries get hw null ptr */
rx_desc->read.buffer_addr[j + 1] =
~cpu_to_le64(0);
continue;
}
if (!ps_page->page) {
ps_page->page = alloc_page(gfp);
if (!ps_page->page) {
adapter->alloc_rx_buff_failed++;
goto no_buffers;
}
ps_page->dma = dma_map_page(&pdev->dev,
ps_page->page,
0, PAGE_SIZE,
DMA_FROM_DEVICE);
if (dma_mapping_error(&pdev->dev,
ps_page->dma)) {
dev_err(&adapter->pdev->dev,
"Rx DMA page map failed\n");
adapter->rx_dma_failed++;
goto no_buffers;
}
}
/*
* Refresh the desc even if buffer_addrs
* didn't change because each write-back
* erases this info.
*/
rx_desc->read.buffer_addr[j + 1] =
cpu_to_le64(ps_page->dma);
}
skb = __netdev_alloc_skb_ip_align(netdev,
adapter->rx_ps_bsize0,
gfp);
if (!skb) {
adapter->alloc_rx_buff_failed++;
break;
}
buffer_info->skb = skb;
buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
adapter->rx_ps_bsize0,
DMA_FROM_DEVICE);
if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
dev_err(&pdev->dev, "Rx DMA map failed\n");
adapter->rx_dma_failed++;
/* cleanup skb */
dev_kfree_skb_any(skb);
buffer_info->skb = NULL;
break;
}
rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
/*
* Force memory writes to complete before letting h/w
* know there are new descriptors to fetch. (Only
* applicable for weak-ordered memory model archs,
* such as IA-64).
*/
wmb();
if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
e1000e_update_rdt_wa(adapter, i << 1);
else
writel(i << 1,
adapter->hw.hw_addr + rx_ring->tail);
}
i++;
if (i == rx_ring->count)
i = 0;
buffer_info = &rx_ring->buffer_info[i];
}
no_buffers:
rx_ring->next_to_use = i;
}
/**
* e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
* @adapter: address of board private structure
* @cleaned_count: number of buffers to allocate this pass
**/
static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
int cleaned_count, gfp_t gfp)
{
struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev;
union e1000_rx_desc_extended *rx_desc;
struct e1000_ring *rx_ring = adapter->rx_ring;
struct e1000_buffer *buffer_info;
struct sk_buff *skb;
unsigned int i;
unsigned int bufsz = 256 - 16 /* for skb_reserve */;
i = rx_ring->next_to_use;
buffer_info = &rx_ring->buffer_info[i];
while (cleaned_count--) {
skb = buffer_info->skb;
if (skb) {
skb_trim(skb, 0);
goto check_page;
}
skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
if (unlikely(!skb)) {
/* Better luck next round */
adapter->alloc_rx_buff_failed++;
break;
}
buffer_info->skb = skb;
check_page:
/* allocate a new page if necessary */
if (!buffer_info->page) {
buffer_info->page = alloc_page(gfp);
if (unlikely(!buffer_info->page)) {
adapter->alloc_rx_buff_failed++;
break;
}
}
if (!buffer_info->dma)
buffer_info->dma = dma_map_page(&pdev->dev,
buffer_info->page, 0,
PAGE_SIZE,
DMA_FROM_DEVICE);
rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
if (unlikely(++i == rx_ring->count))
i = 0;
buffer_info = &rx_ring->buffer_info[i];
}
if (likely(rx_ring->next_to_use != i)) {
rx_ring->next_to_use = i;
if (unlikely(i-- == 0))
i = (rx_ring->count - 1);
/* Force memory writes to complete before letting h/w
* know there are new descriptors to fetch. (Only
* applicable for weak-ordered memory model archs,
* such as IA-64). */
wmb();
if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
e1000e_update_rdt_wa(adapter, i);
else
writel(i, adapter->hw.hw_addr + rx_ring->tail);
}
}
/**
* e1000_clean_rx_irq - Send received data up the network stack; legacy
* @adapter: board private structure
*
* the return value indicates whether actual cleaning was done, there
* is no guarantee that everything was cleaned
**/
static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
int *work_done, int work_to_do)
{
struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev;
struct e1000_hw *hw = &adapter->hw;
struct e1000_ring *rx_ring = adapter->rx_ring;
union e1000_rx_desc_extended *rx_desc, *next_rxd;
struct e1000_buffer *buffer_info, *next_buffer;
u32 length, staterr;
unsigned int i;
int cleaned_count = 0;
bool cleaned = 0;
unsigned int total_rx_bytes = 0, total_rx_packets = 0;
i = rx_ring->next_to_clean;
rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
buffer_info = &rx_ring->buffer_info[i];
while (staterr & E1000_RXD_STAT_DD) {
struct sk_buff *skb;
if (*work_done >= work_to_do)
break;
(*work_done)++;
rmb(); /* read descriptor and rx_buffer_info after status DD */
skb = buffer_info->skb;
if (!adapter->ecdev)
buffer_info->skb = NULL;
prefetch(skb->data - NET_IP_ALIGN);
i++;
if (i == rx_ring->count)
i = 0;
next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
prefetch(next_rxd);
next_buffer = &rx_ring->buffer_info[i];
cleaned = 1;
cleaned_count++;
dma_unmap_single(&pdev->dev,
buffer_info->dma,
adapter->rx_buffer_len,
DMA_FROM_DEVICE);
buffer_info->dma = 0;
length = le16_to_cpu(rx_desc->wb.upper.length);
/*
* !EOP means multiple descriptors were used to store a single
* packet, if that's the case we need to toss it. In fact, we
* need to toss every packet with the EOP bit clear and the
* next frame that _does_ have the EOP bit set, as it is by
* definition only a frame fragment
*/
if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
adapter->flags2 |= FLAG2_IS_DISCARDING;
if (adapter->flags2 & FLAG2_IS_DISCARDING) {
/* All receives must fit into a single buffer */
e_dbg("Receive packet consumed multiple buffers\n");
/* recycle */
buffer_info->skb = skb;
if (staterr & E1000_RXD_STAT_EOP)
adapter->flags2 &= ~FLAG2_IS_DISCARDING;
goto next_desc;
}
if (!adapter->ecdev && (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
/* recycle */
buffer_info->skb = skb;
goto next_desc;
}
/* adjust length to remove Ethernet CRC */
if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
length -= 4;
total_rx_bytes += length;
total_rx_packets++;
/*
* code added for copybreak, this should improve
* performance for small packets with large amounts
* of reassembly being done in the stack
*/
if (!adapter->ecdev && length < copybreak) {
struct sk_buff *new_skb =
netdev_alloc_skb_ip_align(netdev, length);
if (new_skb) {
skb_copy_to_linear_data_offset(new_skb,
-NET_IP_ALIGN,
(skb->data -
NET_IP_ALIGN),
(length +
NET_IP_ALIGN));
/* save the skb in buffer_info as good */
buffer_info->skb = skb;
skb = new_skb;
}
/* else just continue with the old one */
}
/* end copybreak code */
skb_put(skb, length);
/* Receive Checksum Offload */
e1000_rx_checksum(adapter, staterr,
le16_to_cpu(rx_desc->wb.lower.hi_dword.
csum_ip.csum), skb);
if (adapter->ecdev) {
ecdev_receive(adapter->ecdev, skb->data, length);
adapter->ec_watchdog_jiffies = jiffies;
} else {
e1000_receive_skb(adapter, netdev, skb, staterr,
rx_desc->wb.upper.vlan);
}
next_desc:
rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
/* return some buffers to hardware, one at a time is too slow */
if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
adapter->alloc_rx_buf(adapter, cleaned_count,
GFP_ATOMIC);
cleaned_count = 0;
}
/* use prefetched values */
rx_desc = next_rxd;
buffer_info = next_buffer;
staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
}
rx_ring->next_to_clean = i;
cleaned_count = e1000_desc_unused(rx_ring);
if (cleaned_count)
adapter->alloc_rx_buf(adapter, cleaned_count, GFP_ATOMIC);
adapter->total_rx_bytes += total_rx_bytes;
adapter->total_rx_packets += total_rx_packets;
return cleaned;
}
static void e1000_put_txbuf(struct e1000_adapter *adapter,
struct e1000_buffer *buffer_info)
{
if (adapter->ecdev)
return;
if (buffer_info->dma) {
if (buffer_info->mapped_as_page)
dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
buffer_info->length, DMA_TO_DEVICE);
else
dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
buffer_info->length, DMA_TO_DEVICE);
buffer_info->dma = 0;
}
if (buffer_info->skb) {
dev_kfree_skb_any(buffer_info->skb);
buffer_info->skb = NULL;
}
buffer_info->time_stamp = 0;
}
static void e1000_print_hw_hang(struct work_struct *work)
{
struct e1000_adapter *adapter = container_of(work,
struct e1000_adapter,
print_hang_task);
struct net_device *netdev = adapter->netdev;
struct e1000_ring *tx_ring = adapter->tx_ring;
unsigned int i = tx_ring->next_to_clean;
unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
struct e1000_hw *hw = &adapter->hw;
u16 phy_status, phy_1000t_status, phy_ext_status;
u16 pci_status;
if (test_bit(__E1000_DOWN, &adapter->state))
return;
if (!adapter->tx_hang_recheck &&
(adapter->flags2 & FLAG2_DMA_BURST)) {
/* May be block on write-back, flush and detect again
* flush pending descriptor writebacks to memory
*/
ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
/* execute the writes immediately */
e1e_flush();
adapter->tx_hang_recheck = true;
return;
}
/* Real hang detected */
adapter->tx_hang_recheck = false;
netif_stop_queue(netdev);
e1e_rphy(hw, PHY_STATUS, &phy_status);
e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
/* detected Hardware unit hang */
e_err("Detected Hardware Unit Hang:\n"
" TDH <%x>\n"
" TDT <%x>\n"
" next_to_use <%x>\n"
" next_to_clean <%x>\n"
"buffer_info[next_to_clean]:\n"
" time_stamp <%lx>\n"
" next_to_watch <%x>\n"
" jiffies <%lx>\n"
" next_to_watch.status <%x>\n"
"MAC Status <%x>\n"
"PHY Status <%x>\n"
"PHY 1000BASE-T Status <%x>\n"
"PHY Extended Status <%x>\n"
"PCI Status <%x>\n",
readl(adapter->hw.hw_addr + tx_ring->head),
readl(adapter->hw.hw_addr + tx_ring->tail),
tx_ring->next_to_use,
tx_ring->next_to_clean,
tx_ring->buffer_info[eop].time_stamp,
eop,
jiffies,
eop_desc->upper.fields.status,
er32(STATUS),
phy_status,
phy_1000t_status,
phy_ext_status,
pci_status);
}
/**
* e1000_clean_tx_irq - Reclaim resources after transmit completes
* @adapter: board private structure
*
* the return value indicates whether actual cleaning was done, there
* is no guarantee that everything was cleaned
**/
static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct e1000_hw *hw = &adapter->hw;
struct e1000_ring *tx_ring = adapter->tx_ring;
struct e1000_tx_desc *tx_desc, *eop_desc;
struct e1000_buffer *buffer_info;
unsigned int i, eop;
unsigned int count = 0;
unsigned int total_tx_bytes = 0, total_tx_packets = 0;
i = tx_ring->next_to_clean;
eop = tx_ring->buffer_info[i].next_to_watch;
eop_desc = E1000_TX_DESC(*tx_ring, eop);
while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
(count < tx_ring->count)) {
bool cleaned = false;
rmb(); /* read buffer_info after eop_desc */
for (; !cleaned; count++) {
tx_desc = E1000_TX_DESC(*tx_ring, i);
buffer_info = &tx_ring->buffer_info[i];
cleaned = (i == eop);
if (cleaned) {
total_tx_packets += buffer_info->segs;
total_tx_bytes += buffer_info->bytecount;
}
e1000_put_txbuf(adapter, buffer_info);
tx_desc->upper.data = 0;
i++;
if (i == tx_ring->count)
i = 0;
}
if (i == tx_ring->next_to_use)
break;
eop = tx_ring->buffer_info[i].next_to_watch;
eop_desc = E1000_TX_DESC(*tx_ring, eop);
}
tx_ring->next_to_clean = i;
#define TX_WAKE_THRESHOLD 32
if (!adapter->ecdev && count && netif_carrier_ok(netdev) &&
e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
/* Make sure that anybody stopping the queue after this
* sees the new next_to_clean.
*/
smp_mb();
if (netif_queue_stopped(netdev) &&
!(test_bit(__E1000_DOWN, &adapter->state))) {
netif_wake_queue(netdev);
++adapter->restart_queue;
}
}
if (!adapter->ecdev && adapter->detect_tx_hung) {
/*
* Detect a transmit hang in hardware, this serializes the
* check with the clearing of time_stamp and movement of i
*/
adapter->detect_tx_hung = 0;
if (tx_ring->buffer_info[i].time_stamp &&
time_after(jiffies, tx_ring->buffer_info[i].time_stamp
+ (adapter->tx_timeout_factor * HZ)) &&
!(er32(STATUS) & E1000_STATUS_TXOFF))
schedule_work(&adapter->print_hang_task);
else
adapter->tx_hang_recheck = false;
}
adapter->total_tx_bytes += total_tx_bytes;
adapter->total_tx_packets += total_tx_packets;
return count < tx_ring->count;
}
/**
* e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
* @adapter: board private structure
*
* the return value indicates whether actual cleaning was done, there
* is no guarantee that everything was cleaned
**/
static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
int *work_done, int work_to_do)
{
struct e1000_hw *hw = &adapter->hw;
union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev;
struct e1000_ring *rx_ring = adapter->rx_ring;
struct e1000_buffer *buffer_info, *next_buffer;
struct e1000_ps_page *ps_page;
struct sk_buff *skb;
unsigned int i, j;
u32 length, staterr;
int cleaned_count = 0;
bool cleaned = 0;
unsigned int total_rx_bytes = 0, total_rx_packets = 0;
i = rx_ring->next_to_clean;
rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
buffer_info = &rx_ring->buffer_info[i];
while (staterr & E1000_RXD_STAT_DD) {
if (*work_done >= work_to_do)
break;
(*work_done)++;
skb = buffer_info->skb;
rmb(); /* read descriptor and rx_buffer_info after status DD */
/* in the packet split case this is header only */
prefetch(skb->data - NET_IP_ALIGN);
i++;
if (i == rx_ring->count)
i = 0;
next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
prefetch(next_rxd);
next_buffer = &rx_ring->buffer_info[i];
cleaned = 1;
cleaned_count++;
dma_unmap_single(&pdev->dev, buffer_info->dma,
adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
buffer_info->dma = 0;
/* see !EOP comment in other Rx routine */
if (!(staterr & E1000_RXD_STAT_EOP))
adapter->flags2 |= FLAG2_IS_DISCARDING;
if (adapter->flags2 & FLAG2_IS_DISCARDING) {
e_dbg("Packet Split buffers didn't pick up the full "
"packet\n");
if (!adapter->ecdev) dev_kfree_skb_irq(skb);
if (staterr & E1000_RXD_STAT_EOP)
adapter->flags2 &= ~FLAG2_IS_DISCARDING;
goto next_desc;
}
if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
if (!adapter->ecdev)
dev_kfree_skb_irq(skb);
goto next_desc;
}
length = le16_to_cpu(rx_desc->wb.middle.length0);
if (!length) {
e_dbg("Last part of the packet spanning multiple "
"descriptors\n");
if (!adapter->ecdev)
dev_kfree_skb_irq(skb);
goto next_desc;
}
/* Good Receive */
skb_put(skb, length);
{
/*
* this looks ugly, but it seems compiler issues make it
* more efficient than reusing j
*/
int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
/*
* page alloc/put takes too long and effects small packet
* throughput, so unsplit small packets and save the alloc/put
* only valid in softirq (napi) context to call kmap_*
*/
if (l1 && (l1 <= copybreak) &&
((length + l1) <= adapter->rx_ps_bsize0)) {
u8 *vaddr;
ps_page = &buffer_info->ps_pages[0];
/*
* there is no documentation about how to call
* kmap_atomic, so we can't hold the mapping
* very long
*/
dma_sync_single_for_cpu(&pdev->dev, ps_page->dma,
PAGE_SIZE, DMA_FROM_DEVICE);
vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
memcpy(skb_tail_pointer(skb), vaddr, l1);
kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
dma_sync_single_for_device(&pdev->dev, ps_page->dma,
PAGE_SIZE, DMA_FROM_DEVICE);
/* remove the CRC */
if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
l1 -= 4;
skb_put(skb, l1);
goto copydone;
} /* if */
}
for (j = 0; j < PS_PAGE_BUFFERS; j++) {
length = le16_to_cpu(rx_desc->wb.upper.length[j]);
if (!length)
break;
ps_page = &buffer_info->ps_pages[j];
dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
DMA_FROM_DEVICE);
ps_page->dma = 0;
skb_fill_page_desc(skb, j, ps_page->page, 0, length);
ps_page->page = NULL;
skb->len += length;
skb->data_len += length;
skb->truesize += PAGE_SIZE;
}
/* strip the ethernet crc, problem is we're using pages now so
* this whole operation can get a little cpu intensive
*/
if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
pskb_trim(skb, skb->len - 4);
copydone:
total_rx_bytes += skb->len;
total_rx_packets++;
e1000_rx_checksum(adapter, staterr, le16_to_cpu(
rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
if (rx_desc->wb.upper.header_status &
cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
adapter->rx_hdr_split++;
if (adapter->ecdev) {
ecdev_receive(adapter->ecdev, skb->data, length);
adapter->ec_watchdog_jiffies = jiffies;
} else {
e1000_receive_skb(adapter, netdev, skb,
staterr, rx_desc->wb.middle.vlan);
}
next_desc:
rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
if (!adapter->ecdev) buffer_info->skb = NULL;
/* return some buffers to hardware, one at a time is too slow */
if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
adapter->alloc_rx_buf(adapter, cleaned_count,
GFP_ATOMIC);
cleaned_count = 0;
}
/* use prefetched values */
rx_desc = next_rxd;
buffer_info = next_buffer;
staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
}
rx_ring->next_to_clean = i;
cleaned_count = e1000_desc_unused(rx_ring);
if (cleaned_count)
adapter->alloc_rx_buf(adapter, cleaned_count, GFP_ATOMIC);
adapter->total_rx_bytes += total_rx_bytes;
adapter->total_rx_packets += total_rx_packets;
return cleaned;
}
/**
* e1000_consume_page - helper function
**/
static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
u16 length)
{
bi->page = NULL;
skb->len += length;
skb->data_len += length;
skb->truesize += PAGE_SIZE;
}
/**
* e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
* @adapter: board private structure
*
* the return value indicates whether actual cleaning was done, there
* is no guarantee that everything was cleaned
**/
static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
int *work_done, int work_to_do)
{
struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev;
struct e1000_ring *rx_ring = adapter->rx_ring;
union e1000_rx_desc_extended *rx_desc, *next_rxd;
struct e1000_buffer *buffer_info, *next_buffer;
u32 length, staterr;
unsigned int i;
int cleaned_count = 0;
bool cleaned = false;
unsigned int total_rx_bytes=0, total_rx_packets=0;
i = rx_ring->next_to_clean;
rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
buffer_info = &rx_ring->buffer_info[i];
while (staterr & E1000_RXD_STAT_DD) {
struct sk_buff *skb;
if (*work_done >= work_to_do)
break;
(*work_done)++;
rmb(); /* read descriptor and rx_buffer_info after status DD */
skb = buffer_info->skb;
if (!adapter->ecdev)
buffer_info->skb = NULL;
++i;
if (i == rx_ring->count)
i = 0;
next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
prefetch(next_rxd);
next_buffer = &rx_ring->buffer_info[i];
cleaned = true;
cleaned_count++;
dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
DMA_FROM_DEVICE);
buffer_info->dma = 0;
length = le16_to_cpu(rx_desc->wb.upper.length);
/* errors is only valid for DD + EOP descriptors */
if (!adapter->ecdev && (unlikely((staterr & E1000_RXD_STAT_EOP) &&
(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
/* recycle both page and skb */
buffer_info->skb = skb;
/* an error means any chain goes out the window too */
if (rx_ring->rx_skb_top)
dev_kfree_skb_irq(rx_ring->rx_skb_top);
rx_ring->rx_skb_top = NULL;
goto next_desc;
}
#define rxtop (rx_ring->rx_skb_top)
if (!(staterr & E1000_RXD_STAT_EOP)) {
/* this descriptor is only the beginning (or middle) */
if (!rxtop) {
/* this is the beginning of a chain */
rxtop = skb;
skb_fill_page_desc(rxtop, 0, buffer_info->page,
0, length);
} else {
/* this is the middle of a chain */
skb_fill_page_desc(rxtop,
skb_shinfo(rxtop)->nr_frags,
buffer_info->page, 0, length);
/* re-use the skb, only consumed the page */
buffer_info->skb = skb;
}
e1000_consume_page(buffer_info, rxtop, length);
goto next_desc;
} else {
if (rxtop) {
/* end of the chain */
skb_fill_page_desc(rxtop,
skb_shinfo(rxtop)->nr_frags,
buffer_info->page, 0, length);
/* re-use the current skb, we only consumed the
* page */
buffer_info->skb = skb;
skb = rxtop;
rxtop = NULL;
e1000_consume_page(buffer_info, skb, length);
} else {
/* no chain, got EOP, this buf is the packet
* copybreak to save the put_page/alloc_page */
if (length <= copybreak &&
skb_tailroom(skb) >= length) {
u8 *vaddr;
vaddr = kmap_atomic(buffer_info->page,
KM_SKB_DATA_SOFTIRQ);
memcpy(skb_tail_pointer(skb), vaddr,
length);
kunmap_atomic(vaddr,
KM_SKB_DATA_SOFTIRQ);
/* re-use the page, so don't erase
* buffer_info->page */
skb_put(skb, length);
} else {
skb_fill_page_desc(skb, 0,
buffer_info->page, 0,
length);
e1000_consume_page(buffer_info, skb,
length);
}
}
}
/* Receive Checksum Offload XXX recompute due to CRC strip? */
e1000_rx_checksum(adapter, staterr,
le16_to_cpu(rx_desc->wb.lower.hi_dword.
csum_ip.csum), skb);
/* probably a little skewed due to removing CRC */
total_rx_bytes += skb->len;
total_rx_packets++;
/* eth type trans needs skb->data to point to something */
if (!adapter->ecdev && !pskb_may_pull(skb, ETH_HLEN)) {
e_err("pskb_may_pull failed.\n");
dev_kfree_skb_irq(skb);
goto next_desc;
}
if (adapter->ecdev) {
ecdev_receive(adapter->ecdev, skb->data, length);
adapter->ec_watchdog_jiffies = jiffies;
} else {
e1000_receive_skb(adapter, netdev, skb, staterr,
rx_desc->wb.upper.vlan);
}
next_desc:
rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
/* return some buffers to hardware, one at a time is too slow */
if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
adapter->alloc_rx_buf(adapter, cleaned_count,
GFP_ATOMIC);
cleaned_count = 0;
}
/* use prefetched values */
rx_desc = next_rxd;
buffer_info = next_buffer;
staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
}
rx_ring->next_to_clean = i;
cleaned_count = e1000_desc_unused(rx_ring);
if (cleaned_count)
adapter->alloc_rx_buf(adapter, cleaned_count, GFP_ATOMIC);
adapter->total_rx_bytes += total_rx_bytes;
adapter->total_rx_packets += total_rx_packets;
return cleaned;
}
/**
* e1000_clean_rx_ring - Free Rx Buffers per Queue
* @adapter: board private structure
**/
static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
{
struct e1000_ring *rx_ring = adapter->rx_ring;
struct e1000_buffer *buffer_info;
struct e1000_ps_page *ps_page;
struct pci_dev *pdev = adapter->pdev;
unsigned int i, j;
/* Free all the Rx ring sk_buffs */
for (i = 0; i < rx_ring->count; i++) {
buffer_info = &rx_ring->buffer_info[i];
if (buffer_info->dma) {
if (adapter->clean_rx == e1000_clean_rx_irq)
dma_unmap_single(&pdev->dev, buffer_info->dma,
adapter->rx_buffer_len,
DMA_FROM_DEVICE);
else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
dma_unmap_page(&pdev->dev, buffer_info->dma,
PAGE_SIZE,
DMA_FROM_DEVICE);
else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
dma_unmap_single(&pdev->dev, buffer_info->dma,
adapter->rx_ps_bsize0,
DMA_FROM_DEVICE);
buffer_info->dma = 0;
}
if (buffer_info->page) {
put_page(buffer_info->page);
buffer_info->page = NULL;
}
if (buffer_info->skb) {
dev_kfree_skb(buffer_info->skb);
buffer_info->skb = NULL;
}
for (j = 0; j < PS_PAGE_BUFFERS; j++) {
ps_page = &buffer_info->ps_pages[j];
if (!ps_page->page)
break;
dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
DMA_FROM_DEVICE);
ps_page->dma = 0;
put_page(ps_page->page);
ps_page->page = NULL;
}
}
/* there also may be some cached data from a chained receive */
if (rx_ring->rx_skb_top) {
dev_kfree_skb(rx_ring->rx_skb_top);
rx_ring->rx_skb_top = NULL;
}
/* Zero out the descriptor ring */
memset(rx_ring->desc, 0, rx_ring->size);
rx_ring->next_to_clean = 0;
rx_ring->next_to_use = 0;
adapter->flags2 &= ~FLAG2_IS_DISCARDING;
writel(0, adapter->hw.hw_addr + rx_ring->head);
writel(0, adapter->hw.hw_addr + rx_ring->tail);
}
static void e1000e_downshift_workaround(struct work_struct *work)
{
struct e1000_adapter *adapter = container_of(work,
struct e1000_adapter, downshift_task);
if (test_bit(__E1000_DOWN, &adapter->state))
return;
e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
}
/**
* e1000_intr_msi - Interrupt Handler
* @irq: interrupt number
* @data: pointer to a network interface device structure
**/
static irqreturn_t e1000_intr_msi(int irq, void *data)
{
struct net_device *netdev = data;
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 icr = er32(ICR);
if (adapter->ecdev) {
int ec_work_done = 0;
adapter->clean_rx(adapter, &ec_work_done, 100);
e1000_clean_tx_irq(adapter);
return IRQ_HANDLED;
}
/*
* read ICR disables interrupts using IAM
*/
if (icr & E1000_ICR_LSC) {
hw->mac.get_link_status = 1;
/*
* ICH8 workaround-- Call gig speed drop workaround on cable
* disconnect (LSC) before accessing any PHY registers
*/
if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
(!(er32(STATUS) & E1000_STATUS_LU)))
schedule_work(&adapter->downshift_task);
/*
* 80003ES2LAN workaround-- For packet buffer work-around on
* link down event; disable receives here in the ISR and reset
* adapter in watchdog
*/
if (netif_carrier_ok(netdev) &&
adapter->flags & FLAG_RX_NEEDS_RESTART) {
/* disable receives */
u32 rctl = er32(RCTL);
ew32(RCTL, rctl & ~E1000_RCTL_EN);
adapter->flags |= FLAG_RX_RESTART_NOW;
}
/* guard against interrupt when we're going down */
if (!test_bit(__E1000_DOWN, &adapter->state))
mod_timer(&adapter->watchdog_timer, jiffies + 1);
}
if (napi_schedule_prep(&adapter->napi)) {
adapter->total_tx_bytes = 0;
adapter->total_tx_packets = 0;
adapter->total_rx_bytes = 0;
adapter->total_rx_packets = 0;
__napi_schedule(&adapter->napi);
}
return IRQ_HANDLED;
}
/**
* e1000_intr - Interrupt Handler
* @irq: interrupt number
* @data: pointer to a network interface device structure
**/
static irqreturn_t e1000_intr(int irq, void *data)
{
struct net_device *netdev = data;
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 rctl, icr = er32(ICR);
if (!icr || test_bit(__E1000_DOWN, &adapter->state))
return IRQ_NONE; /* Not our interrupt */
/*
* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
* not set, then the adapter didn't send an interrupt
*/
if (!adapter->ecdev && !(icr & E1000_ICR_INT_ASSERTED))
return IRQ_NONE;
/*
* Interrupt Auto-Mask...upon reading ICR,
* interrupts are masked. No need for the
* IMC write
*/
if (!adapter->ecdev && (icr & E1000_ICR_LSC)) {
hw->mac.get_link_status = 1;
/*
* ICH8 workaround-- Call gig speed drop workaround on cable
* disconnect (LSC) before accessing any PHY registers
*/
if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
(!(er32(STATUS) & E1000_STATUS_LU)))
schedule_work(&adapter->downshift_task);
/*
* 80003ES2LAN workaround--
* For packet buffer work-around on link down event;
* disable receives here in the ISR and
* reset adapter in watchdog
*/
if (netif_carrier_ok(netdev) &&
(adapter->flags & FLAG_RX_NEEDS_RESTART)) {
/* disable receives */
rctl = er32(RCTL);
ew32(RCTL, rctl & ~E1000_RCTL_EN);
adapter->flags |= FLAG_RX_RESTART_NOW;
}
/* guard against interrupt when we're going down */
if (!test_bit(__E1000_DOWN, &adapter->state))
mod_timer(&adapter->watchdog_timer, jiffies + 1);
}
if (adapter->ecdev) {
int ec_work_done = 0;
adapter->clean_rx(adapter, &ec_work_done, 100);
e1000_clean_tx_irq(adapter);
return IRQ_HANDLED;
}
if (napi_schedule_prep(&adapter->napi)) {
adapter->total_tx_bytes = 0;
adapter->total_tx_packets = 0;
adapter->total_rx_bytes = 0;
adapter->total_rx_packets = 0;
__napi_schedule(&adapter->napi);
}
return IRQ_HANDLED;
}
static irqreturn_t e1000_msix_other(int irq, void *data)
{
struct net_device *netdev = data;
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 icr = er32(ICR);
if (!(icr & E1000_ICR_INT_ASSERTED)) {
if (!test_bit(__E1000_DOWN, &adapter->state))
ew32(IMS, E1000_IMS_OTHER);
return IRQ_NONE;
}
if (icr & adapter->eiac_mask)
ew32(ICS, (icr & adapter->eiac_mask));
if (icr & E1000_ICR_OTHER) {
if (!(icr & E1000_ICR_LSC))
goto no_link_interrupt;
hw->mac.get_link_status = 1;
/* guard against interrupt when we're going down */
if (!adapter->ecdev && !test_bit(__E1000_DOWN, &adapter->state))
mod_timer(&adapter->watchdog_timer, jiffies + 1);
}
no_link_interrupt:
if (!test_bit(__E1000_DOWN, &adapter->state))
ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
return IRQ_HANDLED;
}
static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
{
struct net_device *netdev = data;
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
struct e1000_ring *tx_ring = adapter->tx_ring;
adapter->total_tx_bytes = 0;
adapter->total_tx_packets = 0;
if (!e1000_clean_tx_irq(adapter))
/* Ring was not completely cleaned, so fire another interrupt */
ew32(ICS, tx_ring->ims_val);
return IRQ_HANDLED;
}
static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
{
struct net_device *netdev = data;
struct e1000_adapter *adapter = netdev_priv(netdev);
/* Write the ITR value calculated at the end of the
* previous interrupt.
*/
if (adapter->rx_ring->set_itr) {
writel(1000000000 / (adapter->rx_ring->itr_val * 256),
adapter->hw.hw_addr + adapter->rx_ring->itr_register);
adapter->rx_ring->set_itr = 0;
}
if (adapter->ecdev) {
int ec_work_done = 0;
adapter->clean_rx(adapter, &ec_work_done, 100);
} else {
if (napi_schedule_prep(&adapter->napi)) {
adapter->total_rx_bytes = 0;
adapter->total_rx_packets = 0;
__napi_schedule(&adapter->napi);
}
}
return IRQ_HANDLED;
}
/**
* e1000_configure_msix - Configure MSI-X hardware
*
* e1000_configure_msix sets up the hardware to properly
* generate MSI-X interrupts.
**/
static void e1000_configure_msix(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
struct e1000_ring *rx_ring = adapter->rx_ring;
struct e1000_ring *tx_ring = adapter->tx_ring;
int vector = 0;
u32 ctrl_ext, ivar = 0;
adapter->eiac_mask = 0;
/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
if (hw->mac.type == e1000_82574) {
u32 rfctl = er32(RFCTL);
rfctl |= E1000_RFCTL_ACK_DIS;
ew32(RFCTL, rfctl);
}
#define E1000_IVAR_INT_ALLOC_VALID 0x8
/* Configure Rx vector */
rx_ring->ims_val = E1000_IMS_RXQ0;
adapter->eiac_mask |= rx_ring->ims_val;
if (rx_ring->itr_val)
writel(1000000000 / (rx_ring->itr_val * 256),
hw->hw_addr + rx_ring->itr_register);
else
writel(1, hw->hw_addr + rx_ring->itr_register);
ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
/* Configure Tx vector */
tx_ring->ims_val = E1000_IMS_TXQ0;
vector++;
if (tx_ring->itr_val)
writel(1000000000 / (tx_ring->itr_val * 256),
hw->hw_addr + tx_ring->itr_register);
else
writel(1, hw->hw_addr + tx_ring->itr_register);
adapter->eiac_mask |= tx_ring->ims_val;
ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
/* set vector for Other Causes, e.g. link changes */
vector++;
ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
if (rx_ring->itr_val)
writel(1000000000 / (rx_ring->itr_val * 256),
hw->hw_addr + E1000_EITR_82574(vector));
else
writel(1, hw->hw_addr + E1000_EITR_82574(vector));
/* Cause Tx interrupts on every write back */
ivar |= (1 << 31);
ew32(IVAR, ivar);
/* enable MSI-X PBA support */
ctrl_ext = er32(CTRL_EXT);
ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
/* Auto-Mask Other interrupts upon ICR read */
#define E1000_EIAC_MASK_82574 0x01F00000
ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
ctrl_ext |= E1000_CTRL_EXT_EIAME;
ew32(CTRL_EXT, ctrl_ext);
e1e_flush();
}
void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
{
if (adapter->msix_entries) {
pci_disable_msix(adapter->pdev);
kfree(adapter->msix_entries);
adapter->msix_entries = NULL;
} else if (adapter->flags & FLAG_MSI_ENABLED) {
pci_disable_msi(adapter->pdev);
adapter->flags &= ~FLAG_MSI_ENABLED;
}
}
/**
* e1000e_set_interrupt_capability - set MSI or MSI-X if supported
*
* Attempt to configure interrupts using the best available
* capabilities of the hardware and kernel.
**/
void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
{
int err;
int i;
switch (adapter->int_mode) {
case E1000E_INT_MODE_MSIX:
if (adapter->flags & FLAG_HAS_MSIX) {
adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
adapter->msix_entries = kcalloc(adapter->num_vectors,
sizeof(struct msix_entry),
GFP_KERNEL);
if (adapter->msix_entries) {
for (i = 0; i < adapter->num_vectors; i++)
adapter->msix_entries[i].entry = i;
err = pci_enable_msix(adapter->pdev,
adapter->msix_entries,
adapter->num_vectors);
if (err == 0)
return;
}
/* MSI-X failed, so fall through and try MSI */
e_err("Failed to initialize MSI-X interrupts. "
"Falling back to MSI interrupts.\n");
e1000e_reset_interrupt_capability(adapter);
}
adapter->int_mode = E1000E_INT_MODE_MSI;
/* Fall through */
case E1000E_INT_MODE_MSI:
if (!pci_enable_msi(adapter->pdev)) {
adapter->flags |= FLAG_MSI_ENABLED;
} else {
adapter->int_mode = E1000E_INT_MODE_LEGACY;
e_err("Failed to initialize MSI interrupts. Falling "
"back to legacy interrupts.\n");
}
/* Fall through */
case E1000E_INT_MODE_LEGACY:
/* Don't do anything; this is the system default */
break;
}
/* store the number of vectors being used */
adapter->num_vectors = 1;
}
/**
* e1000_request_msix - Initialize MSI-X interrupts
*
* e1000_request_msix allocates MSI-X vectors and requests interrupts from the
* kernel.
**/
static int e1000_request_msix(struct e1000_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
int err = 0, vector = 0;
if (strlen(netdev->name) < (IFNAMSIZ - 5))
snprintf(adapter->rx_ring->name,
sizeof(adapter->rx_ring->name) - 1,
"%s-rx-0", netdev->name);
else
memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
err = request_irq(adapter->msix_entries[vector].vector,
e1000_intr_msix_rx, 0, adapter->rx_ring->name,
netdev);
if (err)
goto out;
adapter->rx_ring->itr_register = E1000_EITR_82574(vector);
adapter->rx_ring->itr_val = adapter->itr;
vector++;
if (strlen(netdev->name) < (IFNAMSIZ - 5))
snprintf(adapter->tx_ring->name,
sizeof(adapter->tx_ring->name) - 1,
"%s-tx-0", netdev->name);
else
memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
err = request_irq(adapter->msix_entries[vector].vector,
e1000_intr_msix_tx, 0, adapter->tx_ring->name,
netdev);
if (err)
goto out;
adapter->tx_ring->itr_register = E1000_EITR_82574(vector);
adapter->tx_ring->itr_val = adapter->itr;
vector++;
err = request_irq(adapter->msix_entries[vector].vector,
e1000_msix_other, 0, netdev->name, netdev);
if (err)
goto out;
e1000_configure_msix(adapter);
return 0;
out:
return err;
}
/**
* e1000_request_irq - initialize interrupts
*
* Attempts to configure interrupts using the best available
* capabilities of the hardware and kernel.
**/
static int e1000_request_irq(struct e1000_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
int err;
if (adapter->ecdev)
return 0;
if (adapter->msix_entries) {
err = e1000_request_msix(adapter);
if (!err)
return err;
/* fall back to MSI */
e1000e_reset_interrupt_capability(adapter);
adapter->int_mode = E1000E_INT_MODE_MSI;
e1000e_set_interrupt_capability(adapter);
}
if (adapter->flags & FLAG_MSI_ENABLED) {
err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
netdev->name, netdev);
if (!err)
return err;
/* fall back to legacy interrupt */
e1000e_reset_interrupt_capability(adapter);
adapter->int_mode = E1000E_INT_MODE_LEGACY;
}
err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
netdev->name, netdev);
if (err)
e_err("Unable to allocate interrupt, Error: %d\n", err);
return err;
}
static void e1000_free_irq(struct e1000_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
if (adapter->ecdev)
return;
if (adapter->msix_entries) {
int vector = 0;
free_irq(adapter->msix_entries[vector].vector, netdev);
vector++;
free_irq(adapter->msix_entries[vector].vector, netdev);
vector++;
/* Other Causes interrupt vector */
free_irq(adapter->msix_entries[vector].vector, netdev);
return;
}
free_irq(adapter->pdev->irq, netdev);
}
/**
* e1000_irq_disable - Mask off interrupt generation on the NIC
**/
static void e1000_irq_disable(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
if (adapter->ecdev)
return;
ew32(IMC, ~0);
if (adapter->msix_entries)
ew32(EIAC_82574, 0);
e1e_flush();
if (adapter->msix_entries) {
int i;
for (i = 0; i < adapter->num_vectors; i++)
synchronize_irq(adapter->msix_entries[i].vector);
} else {
synchronize_irq(adapter->pdev->irq);
}
}
/**
* e1000_irq_enable - Enable default interrupt generation settings
**/
static void e1000_irq_enable(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
if (adapter->ecdev)
return;
if (adapter->msix_entries) {
ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
} else {
ew32(IMS, IMS_ENABLE_MASK);
}
e1e_flush();
}
/**
* e1000e_get_hw_control - get control of the h/w from f/w
* @adapter: address of board private structure
*
* e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
* For ASF and Pass Through versions of f/w this means that
* the driver is loaded. For AMT version (only with 82573)
* of the f/w this means that the network i/f is open.
**/
void e1000e_get_hw_control(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 ctrl_ext;
u32 swsm;
/* Let firmware know the driver has taken over */
if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
swsm = er32(SWSM);
ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
ctrl_ext = er32(CTRL_EXT);
ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
}
}
/**
* e1000e_release_hw_control - release control of the h/w to f/w
* @adapter: address of board private structure
*
* e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
* For ASF and Pass Through versions of f/w this means that the
* driver is no longer loaded. For AMT version (only with 82573) i
* of the f/w this means that the network i/f is closed.
*
**/
void e1000e_release_hw_control(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 ctrl_ext;
u32 swsm;
/* Let firmware taken over control of h/w */
if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
swsm = er32(SWSM);
ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
ctrl_ext = er32(CTRL_EXT);
ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
}
}
/**
* @e1000_alloc_ring - allocate memory for a ring structure
**/
static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
struct e1000_ring *ring)
{
struct pci_dev *pdev = adapter->pdev;
ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
GFP_KERNEL);
if (!ring->desc)
return -ENOMEM;
return 0;
}
/**
* e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
* @adapter: board private structure
*
* Return 0 on success, negative on failure
**/
int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
{
struct e1000_ring *tx_ring = adapter->tx_ring;
int err = -ENOMEM, size;
size = sizeof(struct e1000_buffer) * tx_ring->count;
tx_ring->buffer_info = vzalloc(size);
if (!tx_ring->buffer_info)
goto err;
/* round up to nearest 4K */
tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
tx_ring->size = ALIGN(tx_ring->size, 4096);
err = e1000_alloc_ring_dma(adapter, tx_ring);
if (err)
goto err;
tx_ring->next_to_use = 0;
tx_ring->next_to_clean = 0;
return 0;
err:
vfree(tx_ring->buffer_info);
e_err("Unable to allocate memory for the transmit descriptor ring\n");
return err;
}
/**
* e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
* @adapter: board private structure
*
* Returns 0 on success, negative on failure
**/
int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
{
struct e1000_ring *rx_ring = adapter->rx_ring;
struct e1000_buffer *buffer_info;
int i, size, desc_len, err = -ENOMEM;
size = sizeof(struct e1000_buffer) * rx_ring->count;
rx_ring->buffer_info = vzalloc(size);
if (!rx_ring->buffer_info)
goto err;
for (i = 0; i < rx_ring->count; i++) {
buffer_info = &rx_ring->buffer_info[i];
buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
sizeof(struct e1000_ps_page),
GFP_KERNEL);
if (!buffer_info->ps_pages)
goto err_pages;
}
desc_len = sizeof(union e1000_rx_desc_packet_split);
/* Round up to nearest 4K */
rx_ring->size = rx_ring->count * desc_len;
rx_ring->size = ALIGN(rx_ring->size, 4096);
err = e1000_alloc_ring_dma(adapter, rx_ring);
if (err)
goto err_pages;
rx_ring->next_to_clean = 0;
rx_ring->next_to_use = 0;
rx_ring->rx_skb_top = NULL;
return 0;
err_pages:
for (i = 0; i < rx_ring->count; i++) {
buffer_info = &rx_ring->buffer_info[i];
kfree(buffer_info->ps_pages);
}
err:
vfree(rx_ring->buffer_info);
e_err("Unable to allocate memory for the receive descriptor ring\n");
return err;
}
/**
* e1000_clean_tx_ring - Free Tx Buffers
* @adapter: board private structure
**/
static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
{
struct e1000_ring *tx_ring = adapter->tx_ring;
struct e1000_buffer *buffer_info;
unsigned long size;
unsigned int i;
for (i = 0; i < tx_ring->count; i++) {
buffer_info = &tx_ring->buffer_info[i];
e1000_put_txbuf(adapter, buffer_info);
}
size = sizeof(struct e1000_buffer) * tx_ring->count;
memset(tx_ring->buffer_info, 0, size);
memset(tx_ring->desc, 0, tx_ring->size);
tx_ring->next_to_use = 0;
tx_ring->next_to_clean = 0;
writel(0, adapter->hw.hw_addr + tx_ring->head);
writel(0, adapter->hw.hw_addr + tx_ring->tail);
}
/**
* e1000e_free_tx_resources - Free Tx Resources per Queue
* @adapter: board private structure
*
* Free all transmit software resources
**/
void e1000e_free_tx_resources(struct e1000_adapter *adapter)
{
struct pci_dev *pdev = adapter->pdev;
struct e1000_ring *tx_ring = adapter->tx_ring;
e1000_clean_tx_ring(adapter);
vfree(tx_ring->buffer_info);
tx_ring->buffer_info = NULL;
dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
tx_ring->dma);
tx_ring->desc = NULL;
}
/**
* e1000e_free_rx_resources - Free Rx Resources
* @adapter: board private structure
*
* Free all receive software resources
**/
void e1000e_free_rx_resources(struct e1000_adapter *adapter)
{
struct pci_dev *pdev = adapter->pdev;
struct e1000_ring *rx_ring = adapter->rx_ring;
int i;
e1000_clean_rx_ring(adapter);
for (i = 0; i < rx_ring->count; i++)
kfree(rx_ring->buffer_info[i].ps_pages);
vfree(rx_ring->buffer_info);
rx_ring->buffer_info = NULL;
dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
rx_ring->dma);
rx_ring->desc = NULL;
}
/**
* e1000_update_itr - update the dynamic ITR value based on statistics
* @adapter: pointer to adapter
* @itr_setting: current adapter->itr
* @packets: the number of packets during this measurement interval
* @bytes: the number of bytes during this measurement interval
*
* Stores a new ITR value based on packets and byte
* counts during the last interrupt. The advantage of per interrupt
* computation is faster updates and more accurate ITR for the current
* traffic pattern. Constants in this function were computed
* based on theoretical maximum wire speed and thresholds were set based
* on testing data as well as attempting to minimize response time
* while increasing bulk throughput. This functionality is controlled
* by the InterruptThrottleRate module parameter.
**/
static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
u16 itr_setting, int packets,
int bytes)
{
unsigned int retval = itr_setting;
if (packets == 0)
goto update_itr_done;
switch (itr_setting) {
case lowest_latency:
/* handle TSO and jumbo frames */
if (bytes/packets > 8000)
retval = bulk_latency;
else if ((packets < 5) && (bytes > 512))
retval = low_latency;
break;
case low_latency: /* 50 usec aka 20000 ints/s */
if (bytes > 10000) {
/* this if handles the TSO accounting */
if (bytes/packets > 8000)
retval = bulk_latency;
else if ((packets < 10) || ((bytes/packets) > 1200))
retval = bulk_latency;
else if ((packets > 35))
retval = lowest_latency;
} else if (bytes/packets > 2000) {
retval = bulk_latency;
} else if (packets <= 2 && bytes < 512) {
retval = lowest_latency;
}
break;
case bulk_latency: /* 250 usec aka 4000 ints/s */
if (bytes > 25000) {
if (packets > 35)
retval = low_latency;
} else if (bytes < 6000) {
retval = low_latency;
}
break;
}
update_itr_done:
return retval;
}
static void e1000_set_itr(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u16 current_itr;
u32 new_itr = adapter->itr;
/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
if (adapter->link_speed != SPEED_1000) {
current_itr = 0;
new_itr = 4000;
goto set_itr_now;
}
if (adapter->flags2 & FLAG2_DISABLE_AIM) {
new_itr = 0;
goto set_itr_now;
}
adapter->tx_itr = e1000_update_itr(adapter,
adapter->tx_itr,
adapter->total_tx_packets,
adapter->total_tx_bytes);
/* conservative mode (itr 3) eliminates the lowest_latency setting */
if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
adapter->tx_itr = low_latency;
adapter->rx_itr = e1000_update_itr(adapter,
adapter->rx_itr,
adapter->total_rx_packets,
adapter->total_rx_bytes);
/* conservative mode (itr 3) eliminates the lowest_latency setting */
if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
adapter->rx_itr = low_latency;
current_itr = max(adapter->rx_itr, adapter->tx_itr);
switch (current_itr) {
/* counts and packets in update_itr are dependent on these numbers */
case lowest_latency:
new_itr = 70000;
break;
case low_latency:
new_itr = 20000; /* aka hwitr = ~200 */
break;
case bulk_latency:
new_itr = 4000;
break;
default:
break;
}
set_itr_now:
if (new_itr != adapter->itr) {
/*
* this attempts to bias the interrupt rate towards Bulk
* by adding intermediate steps when interrupt rate is
* increasing
*/
new_itr = new_itr > adapter->itr ?
min(adapter->itr + (new_itr >> 2), new_itr) :
new_itr;
adapter->itr = new_itr;
adapter->rx_ring->itr_val = new_itr;
if (adapter->msix_entries)
adapter->rx_ring->set_itr = 1;
else
if (new_itr)
ew32(ITR, 1000000000 / (new_itr * 256));
else
ew32(ITR, 0);
}
}
/**
* e1000_alloc_queues - Allocate memory for all rings
* @adapter: board private structure to initialize
**/
static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
{
adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
if (!adapter->tx_ring)
goto err;
adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
if (!adapter->rx_ring)
goto err;
return 0;
err:
e_err("Unable to allocate memory for queues\n");
kfree(adapter->rx_ring);
kfree(adapter->tx_ring);
return -ENOMEM;
}
/**
* e1000_clean - NAPI Rx polling callback
* @napi: struct associated with this polling callback
* @budget: amount of packets driver is allowed to process this poll
**/
static int e1000_clean(struct napi_struct *napi, int budget)
{
struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
struct e1000_hw *hw = &adapter->hw;
struct net_device *poll_dev = adapter->netdev;
int tx_cleaned = 1, work_done = 0;
adapter = netdev_priv(poll_dev);
if (adapter->msix_entries &&
!(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
goto clean_rx;
tx_cleaned = e1000_clean_tx_irq(adapter);
clean_rx:
adapter->clean_rx(adapter, &work_done, budget);
if (!tx_cleaned)
work_done = budget;
/* If budget not fully consumed, exit the polling mode */
if (work_done < budget) {
if (adapter->itr_setting & 3)
e1000_set_itr(adapter);
napi_complete(napi);
if (!test_bit(__E1000_DOWN, &adapter->state)) {
if (adapter->msix_entries)
ew32(IMS, adapter->rx_ring->ims_val);
else
e1000_irq_enable(adapter);
}
}
return work_done;
}
static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 vfta, index;
/* don't update vlan cookie if already programmed */
if ((adapter->hw.mng_cookie.status &
E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
(vid == adapter->mng_vlan_id))
return;
/* add VID to filter table */
if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
index = (vid >> 5) & 0x7F;
vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
vfta |= (1 << (vid & 0x1F));
hw->mac.ops.write_vfta(hw, index, vfta);
}
set_bit(vid, adapter->active_vlans);
}
static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 vfta, index;
if ((adapter->hw.mng_cookie.status &
E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
(vid == adapter->mng_vlan_id)) {
/* release control to f/w */
e1000e_release_hw_control(adapter);
return;
}
/* remove VID from filter table */
if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
index = (vid >> 5) & 0x7F;
vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
vfta &= ~(1 << (vid & 0x1F));
hw->mac.ops.write_vfta(hw, index, vfta);
}
clear_bit(vid, adapter->active_vlans);
}
/**
* e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
* @adapter: board private structure to initialize
**/
static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct e1000_hw *hw = &adapter->hw;
u32 rctl;
if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
/* disable VLAN receive filtering */
rctl = er32(RCTL);
rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
ew32(RCTL, rctl);
if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
}
}
}
/**
* e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
* @adapter: board private structure to initialize
**/
static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 rctl;
if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
/* enable VLAN receive filtering */
rctl = er32(RCTL);
rctl |= E1000_RCTL_VFE;
rctl &= ~E1000_RCTL_CFIEN;
ew32(RCTL, rctl);
}
}
/**
* e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
* @adapter: board private structure to initialize
**/
static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 ctrl;
/* disable VLAN tag insert/strip */
ctrl = er32(CTRL);
ctrl &= ~E1000_CTRL_VME;
ew32(CTRL, ctrl);
}
/**
* e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
* @adapter: board private structure to initialize
**/
static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 ctrl;
/* enable VLAN tag insert/strip */
ctrl = er32(CTRL);
ctrl |= E1000_CTRL_VME;
ew32(CTRL, ctrl);
}
static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
u16 vid = adapter->hw.mng_cookie.vlan_id;
u16 old_vid = adapter->mng_vlan_id;
if (adapter->hw.mng_cookie.status &
E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
e1000_vlan_rx_add_vid(netdev, vid);
adapter->mng_vlan_id = vid;
}
if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
e1000_vlan_rx_kill_vid(netdev, old_vid);
}
static void e1000_restore_vlan(struct e1000_adapter *adapter)
{
u16 vid;
e1000_vlan_rx_add_vid(adapter->netdev, 0);
for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
e1000_vlan_rx_add_vid(adapter->netdev, vid);
}
static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 manc, manc2h, mdef, i, j;
if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
return;
manc = er32(MANC);
/*
* enable receiving management packets to the host. this will probably
* generate destination unreachable messages from the host OS, but
* the packets will be handled on SMBUS
*/
manc |= E1000_MANC_EN_MNG2HOST;
manc2h = er32(MANC2H);
switch (hw->mac.type) {
default:
manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
break;
case e1000_82574:
case e1000_82583:
/*
* Check if IPMI pass-through decision filter already exists;
* if so, enable it.
*/
for (i = 0, j = 0; i < 8; i++) {
mdef = er32(MDEF(i));
/* Ignore filters with anything other than IPMI ports */
if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
continue;
/* Enable this decision filter in MANC2H */
if (mdef)
manc2h |= (1 << i);
j |= mdef;
}
if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
break;
/* Create new decision filter in an empty filter */
for (i = 0, j = 0; i < 8; i++)
if (er32(MDEF(i)) == 0) {
ew32(MDEF(i), (E1000_MDEF_PORT_623 |
E1000_MDEF_PORT_664));
manc2h |= (1 << 1);
j++;
break;
}
if (!j)
e_warn("Unable to create IPMI pass-through filter\n");
break;
}
ew32(MANC2H, manc2h);
ew32(MANC, manc);
}
/**
* e1000_configure_tx - Configure Transmit Unit after Reset
* @adapter: board private structure
*
* Configure the Tx unit of the MAC after a reset.
**/
static void e1000_configure_tx(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
struct e1000_ring *tx_ring = adapter->tx_ring;
u64 tdba;
u32 tdlen, tctl, tipg, tarc;
u32 ipgr1, ipgr2;
/* Setup the HW Tx Head and Tail descriptor pointers */
tdba = tx_ring->dma;
tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
ew32(TDBAL, (tdba & DMA_BIT_MASK(32)));
ew32(TDBAH, (tdba >> 32));
ew32(TDLEN, tdlen);
ew32(TDH, 0);
ew32(TDT, 0);
tx_ring->head = E1000_TDH;
tx_ring->tail = E1000_TDT;
/* Set the default values for the Tx Inter Packet Gap timer */
tipg = DEFAULT_82543_TIPG_IPGT_COPPER; /* 8 */
ipgr1 = DEFAULT_82543_TIPG_IPGR1; /* 8 */
ipgr2 = DEFAULT_82543_TIPG_IPGR2; /* 6 */
if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /* 7 */
tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
ew32(TIPG, tipg);
/* Set the Tx Interrupt Delay register */
ew32(TIDV, adapter->tx_int_delay);
/* Tx irq moderation */
ew32(TADV, adapter->tx_abs_int_delay);
if (adapter->flags2 & FLAG2_DMA_BURST) {
u32 txdctl = er32(TXDCTL(0));
txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
E1000_TXDCTL_WTHRESH);
/*
* set up some performance related parameters to encourage the
* hardware to use the bus more efficiently in bursts, depends
* on the tx_int_delay to be enabled,
* wthresh = 5 ==> burst write a cacheline (64 bytes) at a time
* hthresh = 1 ==> prefetch when one or more available
* pthresh = 0x1f ==> prefetch if internal cache 31 or less
* BEWARE: this seems to work but should be considered first if
* there are Tx hangs or other Tx related bugs
*/
txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
ew32(TXDCTL(0), txdctl);
/* erratum work around: set txdctl the same for both queues */
ew32(TXDCTL(1), txdctl);
}
/* Program the Transmit Control Register */
tctl = er32(TCTL);
tctl &= ~E1000_TCTL_CT;
tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
tarc = er32(TARC(0));
/*
* set the speed mode bit, we'll clear it if we're not at
* gigabit link later
*/
#define SPEED_MODE_BIT (1 << 21)
tarc |= SPEED_MODE_BIT;
ew32(TARC(0), tarc);
}
/* errata: program both queues to unweighted RR */
if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
tarc = er32(TARC(0));
tarc |= 1;
ew32(TARC(0), tarc);
tarc = er32(TARC(1));
tarc |= 1;
ew32(TARC(1), tarc);
}
/* Setup Transmit Descriptor Settings for eop descriptor */
adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
/* only set IDE if we are delaying interrupts using the timers */
if (adapter->tx_int_delay)
adapter->txd_cmd |= E1000_TXD_CMD_IDE;
/* enable Report Status bit */
adapter->txd_cmd |= E1000_TXD_CMD_RS;
ew32(TCTL, tctl);
e1000e_config_collision_dist(hw);
}
/**
* e1000_setup_rctl - configure the receive control registers
* @adapter: Board private structure
**/
#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
(((S) & (PAGE_SIZE - 1)) ? 1 : 0))
static void e1000_setup_rctl(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 rctl, rfctl;
u32 pages = 0;
/* Workaround Si errata on 82579 - configure jumbo frame flow */
if (hw->mac.type == e1000_pch2lan) {
s32 ret_val __attribute__ ((unused));
if (adapter->netdev->mtu > ETH_DATA_LEN)
ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
else
ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
if (ret_val)
e_dbg("failed to enable jumbo frame workaround mode\n");
}
/* Program MC offset vector base */
rctl = er32(RCTL);
rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
/* Do not Store bad packets */
rctl &= ~E1000_RCTL_SBP;
/* Enable Long Packet receive */
if (adapter->netdev->mtu <= ETH_DATA_LEN)
rctl &= ~E1000_RCTL_LPE;
else
rctl |= E1000_RCTL_LPE;
/* Some systems expect that the CRC is included in SMBUS traffic. The
* hardware strips the CRC before sending to both SMBUS (BMC) and to
* host memory when this is enabled
*/
if (adapter->flags2 & FLAG2_CRC_STRIPPING)
rctl |= E1000_RCTL_SECRC;
/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
u16 phy_data;
e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
phy_data &= 0xfff8;
phy_data |= (1 << 2);
e1e_wphy(hw, PHY_REG(770, 26), phy_data);
e1e_rphy(hw, 22, &phy_data);
phy_data &= 0x0fff;
phy_data |= (1 << 14);
e1e_wphy(hw, 0x10, 0x2823);
e1e_wphy(hw, 0x11, 0x0003);
e1e_wphy(hw, 22, phy_data);
}
/* Setup buffer sizes */
rctl &= ~E1000_RCTL_SZ_4096;
rctl |= E1000_RCTL_BSEX;
switch (adapter->rx_buffer_len) {
case 2048:
default:
rctl |= E1000_RCTL_SZ_2048;
rctl &= ~E1000_RCTL_BSEX;
break;
case 4096:
rctl |= E1000_RCTL_SZ_4096;
break;
case 8192:
rctl |= E1000_RCTL_SZ_8192;
break;
case 16384:
rctl |= E1000_RCTL_SZ_16384;
break;
}
/* Enable Extended Status in all Receive Descriptors */
rfctl = er32(RFCTL);
rfctl |= E1000_RFCTL_EXTEN;
/*
* 82571 and greater support packet-split where the protocol
* header is placed in skb->data and the packet data is
* placed in pages hanging off of skb_shinfo(skb)->nr_frags.
* In the case of a non-split, skb->data is linearly filled,
* followed by the page buffers. Therefore, skb->data is
* sized to hold the largest protocol header.
*
* allocations using alloc_page take too long for regular MTU
* so only enable packet split for jumbo frames
*
* Using pages when the page size is greater than 16k wastes
* a lot of memory, since we allocate 3 pages at all times
* per packet.
*/
pages = PAGE_USE_COUNT(adapter->netdev->mtu);
if (!(adapter->flags & FLAG_HAS_ERT) && (pages <= 3) &&
(PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
adapter->rx_ps_pages = pages;
else
adapter->rx_ps_pages = 0;
if (adapter->rx_ps_pages) {
u32 psrctl = 0;
/*
* disable packet split support for IPv6 extension headers,
* because some malformed IPv6 headers can hang the Rx
*/
rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
E1000_RFCTL_NEW_IPV6_EXT_DIS);
/* Enable Packet split descriptors */
rctl |= E1000_RCTL_DTYP_PS;
psrctl |= adapter->rx_ps_bsize0 >>
E1000_PSRCTL_BSIZE0_SHIFT;
switch (adapter->rx_ps_pages) {
case 3:
psrctl |= PAGE_SIZE <<
E1000_PSRCTL_BSIZE3_SHIFT;
case 2:
psrctl |= PAGE_SIZE <<
E1000_PSRCTL_BSIZE2_SHIFT;
case 1:
psrctl |= PAGE_SIZE >>
E1000_PSRCTL_BSIZE1_SHIFT;
break;
}
ew32(PSRCTL, psrctl);
}
ew32(RFCTL, rfctl);
ew32(RCTL, rctl);
/* just started the receive unit, no need to restart */
adapter->flags &= ~FLAG_RX_RESTART_NOW;
}
/**
* e1000_configure_rx - Configure Receive Unit after Reset
* @adapter: board private structure
*
* Configure the Rx unit of the MAC after a reset.
**/
static void e1000_configure_rx(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
struct e1000_ring *rx_ring = adapter->rx_ring;
u64 rdba;
u32 rdlen, rctl, rxcsum, ctrl_ext;
if (adapter->rx_ps_pages) {
/* this is a 32 byte descriptor */
rdlen = rx_ring->count *
sizeof(union e1000_rx_desc_packet_split);
adapter->clean_rx = e1000_clean_rx_irq_ps;
adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
adapter->clean_rx = e1000_clean_jumbo_rx_irq;
adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
} else {
rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
adapter->clean_rx = e1000_clean_rx_irq;
adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
}
/* disable receives while setting up the descriptors */
rctl = er32(RCTL);
if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
ew32(RCTL, rctl & ~E1000_RCTL_EN);
e1e_flush();
usleep_range(10000, 20000);
if (adapter->flags2 & FLAG2_DMA_BURST) {
/*
* set the writeback threshold (only takes effect if the RDTR
* is set). set GRAN=1 and write back up to 0x4 worth, and
* enable prefetching of 0x20 Rx descriptors
* granularity = 01
* wthresh = 04,
* hthresh = 04,
* pthresh = 0x20
*/
ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
/*
* override the delay timers for enabling bursting, only if
* the value was not set by the user via module options
*/
if (adapter->rx_int_delay == DEFAULT_RDTR)
adapter->rx_int_delay = BURST_RDTR;
if (adapter->rx_abs_int_delay == DEFAULT_RADV)
adapter->rx_abs_int_delay = BURST_RADV;
}
/* set the Receive Delay Timer Register */
ew32(RDTR, adapter->rx_int_delay);
/* irq moderation */
ew32(RADV, adapter->rx_abs_int_delay);
if ((adapter->itr_setting != 0) && (adapter->itr != 0))
ew32(ITR, 1000000000 / (adapter->itr * 256));
ctrl_ext = er32(CTRL_EXT);
/* Auto-Mask interrupts upon ICR access */
ctrl_ext |= E1000_CTRL_EXT_IAME;
ew32(IAM, 0xffffffff);
ew32(CTRL_EXT, ctrl_ext);
e1e_flush();
/*
* Setup the HW Rx Head and Tail Descriptor Pointers and
* the Base and Length of the Rx Descriptor Ring
*/
rdba = rx_ring->dma;
ew32(RDBAL, (rdba & DMA_BIT_MASK(32)));
ew32(RDBAH, (rdba >> 32));
ew32(RDLEN, rdlen);
ew32(RDH, 0);
ew32(RDT, 0);
rx_ring->head = E1000_RDH;
rx_ring->tail = E1000_RDT;
/* Enable Receive Checksum Offload for TCP and UDP */
rxcsum = er32(RXCSUM);
if (adapter->netdev->features & NETIF_F_RXCSUM) {
rxcsum |= E1000_RXCSUM_TUOFL;
/*
* IPv4 payload checksum for UDP fragments must be
* used in conjunction with packet-split.
*/
if (adapter->rx_ps_pages)
rxcsum |= E1000_RXCSUM_IPPCSE;
} else {
rxcsum &= ~E1000_RXCSUM_TUOFL;
/* no need to clear IPPCSE as it defaults to 0 */
}
ew32(RXCSUM, rxcsum);
/*
* Enable early receives on supported devices, only takes effect when
* packet size is equal or larger than the specified value (in 8 byte
* units), e.g. using jumbo frames when setting to E1000_ERT_2048
*/
if ((adapter->flags & FLAG_HAS_ERT) ||
(adapter->hw.mac.type == e1000_pch2lan)) {
if (adapter->netdev->mtu > ETH_DATA_LEN) {
u32 rxdctl = er32(RXDCTL(0));
ew32(RXDCTL(0), rxdctl | 0x3);
if (adapter->flags & FLAG_HAS_ERT)
ew32(ERT, E1000_ERT_2048 | (1 << 13));
/*
* With jumbo frames and early-receive enabled,
* excessive C-state transition latencies result in
* dropped transactions.
*/
pm_qos_update_request(&adapter->netdev->pm_qos_req, 55);
} else {
pm_qos_update_request(&adapter->netdev->pm_qos_req,
PM_QOS_DEFAULT_VALUE);
}
}
/* Enable Receives */
ew32(RCTL, rctl);
}
/**
* e1000_update_mc_addr_list - Update Multicast addresses
* @hw: pointer to the HW structure
* @mc_addr_list: array of multicast addresses to program
* @mc_addr_count: number of multicast addresses to program
*
* Updates the Multicast Table Array.
* The caller must have a packed mc_addr_list of multicast addresses.
**/
static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
u32 mc_addr_count)
{
hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count);
}
/**
* e1000_set_multi - Multicast and Promiscuous mode set
* @netdev: network interface device structure
*
* The set_multi entry point is called whenever the multicast address
* list or the network interface flags are updated. This routine is
* responsible for configuring the hardware for proper multicast,
* promiscuous mode, and all-multi behavior.
**/
static void e1000_set_multi(struct net_device *netdev)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
struct netdev_hw_addr *ha;
u8 *mta_list;
u32 rctl;
/* Check for Promiscuous and All Multicast modes */
rctl = er32(RCTL);
if (netdev->flags & IFF_PROMISC) {
rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
rctl &= ~E1000_RCTL_VFE;
/* Do not hardware filter VLANs in promisc mode */
e1000e_vlan_filter_disable(adapter);
} else {
if (netdev->flags & IFF_ALLMULTI) {
rctl |= E1000_RCTL_MPE;
rctl &= ~E1000_RCTL_UPE;
} else {
rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
}
e1000e_vlan_filter_enable(adapter);
}
ew32(RCTL, rctl);
if (!netdev_mc_empty(netdev)) {
int i = 0;
mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
if (!mta_list)
return;
/* prepare a packed array of only addresses. */
netdev_for_each_mc_addr(ha, netdev)
memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
e1000_update_mc_addr_list(hw, mta_list, i);
kfree(mta_list);
} else {
/*
* if we're called from probe, we might not have
* anything to do here, so clear out the list
*/
e1000_update_mc_addr_list(hw, NULL, 0);
}
if (netdev->features & NETIF_F_HW_VLAN_RX)
e1000e_vlan_strip_enable(adapter);
else
e1000e_vlan_strip_disable(adapter);
}
/**
* e1000_configure - configure the hardware for Rx and Tx
* @adapter: private board structure
**/
static void e1000_configure(struct e1000_adapter *adapter)
{
e1000_set_multi(adapter->netdev);
e1000_restore_vlan(adapter);
e1000_init_manageability_pt(adapter);
e1000_configure_tx(adapter);
e1000_setup_rctl(adapter);
e1000_configure_rx(adapter);
if (adapter->ecdev) {
adapter->alloc_rx_buf(adapter, adapter->rx_ring->count, GFP_KERNEL);
} else {
adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring),
GFP_KERNEL);
}
}
/**
* e1000e_power_up_phy - restore link in case the phy was powered down
* @adapter: address of board private structure
*
* The phy may be powered down to save power and turn off link when the
* driver is unloaded and wake on lan is not enabled (among others)
* *** this routine MUST be followed by a call to e1000e_reset ***
**/
void e1000e_power_up_phy(struct e1000_adapter *adapter)
{
if (adapter->hw.phy.ops.power_up)
adapter->hw.phy.ops.power_up(&adapter->hw);
adapter->hw.mac.ops.setup_link(&adapter->hw);
}
/**
* e1000_power_down_phy - Power down the PHY
*
* Power down the PHY so no link is implied when interface is down.
* The PHY cannot be powered down if management or WoL is active.
*/
static void e1000_power_down_phy(struct e1000_adapter *adapter)
{
/* WoL is enabled */
if (adapter->wol)
return;
if (adapter->hw.phy.ops.power_down)
adapter->hw.phy.ops.power_down(&adapter->hw);
}
/**
* e1000e_reset - bring the hardware into a known good state
*
* This function boots the hardware and enables some settings that
* require a configuration cycle of the hardware - those cannot be
* set/changed during runtime. After reset the device needs to be
* properly configured for Rx, Tx etc.
*/
void e1000e_reset(struct e1000_adapter *adapter)
{
struct e1000_mac_info *mac = &adapter->hw.mac;
struct e1000_fc_info *fc = &adapter->hw.fc;
struct e1000_hw *hw = &adapter->hw;
u32 tx_space, min_tx_space, min_rx_space;
u32 pba = adapter->pba;
u16 hwm;
/* reset Packet Buffer Allocation to default */
ew32(PBA, pba);
if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
/*
* To maintain wire speed transmits, the Tx FIFO should be
* large enough to accommodate two full transmit packets,
* rounded up to the next 1KB and expressed in KB. Likewise,
* the Rx FIFO should be large enough to accommodate at least
* one full receive packet and is similarly rounded up and
* expressed in KB.
*/
pba = er32(PBA);
/* upper 16 bits has Tx packet buffer allocation size in KB */
tx_space = pba >> 16;
/* lower 16 bits has Rx packet buffer allocation size in KB */
pba &= 0xffff;
/*
* the Tx fifo also stores 16 bytes of information about the Tx
* but don't include ethernet FCS because hardware appends it
*/
min_tx_space = (adapter->max_frame_size +
sizeof(struct e1000_tx_desc) -
ETH_FCS_LEN) * 2;
min_tx_space = ALIGN(min_tx_space, 1024);
min_tx_space >>= 10;
/* software strips receive CRC, so leave room for it */
min_rx_space = adapter->max_frame_size;
min_rx_space = ALIGN(min_rx_space, 1024);
min_rx_space >>= 10;
/*
* If current Tx allocation is less than the min Tx FIFO size,
* and the min Tx FIFO size is less than the current Rx FIFO
* allocation, take space away from current Rx allocation
*/
if ((tx_space < min_tx_space) &&
((min_tx_space - tx_space) < pba)) {
pba -= min_tx_space - tx_space;
/*
* if short on Rx space, Rx wins and must trump Tx
* adjustment or use Early Receive if available
*/
if ((pba < min_rx_space) &&
(!(adapter->flags & FLAG_HAS_ERT)))
/* ERT enabled in e1000_configure_rx */
pba = min_rx_space;
}
ew32(PBA, pba);
}
/*
* flow control settings
*
* The high water mark must be low enough to fit one full frame
* (or the size used for early receive) above it in the Rx FIFO.
* Set it to the lower of:
* - 90% of the Rx FIFO size, and
* - the full Rx FIFO size minus the early receive size (for parts
* with ERT support assuming ERT set to E1000_ERT_2048), or
* - the full Rx FIFO size minus one full frame
*/
if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
fc->pause_time = 0xFFFF;
else
fc->pause_time = E1000_FC_PAUSE_TIME;
fc->send_xon = 1;
fc->current_mode = fc->requested_mode;
switch (hw->mac.type) {
default:
if ((adapter->flags & FLAG_HAS_ERT) &&
(adapter->netdev->mtu > ETH_DATA_LEN))
hwm = min(((pba << 10) * 9 / 10),
((pba << 10) - (E1000_ERT_2048 << 3)));
else
hwm = min(((pba << 10) * 9 / 10),
((pba << 10) - adapter->max_frame_size));
fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
fc->low_water = fc->high_water - 8;
break;
case e1000_pchlan:
/*
* Workaround PCH LOM adapter hangs with certain network
* loads. If hangs persist, try disabling Tx flow control.
*/
if (adapter->netdev->mtu > ETH_DATA_LEN) {
fc->high_water = 0x3500;
fc->low_water = 0x1500;
} else {
fc->high_water = 0x5000;
fc->low_water = 0x3000;
}
fc->refresh_time = 0x1000;
break;
case e1000_pch2lan:
fc->high_water = 0x05C20;
fc->low_water = 0x05048;
fc->pause_time = 0x0650;
fc->refresh_time = 0x0400;
if (adapter->netdev->mtu > ETH_DATA_LEN) {
pba = 14;
ew32(PBA, pba);
}
break;
}
/*
* Disable Adaptive Interrupt Moderation if 2 full packets cannot
* fit in receive buffer and early-receive not supported.
*/
if (adapter->itr_setting & 0x3) {
if (((adapter->max_frame_size * 2) > (pba << 10)) &&
!(adapter->flags & FLAG_HAS_ERT)) {
if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
dev_info(&adapter->pdev->dev,
"Interrupt Throttle Rate turned off\n");
adapter->flags2 |= FLAG2_DISABLE_AIM;
ew32(ITR, 0);
}
} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
dev_info(&adapter->pdev->dev,
"Interrupt Throttle Rate turned on\n");
adapter->flags2 &= ~FLAG2_DISABLE_AIM;
adapter->itr = 20000;
ew32(ITR, 1000000000 / (adapter->itr * 256));
}
}
/* Allow time for pending master requests to run */
mac->ops.reset_hw(hw);
/*
* For parts with AMT enabled, let the firmware know
* that the network interface is in control
*/
if (adapter->flags & FLAG_HAS_AMT)
e1000e_get_hw_control(adapter);
ew32(WUC, 0);
if (mac->ops.init_hw(hw))
e_err("Hardware Error\n");
e1000_update_mng_vlan(adapter);
/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
ew32(VET, ETH_P_8021Q);
e1000e_reset_adaptive(hw);
if (!netif_running(adapter->netdev) &&
!test_bit(__E1000_TESTING, &adapter->state)) {
e1000_power_down_phy(adapter);
return;
}
e1000_get_phy_info(hw);
if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
!(adapter->flags & FLAG_SMART_POWER_DOWN)) {
u16 phy_data = 0;
/*
* speed up time to link by disabling smart power down, ignore
* the return value of this function because there is nothing
* different we would do if it failed
*/
e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
phy_data &= ~IGP02E1000_PM_SPD;
e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
}
}
int e1000e_up(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
/* hardware has been reset, we need to reload some things */
e1000_configure(adapter);
clear_bit(__E1000_DOWN, &adapter->state);
if (!adapter->ecdev) {
napi_enable(&adapter->napi);
}
if (adapter->msix_entries)
e1000_configure_msix(adapter);
if (!adapter->ecdev) {
e1000_irq_enable(adapter);
netif_start_queue(adapter->netdev);
/* fire a link change interrupt to start the watchdog */
if (adapter->msix_entries)
ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
else
ew32(ICS, E1000_ICS_LSC);
}
return 0;
}
static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
if (!(adapter->flags2 & FLAG2_DMA_BURST))
return;
/* flush pending descriptor writebacks to memory */
ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
/* execute the writes immediately */
e1e_flush();
}
static void e1000e_update_stats(struct e1000_adapter *adapter);
void e1000e_down(struct e1000_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct e1000_hw *hw = &adapter->hw;
u32 tctl, rctl;
/*
* signal that we're down so the interrupt handler does not
* reschedule our watchdog timer
*/
set_bit(__E1000_DOWN, &adapter->state);
/* disable receives in the hardware */
rctl = er32(RCTL);
if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
ew32(RCTL, rctl & ~E1000_RCTL_EN);
/* flush and sleep below */
if (!adapter->ecdev)
netif_stop_queue(netdev);
/* disable transmits in the hardware */
tctl = er32(TCTL);
tctl &= ~E1000_TCTL_EN;
ew32(TCTL, tctl);
/* flush both disables and wait for them to finish */
e1e_flush();
usleep_range(10000, 20000);
if (!adapter->ecdev) {
napi_disable(&adapter->napi);
e1000_irq_disable(adapter);
del_timer_sync(&adapter->watchdog_timer);
del_timer_sync(&adapter->phy_info_timer);
}
if (adapter->ecdev) {
ecdev_set_link(adapter->ecdev, 0);
} else {
netif_carrier_off(netdev);
}
spin_lock(&adapter->stats64_lock);
e1000e_update_stats(adapter);
spin_unlock(&adapter->stats64_lock);
e1000e_flush_descriptors(adapter);
e1000_clean_tx_ring(adapter);
e1000_clean_rx_ring(adapter);
adapter->link_speed = 0;
adapter->link_duplex = 0;
if (!pci_channel_offline(adapter->pdev))
e1000e_reset(adapter);
/*
* TODO: for power management, we could drop the link and
* pci_disable_device here.
*/
}
void e1000e_reinit_locked(struct e1000_adapter *adapter)
{
might_sleep();
while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
usleep_range(1000, 2000);
e1000e_down(adapter);
e1000e_up(adapter);
clear_bit(__E1000_RESETTING, &adapter->state);
}
/**
* e1000_sw_init - Initialize general software structures (struct e1000_adapter)
* @adapter: board private structure to initialize
*
* e1000_sw_init initializes the Adapter private data structure.
* Fields are initialized based on PCI device information and
* OS network device settings (MTU size).
**/
static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
adapter->rx_ps_bsize0 = 128;
adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
spin_lock_init(&adapter->stats64_lock);
e1000e_set_interrupt_capability(adapter);
if (e1000_alloc_queues(adapter))
return -ENOMEM;
/* Explicitly disable IRQ since the NIC can be in any state. */
e1000_irq_disable(adapter);
set_bit(__E1000_DOWN, &adapter->state);
return 0;
}
/**
* e1000_intr_msi_test - Interrupt Handler
* @irq: interrupt number
* @data: pointer to a network interface device structure
**/
static irqreturn_t e1000_intr_msi_test(int irq, void *data)
{
struct net_device *netdev = data;
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 icr = er32(ICR);
e_dbg("icr is %08X\n", icr);
if (icr & E1000_ICR_RXSEQ) {
adapter->flags &= ~FLAG_MSI_TEST_FAILED;
wmb();
}
return IRQ_HANDLED;
}
/**
* e1000_test_msi_interrupt - Returns 0 for successful test
* @adapter: board private struct
*
* code flow taken from tg3.c
**/
static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct e1000_hw *hw = &adapter->hw;
int err;
/* poll_enable hasn't been called yet, so don't need disable */
/* clear any pending events */
er32(ICR);
/* free the real vector and request a test handler */
e1000_free_irq(adapter);
e1000e_reset_interrupt_capability(adapter);
/* Assume that the test fails, if it succeeds then the test
* MSI irq handler will unset this flag */
adapter->flags |= FLAG_MSI_TEST_FAILED;
err = pci_enable_msi(adapter->pdev);
if (err)
goto msi_test_failed;
err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
netdev->name, netdev);
if (err) {
pci_disable_msi(adapter->pdev);
goto msi_test_failed;
}
wmb();
e1000_irq_enable(adapter);
/* fire an unusual interrupt on the test handler */
ew32(ICS, E1000_ICS_RXSEQ);
e1e_flush();
msleep(50);
e1000_irq_disable(adapter);
rmb();
if (adapter->flags & FLAG_MSI_TEST_FAILED) {
adapter->int_mode = E1000E_INT_MODE_LEGACY;
e_info("MSI interrupt test failed, using legacy interrupt.\n");
} else
e_dbg("MSI interrupt test succeeded!\n");
free_irq(adapter->pdev->irq, netdev);
pci_disable_msi(adapter->pdev);
msi_test_failed:
e1000e_set_interrupt_capability(adapter);
return e1000_request_irq(adapter);
}
/**
* e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
* @adapter: board private struct
*
* code flow taken from tg3.c, called with e1000 interrupts disabled.
**/
static int e1000_test_msi(struct e1000_adapter *adapter)
{
int err;
u16 pci_cmd;
if (!(adapter->flags & FLAG_MSI_ENABLED))
return 0;
/* disable SERR in case the MSI write causes a master abort */
pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
if (pci_cmd & PCI_COMMAND_SERR)
pci_write_config_word(adapter->pdev, PCI_COMMAND,
pci_cmd & ~PCI_COMMAND_SERR);
err = e1000_test_msi_interrupt(adapter);
/* re-enable SERR */
if (pci_cmd & PCI_COMMAND_SERR) {
pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
pci_cmd |= PCI_COMMAND_SERR;
pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
}
return err;
}
/**
* e1000_open - Called when a network interface is made active
* @netdev: network interface device structure
*
* Returns 0 on success, negative value on failure
*
* The open entry point is called when a network interface is made
* active by the system (IFF_UP). At this point all resources needed
* for transmit and receive operations are allocated, the interrupt
* handler is registered with the OS, the watchdog timer is started,
* and the stack is notified that the interface is ready.
**/
static int e1000_open(struct net_device *netdev)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
struct pci_dev *pdev = adapter->pdev;
int err;
/* disallow open during test */
if (test_bit(__E1000_TESTING, &adapter->state))
return -EBUSY;
pm_runtime_get_sync(&pdev->dev);
if (adapter->ecdev) {
ecdev_set_link(adapter->ecdev, 0);
} else {
netif_carrier_off(netdev);
}
/* allocate transmit descriptors */
err = e1000e_setup_tx_resources(adapter);
if (err)
goto err_setup_tx;
/* allocate receive descriptors */
err = e1000e_setup_rx_resources(adapter);
if (err)
goto err_setup_rx;
/*
* If AMT is enabled, let the firmware know that the network
* interface is now open and reset the part to a known state.
*/
if (adapter->flags & FLAG_HAS_AMT) {
e1000e_get_hw_control(adapter);
e1000e_reset(adapter);
}
e1000e_power_up_phy(adapter);
adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
if ((adapter->hw.mng_cookie.status &
E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
e1000_update_mng_vlan(adapter);
/* DMA latency requirement to workaround early-receive/jumbo issue */
if ((adapter->flags & FLAG_HAS_ERT) ||
(adapter->hw.mac.type == e1000_pch2lan))
pm_qos_add_request(&adapter->netdev->pm_qos_req,
PM_QOS_CPU_DMA_LATENCY,
PM_QOS_DEFAULT_VALUE);
/*
* before we allocate an interrupt, we must be ready to handle it.
* Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
* as soon as we call pci_request_irq, so we have to setup our
* clean_rx handler before we do so.
*/
e1000_configure(adapter);
err = e1000_request_irq(adapter);
if (err)
goto err_req_irq;
/*
* Work around PCIe errata with MSI interrupts causing some chipsets to
* ignore e1000e MSI messages, which means we need to test our MSI
* interrupt now
*/
if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
err = e1000_test_msi(adapter);
if (err) {
e_err("Interrupt allocation failed\n");
goto err_req_irq;
}
}
/* From here on the code is the same as e1000e_up() */
clear_bit(__E1000_DOWN, &adapter->state);
if (!adapter->ecdev) {
napi_enable(&adapter->napi);
e1000_irq_enable(adapter);
adapter->tx_hang_recheck = false;
netif_start_queue(netdev);
adapter->idle_check = true;
pm_runtime_put(&pdev->dev);
/* fire a link status change interrupt to start the watchdog */
if (adapter->msix_entries)
ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
else
ew32(ICS, E1000_ICS_LSC);
}
return 0;
err_req_irq:
e1000e_release_hw_control(adapter);
e1000_power_down_phy(adapter);
e1000e_free_rx_resources(adapter);
err_setup_rx:
e1000e_free_tx_resources(adapter);
err_setup_tx:
e1000e_reset(adapter);
pm_runtime_put_sync(&pdev->dev);
return err;
}
/**
* e1000_close - Disables a network interface
* @netdev: network interface device structure
*
* Returns 0, this is not allowed to fail
*
* The close entry point is called when an interface is de-activated
* by the OS. The hardware is still under the drivers control, but
* needs to be disabled. A global MAC reset is issued to stop the
* hardware, and all transmit and receive resources are freed.
**/
static int e1000_close(struct net_device *netdev)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct pci_dev *pdev = adapter->pdev;
WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
pm_runtime_get_sync(&pdev->dev);
if (!test_bit(__E1000_DOWN, &adapter->state)) {
e1000e_down(adapter);
e1000_free_irq(adapter);
}
e1000_power_down_phy(adapter);
e1000e_free_tx_resources(adapter);
e1000e_free_rx_resources(adapter);
/*
* kill manageability vlan ID if supported, but not if a vlan with
* the same ID is registered on the host OS (let 8021q kill it)
*/
if (adapter->hw.mng_cookie.status &
E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
/*
* If AMT is enabled, let the firmware know that the network
* interface is now closed
*/
if ((adapter->flags & FLAG_HAS_AMT) &&
!test_bit(__E1000_TESTING, &adapter->state))
e1000e_release_hw_control(adapter);
if ((adapter->flags & FLAG_HAS_ERT) ||
(adapter->hw.mac.type == e1000_pch2lan))
pm_qos_remove_request(&adapter->netdev->pm_qos_req);
pm_runtime_put_sync(&pdev->dev);
return 0;
}
/**
* e1000_set_mac - Change the Ethernet Address of the NIC
* @netdev: network interface device structure
* @p: pointer to an address structure
*
* Returns 0 on success, negative on failure
**/
static int e1000_set_mac(struct net_device *netdev, void *p)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct sockaddr *addr = p;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
/* activate the work around */
e1000e_set_laa_state_82571(&adapter->hw, 1);
/*
* Hold a copy of the LAA in RAR[14] This is done so that
* between the time RAR[0] gets clobbered and the time it
* gets fixed (in e1000_watchdog), the actual LAA is in one
* of the RARs and no incoming packets directed to this port
* are dropped. Eventually the LAA will be in RAR[0] and
* RAR[14]
*/
e1000e_rar_set(&adapter->hw,
adapter->hw.mac.addr,
adapter->hw.mac.rar_entry_count - 1);
}
return 0;
}
/**
* e1000e_update_phy_task - work thread to update phy
* @work: pointer to our work struct
*
* this worker thread exists because we must acquire a
* semaphore to read the phy, which we could msleep while
* waiting for it, and we can't msleep in a timer.
**/
static void e1000e_update_phy_task(struct work_struct *work)
{
struct e1000_adapter *adapter = container_of(work,
struct e1000_adapter, update_phy_task);
if (test_bit(__E1000_DOWN, &adapter->state))
return;
e1000_get_phy_info(&adapter->hw);
}
/*
* Need to wait a few seconds after link up to get diagnostic information from
* the phy
*/
static void e1000_update_phy_info(unsigned long data)
{
struct e1000_adapter *adapter = (struct e1000_adapter *) data;
if (test_bit(__E1000_DOWN, &adapter->state))
return;
schedule_work(&adapter->update_phy_task);
}
/**
* e1000e_update_phy_stats - Update the PHY statistics counters
* @adapter: board private structure
*
* Read/clear the upper 16-bit PHY registers and read/accumulate lower
**/
static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
s32 ret_val;
u16 phy_data;
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return;
/*
* A page set is expensive so check if already on desired page.
* If not, set to the page with the PHY status registers.
*/
hw->phy.addr = 1;
ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
&phy_data);
if (ret_val)
goto release;
if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
ret_val = hw->phy.ops.set_page(hw,
HV_STATS_PAGE << IGP_PAGE_SHIFT);
if (ret_val)
goto release;
}
/* Single Collision Count */
hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
if (!ret_val)
adapter->stats.scc += phy_data;
/* Excessive Collision Count */
hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
if (!ret_val)
adapter->stats.ecol += phy_data;
/* Multiple Collision Count */
hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
if (!ret_val)
adapter->stats.mcc += phy_data;
/* Late Collision Count */
hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
if (!ret_val)
adapter->stats.latecol += phy_data;
/* Collision Count - also used for adaptive IFS */
hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
if (!ret_val)
hw->mac.collision_delta = phy_data;
/* Defer Count */
hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
if (!ret_val)
adapter->stats.dc += phy_data;
/* Transmit with no CRS */
hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
if (!ret_val)
adapter->stats.tncrs += phy_data;
release:
hw->phy.ops.release(hw);
}
/**
* e1000e_update_stats - Update the board statistics counters
* @adapter: board private structure
**/
static void e1000e_update_stats(struct e1000_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct e1000_hw *hw = &adapter->hw;
struct pci_dev *pdev = adapter->pdev;
/*
* Prevent stats update while adapter is being reset, or if the pci
* connection is down.
*/
if (adapter->link_speed == 0)
return;
if (pci_channel_offline(pdev))
return;
adapter->stats.crcerrs += er32(CRCERRS);
adapter->stats.gprc += er32(GPRC);
adapter->stats.gorc += er32(GORCL);
er32(GORCH); /* Clear gorc */
adapter->stats.bprc += er32(BPRC);
adapter->stats.mprc += er32(MPRC);
adapter->stats.roc += er32(ROC);
adapter->stats.mpc += er32(MPC);
/* Half-duplex statistics */
if (adapter->link_duplex == HALF_DUPLEX) {
if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
e1000e_update_phy_stats(adapter);
} else {
adapter->stats.scc += er32(SCC);
adapter->stats.ecol += er32(ECOL);
adapter->stats.mcc += er32(MCC);
adapter->stats.latecol += er32(LATECOL);
adapter->stats.dc += er32(DC);
hw->mac.collision_delta = er32(COLC);
if ((hw->mac.type != e1000_82574) &&
(hw->mac.type != e1000_82583))
adapter->stats.tncrs += er32(TNCRS);
}
adapter->stats.colc += hw->mac.collision_delta;
}
adapter->stats.xonrxc += er32(XONRXC);
adapter->stats.xontxc += er32(XONTXC);
adapter->stats.xoffrxc += er32(XOFFRXC);
adapter->stats.xofftxc += er32(XOFFTXC);
adapter->stats.gptc += er32(GPTC);
adapter->stats.gotc += er32(GOTCL);
er32(GOTCH); /* Clear gotc */
adapter->stats.rnbc += er32(RNBC);
adapter->stats.ruc += er32(RUC);
adapter->stats.mptc += er32(MPTC);
adapter->stats.bptc += er32(BPTC);
/* used for adaptive IFS */
hw->mac.tx_packet_delta = er32(TPT);
adapter->stats.tpt += hw->mac.tx_packet_delta;
adapter->stats.algnerrc += er32(ALGNERRC);
adapter->stats.rxerrc += er32(RXERRC);
adapter->stats.cexterr += er32(CEXTERR);
adapter->stats.tsctc += er32(TSCTC);
adapter->stats.tsctfc += er32(TSCTFC);
/* Fill out the OS statistics structure */
netdev->stats.multicast = adapter->stats.mprc;
netdev->stats.collisions = adapter->stats.colc;
/* Rx Errors */
/*
* RLEC on some newer hardware can be incorrect so build
* our own version based on RUC and ROC
*/
netdev->stats.rx_errors = adapter->stats.rxerrc +
adapter->stats.crcerrs + adapter->stats.algnerrc +
adapter->stats.ruc + adapter->stats.roc +
adapter->stats.cexterr;
netdev->stats.rx_length_errors = adapter->stats.ruc +
adapter->stats.roc;
netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
netdev->stats.rx_missed_errors = adapter->stats.mpc;
/* Tx Errors */
netdev->stats.tx_errors = adapter->stats.ecol +
adapter->stats.latecol;
netdev->stats.tx_aborted_errors = adapter->stats.ecol;
netdev->stats.tx_window_errors = adapter->stats.latecol;
netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
/* Tx Dropped needs to be maintained elsewhere */
/* Management Stats */
adapter->stats.mgptc += er32(MGTPTC);
adapter->stats.mgprc += er32(MGTPRC);
adapter->stats.mgpdc += er32(MGTPDC);
}
/**
* e1000_phy_read_status - Update the PHY register status snapshot
* @adapter: board private structure
**/
static void e1000_phy_read_status(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
struct e1000_phy_regs *phy = &adapter->phy_regs;
if ((er32(STATUS) & E1000_STATUS_LU) &&
(adapter->hw.phy.media_type == e1000_media_type_copper)) {
int ret_val;
ret_val = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
if (ret_val)
e_warn("Error reading PHY register\n");
} else {
/*
* Do not read PHY registers if link is not up
* Set values to typical power-on defaults
*/
phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
BMSR_ERCAP);
phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
ADVERTISE_ALL | ADVERTISE_CSMA);
phy->lpa = 0;
phy->expansion = EXPANSION_ENABLENPAGE;
phy->ctrl1000 = ADVERTISE_1000FULL;
phy->stat1000 = 0;
phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
}
}
static void e1000_print_link_info(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 ctrl = er32(CTRL);
/* Link status message must follow this format for user tools */
printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s, "
"Flow Control: %s\n",
adapter->netdev->name,
adapter->link_speed,
(adapter->link_duplex == FULL_DUPLEX) ?
"Full Duplex" : "Half Duplex",
((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
"Rx/Tx" :
((ctrl & E1000_CTRL_RFCE) ? "Rx" :
((ctrl & E1000_CTRL_TFCE) ? "Tx" : "None")));
}
static bool e1000e_has_link(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
bool link_active = 0;
s32 ret_val = 0;
/*
* get_link_status is set on LSC (link status) interrupt or
* Rx sequence error interrupt. get_link_status will stay
* false until the check_for_link establishes link
* for copper adapters ONLY
*/
switch (hw->phy.media_type) {
case e1000_media_type_copper:
if (hw->mac.get_link_status) {
ret_val = hw->mac.ops.check_for_link(hw);
link_active = !hw->mac.get_link_status;
} else {
link_active = 1;
}
break;
case e1000_media_type_fiber:
ret_val = hw->mac.ops.check_for_link(hw);
link_active = !!(er32(STATUS) & E1000_STATUS_LU);
break;
case e1000_media_type_internal_serdes:
ret_val = hw->mac.ops.check_for_link(hw);
link_active = adapter->hw.mac.serdes_has_link;
break;
default:
case e1000_media_type_unknown:
break;
}
if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
(er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
e_info("Gigabit has been disabled, downgrading speed\n");
}
return link_active;
}
static void e1000e_enable_receives(struct e1000_adapter *adapter)
{
/* make sure the receive unit is started */
if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
(adapter->flags & FLAG_RX_RESTART_NOW)) {
struct e1000_hw *hw = &adapter->hw;
u32 rctl = er32(RCTL);
ew32(RCTL, rctl | E1000_RCTL_EN);
adapter->flags &= ~FLAG_RX_RESTART_NOW;
}
}
static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
/*
* With 82574 controllers, PHY needs to be checked periodically
* for hung state and reset, if two calls return true
*/
if (e1000_check_phy_82574(hw))
adapter->phy_hang_count++;
else
adapter->phy_hang_count = 0;
if (adapter->phy_hang_count > 1) {
adapter->phy_hang_count = 0;
schedule_work(&adapter->reset_task);
}
}
/**
* e1000_watchdog - Timer Call-back
* @data: pointer to adapter cast into an unsigned long
**/
static void e1000_watchdog(unsigned long data)
{
struct e1000_adapter *adapter = (struct e1000_adapter *) data;
/* Do the rest outside of interrupt context */
schedule_work(&adapter->watchdog_task);
/* TODO: make this use queue_delayed_work() */
}
static void e1000_watchdog_task(struct work_struct *work)
{
struct e1000_adapter *adapter = container_of(work,
struct e1000_adapter, watchdog_task);
struct net_device *netdev = adapter->netdev;
struct e1000_mac_info *mac = &adapter->hw.mac;
struct e1000_phy_info *phy = &adapter->hw.phy;
struct e1000_ring *tx_ring = adapter->tx_ring;
struct e1000_hw *hw = &adapter->hw;
u32 link, tctl;
if (test_bit(__E1000_DOWN, &adapter->state))
return;
link = e1000e_has_link(adapter);
if ((adapter->ecdev && (ecdev_get_link(adapter->ecdev)) && link)
|| (!adapter->ecdev && (netif_carrier_ok(netdev)) && link)) {
if (!adapter->ecdev) {
/* Cancel scheduled suspend requests. */
pm_runtime_resume(netdev->dev.parent);
}
e1000e_enable_receives(adapter);
goto link_up;
}
if ((e1000e_enable_tx_pkt_filtering(hw)) &&
(adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
e1000_update_mng_vlan(adapter);
if (link) {
if ((adapter->ecdev && !ecdev_get_link(adapter->ecdev))
|| (!adapter->ecdev && !netif_carrier_ok(netdev))) {
bool txb2b = 1;
/* Cancel scheduled suspend requests. */
pm_runtime_resume(netdev->dev.parent);
/* update snapshot of PHY registers on LSC */
e1000_phy_read_status(adapter);
mac->ops.get_link_up_info(&adapter->hw,
&adapter->link_speed,
&adapter->link_duplex);
e1000_print_link_info(adapter);
/*
* On supported PHYs, check for duplex mismatch only
* if link has autonegotiated at 10/100 half
*/
if ((hw->phy.type == e1000_phy_igp_3 ||
hw->phy.type == e1000_phy_bm) &&
(hw->mac.autoneg == true) &&
(adapter->link_speed == SPEED_10 ||
adapter->link_speed == SPEED_100) &&
(adapter->link_duplex == HALF_DUPLEX)) {
u16 autoneg_exp;
e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
e_info("Autonegotiated half duplex but"
" link partner cannot autoneg. "
" Try forcing full duplex if "
"link gets many collisions.\n");
}
/* adjust timeout factor according to speed/duplex */
adapter->tx_timeout_factor = 1;
switch (adapter->link_speed) {
case SPEED_10:
txb2b = 0;
adapter->tx_timeout_factor = 16;
break;
case SPEED_100:
txb2b = 0;
adapter->tx_timeout_factor = 10;
break;
}
/*
* workaround: re-program speed mode bit after
* link-up event
*/
if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
!txb2b) {
u32 tarc0;
tarc0 = er32(TARC(0));
tarc0 &= ~SPEED_MODE_BIT;
ew32(TARC(0), tarc0);
}
/*
* disable TSO for pcie and 10/100 speeds, to avoid
* some hardware issues
*/
if (!(adapter->flags & FLAG_TSO_FORCE)) {
switch (adapter->link_speed) {
case SPEED_10:
case SPEED_100:
e_info("10/100 speed: disabling TSO\n");
netdev->features &= ~NETIF_F_TSO;
netdev->features &= ~NETIF_F_TSO6;
break;
case SPEED_1000:
netdev->features |= NETIF_F_TSO;
netdev->features |= NETIF_F_TSO6;
break;
default:
/* oops */
break;
}
}
/*
* enable transmits in the hardware, need to do this
* after setting TARC(0)
*/
tctl = er32(TCTL);
tctl |= E1000_TCTL_EN;
ew32(TCTL, tctl);
/*
* Perform any post-link-up configuration before
* reporting link up.
*/
if (phy->ops.cfg_on_link_up)
phy->ops.cfg_on_link_up(hw);
if (adapter->ecdev)
ecdev_set_link(adapter->ecdev, 1);
else
netif_carrier_on(netdev);
if (!adapter->ecdev && !test_bit(__E1000_DOWN, &adapter->state))
mod_timer(&adapter->phy_info_timer,
round_jiffies(jiffies + 2 * HZ));
}
} else {
if ((adapter->ecdev && ecdev_get_link(adapter->ecdev))
|| (!adapter->ecdev && netif_carrier_ok(netdev))) {
adapter->link_speed = 0;
adapter->link_duplex = 0;
/* Link status message must follow this format */
printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
adapter->netdev->name);
if (adapter->ecdev)
ecdev_set_link(adapter->ecdev, 0);
else
netif_carrier_off(netdev);
if (!adapter->ecdev && !test_bit(__E1000_DOWN, &adapter->state))
mod_timer(&adapter->phy_info_timer,
round_jiffies(jiffies + 2 * HZ));
if (adapter->flags & FLAG_RX_NEEDS_RESTART)
schedule_work(&adapter->reset_task);
else
pm_schedule_suspend(netdev->dev.parent,
LINK_TIMEOUT);
}
}
link_up:
spin_lock(&adapter->stats64_lock);
e1000e_update_stats(adapter);
mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
adapter->tpt_old = adapter->stats.tpt;
mac->collision_delta = adapter->stats.colc - adapter->colc_old;
adapter->colc_old = adapter->stats.colc;
adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
adapter->gorc_old = adapter->stats.gorc;
adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
adapter->gotc_old = adapter->stats.gotc;
spin_unlock(&adapter->stats64_lock);
e1000e_update_adaptive(&adapter->hw);
if ((adapter->ecdev && !ecdev_get_link(adapter->ecdev))
|| (!adapter->ecdev && (!netif_carrier_ok(netdev) &&
(e1000_desc_unused(tx_ring) + 1 < tx_ring->count)))) {
/*
* We've lost link, so the controller stops DMA,
* but we've got queued Tx work that's never going
* to get done, so reset controller to flush Tx.
* (Do the reset outside of interrupt context).
*/
schedule_work(&adapter->reset_task);
/* return immediately since reset is imminent */
return;
}
/* Simple mode for Interrupt Throttle Rate (ITR) */
if (adapter->itr_setting == 4) {
/*
* Symmetric Tx/Rx gets a reduced ITR=2000;
* Total asymmetrical Tx or Rx gets ITR=8000;
* everyone else is between 2000-8000.
*/
u32 goc = (adapter->gotc + adapter->gorc) / 10000;
u32 dif = (adapter->gotc > adapter->gorc ?
adapter->gotc - adapter->gorc :
adapter->gorc - adapter->gotc) / 10000;
u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
ew32(ITR, 1000000000 / (itr * 256));
}
/* Cause software interrupt to ensure Rx ring is cleaned */
if (adapter->msix_entries)
ew32(ICS, adapter->rx_ring->ims_val);
else
ew32(ICS, E1000_ICS_RXDMT0);
/* flush pending descriptors to memory before detecting Tx hang */
e1000e_flush_descriptors(adapter);
/* Force detection of hung controller every watchdog period */
adapter->detect_tx_hung = 1;
/*
* With 82571 controllers, LAA may be overwritten due to controller
* reset from the other port. Set the appropriate LAA in RAR[0]
*/
if (e1000e_get_laa_state_82571(hw))
e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
e1000e_check_82574_phy_workaround(adapter);
/* Reset the timer */
if (!adapter->ecdev && !test_bit(__E1000_DOWN, &adapter->state))
mod_timer(&adapter->watchdog_timer,
round_jiffies(jiffies + 2 * HZ));
}
#define E1000_TX_FLAGS_CSUM 0x00000001
#define E1000_TX_FLAGS_VLAN 0x00000002
#define E1000_TX_FLAGS_TSO 0x00000004
#define E1000_TX_FLAGS_IPV4 0x00000008
#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
#define E1000_TX_FLAGS_VLAN_SHIFT 16
static int e1000_tso(struct e1000_adapter *adapter,
struct sk_buff *skb)
{
struct e1000_ring *tx_ring = adapter->tx_ring;
struct e1000_context_desc *context_desc;
struct e1000_buffer *buffer_info;
unsigned int i;
u32 cmd_length = 0;
u16 ipcse = 0, tucse, mss;
u8 ipcss, ipcso, tucss, tucso, hdr_len;
if (!skb_is_gso(skb))
return 0;
if (skb_header_cloned(skb)) {
int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
if (err)
return err;
}
hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
mss = skb_shinfo(skb)->gso_size;
if (skb->protocol == htons(ETH_P_IP)) {
struct iphdr *iph = ip_hdr(skb);
iph->tot_len = 0;
iph->check = 0;
tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
0, IPPROTO_TCP, 0);
cmd_length = E1000_TXD_CMD_IP;
ipcse = skb_transport_offset(skb) - 1;
} else if (skb_is_gso_v6(skb)) {
ipv6_hdr(skb)->payload_len = 0;
tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
&ipv6_hdr(skb)->daddr,
0, IPPROTO_TCP, 0);
ipcse = 0;
}
ipcss = skb_network_offset(skb);
ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
tucss = skb_transport_offset(skb);
tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
tucse = 0;
cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
i = tx_ring->next_to_use;
context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
buffer_info = &tx_ring->buffer_info[i];
context_desc->lower_setup.ip_fields.ipcss = ipcss;
context_desc->lower_setup.ip_fields.ipcso = ipcso;
context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
context_desc->upper_setup.tcp_fields.tucss = tucss;
context_desc->upper_setup.tcp_fields.tucso = tucso;
context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
context_desc->cmd_and_length = cpu_to_le32(cmd_length);
buffer_info->time_stamp = jiffies;
buffer_info->next_to_watch = i;
i++;
if (i == tx_ring->count)
i = 0;
tx_ring->next_to_use = i;
return 1;
}
static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
{
struct e1000_ring *tx_ring = adapter->tx_ring;
struct e1000_context_desc *context_desc;
struct e1000_buffer *buffer_info;
unsigned int i;
u8 css;
u32 cmd_len = E1000_TXD_CMD_DEXT;
__be16 protocol;
if (skb->ip_summed != CHECKSUM_PARTIAL)
return 0;
if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
else
protocol = skb->protocol;
switch (protocol) {
case cpu_to_be16(ETH_P_IP):
if (ip_hdr(skb)->protocol == IPPROTO_TCP)
cmd_len |= E1000_TXD_CMD_TCP;
break;
case cpu_to_be16(ETH_P_IPV6):
/* XXX not handling all IPV6 headers */
if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
cmd_len |= E1000_TXD_CMD_TCP;
break;
default:
if (unlikely(net_ratelimit()))
e_warn("checksum_partial proto=%x!\n",
be16_to_cpu(protocol));
break;
}
css = skb_checksum_start_offset(skb);
i = tx_ring->next_to_use;
buffer_info = &tx_ring->buffer_info[i];
context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
context_desc->lower_setup.ip_config = 0;
context_desc->upper_setup.tcp_fields.tucss = css;
context_desc->upper_setup.tcp_fields.tucso =
css + skb->csum_offset;
context_desc->upper_setup.tcp_fields.tucse = 0;
context_desc->tcp_seg_setup.data = 0;
context_desc->cmd_and_length = cpu_to_le32(cmd_len);
buffer_info->time_stamp = jiffies;
buffer_info->next_to_watch = i;
i++;
if (i == tx_ring->count)
i = 0;
tx_ring->next_to_use = i;
return 1;
}
#define E1000_MAX_PER_TXD 8192
#define E1000_MAX_TXD_PWR 12
static int e1000_tx_map(struct e1000_adapter *adapter,
struct sk_buff *skb, unsigned int first,
unsigned int max_per_txd, unsigned int nr_frags,
unsigned int mss)
{
struct e1000_ring *tx_ring = adapter->tx_ring;
struct pci_dev *pdev = adapter->pdev;
struct e1000_buffer *buffer_info;
unsigned int len = skb_headlen(skb);
unsigned int offset = 0, size, count = 0, i;
unsigned int f, bytecount, segs;
i = tx_ring->next_to_use;
while (len) {
buffer_info = &tx_ring->buffer_info[i];
size = min(len, max_per_txd);
buffer_info->length = size;
buffer_info->time_stamp = jiffies;
buffer_info->next_to_watch = i;
buffer_info->dma = dma_map_single(&pdev->dev,
skb->data + offset,
size, DMA_TO_DEVICE);
buffer_info->mapped_as_page = false;
if (dma_mapping_error(&pdev->dev, buffer_info->dma))
goto dma_error;
len -= size;
offset += size;
count++;
if (len) {
i++;
if (i == tx_ring->count)
i = 0;
}
}
for (f = 0; f < nr_frags; f++) {
const struct skb_frag_struct *frag;
frag = &skb_shinfo(skb)->frags[f];
len = skb_frag_size(frag);
offset = 0;
while (len) {
i++;
if (i == tx_ring->count)
i = 0;
buffer_info = &tx_ring->buffer_info[i];
size = min(len, max_per_txd);
buffer_info->length = size;
buffer_info->time_stamp = jiffies;
buffer_info->next_to_watch = i;
buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
offset, size, DMA_TO_DEVICE);
buffer_info->mapped_as_page = true;
if (dma_mapping_error(&pdev->dev, buffer_info->dma))
goto dma_error;
len -= size;
offset += size;
count++;
}
}
segs = skb_shinfo(skb)->gso_segs ? : 1;
/* multiply data chunks by size of headers */
bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
tx_ring->buffer_info[i].skb = skb;
tx_ring->buffer_info[i].segs = segs;
tx_ring->buffer_info[i].bytecount = bytecount;
tx_ring->buffer_info[first].next_to_watch = i;
return count;
dma_error:
dev_err(&pdev->dev, "Tx DMA map failed\n");
buffer_info->dma = 0;
if (count)
count--;
while (count--) {
if (i == 0)
i += tx_ring->count;
i--;
buffer_info = &tx_ring->buffer_info[i];
e1000_put_txbuf(adapter, buffer_info);
}
return 0;
}
static void e1000_tx_queue(struct e1000_adapter *adapter,
int tx_flags, int count)
{
struct e1000_ring *tx_ring = adapter->tx_ring;
struct e1000_tx_desc *tx_desc = NULL;
struct e1000_buffer *buffer_info;
u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
unsigned int i;
if (tx_flags & E1000_TX_FLAGS_TSO) {
txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
E1000_TXD_CMD_TSE;
txd_upper |= E1000_TXD_POPTS_TXSM << 8;
if (tx_flags & E1000_TX_FLAGS_IPV4)
txd_upper |= E1000_TXD_POPTS_IXSM << 8;
}
if (tx_flags & E1000_TX_FLAGS_CSUM) {
txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
txd_upper |= E1000_TXD_POPTS_TXSM << 8;
}
if (tx_flags & E1000_TX_FLAGS_VLAN) {
txd_lower |= E1000_TXD_CMD_VLE;
txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
}
i = tx_ring->next_to_use;
do {
buffer_info = &tx_ring->buffer_info[i];
tx_desc = E1000_TX_DESC(*tx_ring, i);
tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
tx_desc->lower.data =
cpu_to_le32(txd_lower | buffer_info->length);
tx_desc->upper.data = cpu_to_le32(txd_upper);
i++;
if (i == tx_ring->count)
i = 0;
} while (--count > 0);
tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
/*
* Force memory writes to complete before letting h/w
* know there are new descriptors to fetch. (Only
* applicable for weak-ordered memory model archs,
* such as IA-64).
*/
wmb();
tx_ring->next_to_use = i;
if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
e1000e_update_tdt_wa(adapter, i);
else
writel(i, adapter->hw.hw_addr + tx_ring->tail);
/*
* we need this if more than one processor can write to our tail
* at a time, it synchronizes IO on IA64/Altix systems
*/
mmiowb();
}
#define MINIMUM_DHCP_PACKET_SIZE 282
static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
struct sk_buff *skb)
{
struct e1000_hw *hw = &adapter->hw;
u16 length, offset;
if (vlan_tx_tag_present(skb)) {
if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
(adapter->hw.mng_cookie.status &
E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
return 0;
}
if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
return 0;
if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
return 0;
{
const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
struct udphdr *udp;
if (ip->protocol != IPPROTO_UDP)
return 0;
udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
if (ntohs(udp->dest) != 67)
return 0;
offset = (u8 *)udp + 8 - skb->data;
length = skb->len - offset;
return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
}
return 0;
}
static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
netif_stop_queue(netdev);
/*
* Herbert's original patch had:
* smp_mb__after_netif_stop_queue();
* but since that doesn't exist yet, just open code it.
*/
smp_mb();
/*
* We need to check again in a case another CPU has just
* made room available.
*/
if (e1000_desc_unused(adapter->tx_ring) < size)
return -EBUSY;
/* A reprieve! */
netif_start_queue(netdev);
++adapter->restart_queue;
return 0;
}
static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
if (e1000_desc_unused(adapter->tx_ring) >= size)
return 0;
return __e1000_maybe_stop_tx(netdev, size);
}
#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
struct net_device *netdev)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_ring *tx_ring = adapter->tx_ring;
unsigned int first;
unsigned int max_per_txd = E1000_MAX_PER_TXD;
unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
unsigned int tx_flags = 0;
unsigned int len = skb_headlen(skb);
unsigned int nr_frags;
unsigned int mss;
int count = 0;
int tso;
unsigned int f;
if (test_bit(__E1000_DOWN, &adapter->state)) {
if (!adapter->ecdev)
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
if (skb->len <= 0) {
if (!adapter->ecdev)
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
mss = skb_shinfo(skb)->gso_size;
/*
* The controller does a simple calculation to
* make sure there is enough room in the FIFO before
* initiating the DMA for each buffer. The calc is:
* 4 = ceil(buffer len/mss). To make sure we don't
* overrun the FIFO, adjust the max buffer len if mss
* drops.
*/
if (mss) {
u8 hdr_len;
max_per_txd = min(mss << 2, max_per_txd);
max_txd_pwr = fls(max_per_txd) - 1;
/*
* TSO Workaround for 82571/2/3 Controllers -- if skb->data
* points to just header, pull a few bytes of payload from
* frags into skb->data
*/
hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
/*
* we do this workaround for ES2LAN, but it is un-necessary,
* avoiding it could save a lot of cycles
*/
if (skb->data_len && (hdr_len == len)) {
unsigned int pull_size;
pull_size = min((unsigned int)4, skb->data_len);
if (!__pskb_pull_tail(skb, pull_size)) {
e_err("__pskb_pull_tail failed.\n");
if (!adapter->ecdev)
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
len = skb_headlen(skb);
}
}
/* reserve a descriptor for the offload context */
if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
count++;
count++;
count += TXD_USE_COUNT(len, max_txd_pwr);
nr_frags = skb_shinfo(skb)->nr_frags;
for (f = 0; f < nr_frags; f++)
count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
max_txd_pwr);
if (adapter->hw.mac.tx_pkt_filtering)
e1000_transfer_dhcp_info(adapter, skb);
/*
* need: count + 2 desc gap to keep tail from touching
* head, otherwise try next time
*/
if (!adapter->ecdev && e1000_maybe_stop_tx(netdev, count + 2))
return NETDEV_TX_BUSY;
if (vlan_tx_tag_present(skb)) {
tx_flags |= E1000_TX_FLAGS_VLAN;
tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
}
first = tx_ring->next_to_use;
tso = e1000_tso(adapter, skb);
if (tso < 0) {
if (!adapter->ecdev)
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
if (tso)
tx_flags |= E1000_TX_FLAGS_TSO;
else if (e1000_tx_csum(adapter, skb))
tx_flags |= E1000_TX_FLAGS_CSUM;
/*
* Old method was to assume IPv4 packet by default if TSO was enabled.
* 82571 hardware supports TSO capabilities for IPv6 as well...
* no longer assume, we must.
*/
if (skb->protocol == htons(ETH_P_IP))
tx_flags |= E1000_TX_FLAGS_IPV4;
/* if count is 0 then mapping error has occurred */
count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
if (count) {
e1000_tx_queue(adapter, tx_flags, count);
/* Make sure there is space in the ring for the next send. */
if (!adapter->ecdev)
e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
} else {
if (!adapter->ecdev)
dev_kfree_skb_any(skb);
tx_ring->buffer_info[first].time_stamp = 0;
tx_ring->next_to_use = first;
}
return NETDEV_TX_OK;
}
/**
* e1000_tx_timeout - Respond to a Tx Hang
* @netdev: network interface device structure
**/
static void e1000_tx_timeout(struct net_device *netdev)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
/* Do the reset outside of interrupt context */
adapter->tx_timeout_count++;
schedule_work(&adapter->reset_task);
}
static void e1000_reset_task(struct work_struct *work)
{
struct e1000_adapter *adapter;
adapter = container_of(work, struct e1000_adapter, reset_task);
/* don't run the task if already down */
if (test_bit(__E1000_DOWN, &adapter->state))
return;
if (!((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
(adapter->flags & FLAG_RX_RESTART_NOW))) {
e1000e_dump(adapter);
e_err("Reset adapter\n");
}
e1000e_reinit_locked(adapter);
}
/**
* e1000_get_stats64 - Get System Network Statistics
* @netdev: network interface device structure
* @stats: rtnl_link_stats64 pointer
*
* Returns the address of the device statistics structure.
**/
struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
struct rtnl_link_stats64 *stats)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
memset(stats, 0, sizeof(struct rtnl_link_stats64));
spin_lock(&adapter->stats64_lock);
e1000e_update_stats(adapter);
/* Fill out the OS statistics structure */
stats->rx_bytes = adapter->stats.gorc;
stats->rx_packets = adapter->stats.gprc;
stats->tx_bytes = adapter->stats.gotc;
stats->tx_packets = adapter->stats.gptc;
stats->multicast = adapter->stats.mprc;
stats->collisions = adapter->stats.colc;
/* Rx Errors */
/*
* RLEC on some newer hardware can be incorrect so build
* our own version based on RUC and ROC
*/
stats->rx_errors = adapter->stats.rxerrc +
adapter->stats.crcerrs + adapter->stats.algnerrc +
adapter->stats.ruc + adapter->stats.roc +
adapter->stats.cexterr;
stats->rx_length_errors = adapter->stats.ruc +
adapter->stats.roc;
stats->rx_crc_errors = adapter->stats.crcerrs;
stats->rx_frame_errors = adapter->stats.algnerrc;
stats->rx_missed_errors = adapter->stats.mpc;
/* Tx Errors */
stats->tx_errors = adapter->stats.ecol +
adapter->stats.latecol;
stats->tx_aborted_errors = adapter->stats.ecol;
stats->tx_window_errors = adapter->stats.latecol;
stats->tx_carrier_errors = adapter->stats.tncrs;
/* Tx Dropped needs to be maintained elsewhere */
spin_unlock(&adapter->stats64_lock);
return stats;
}
/**
* e1000_change_mtu - Change the Maximum Transfer Unit
* @netdev: network interface device structure
* @new_mtu: new value for maximum frame size
*
* Returns 0 on success, negative on failure
**/
static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
if (adapter->ecdev)
return -EBUSY;
/* Jumbo frame support */
if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
e_err("Jumbo Frames not supported.\n");
return -EINVAL;
}
/* Supported frame sizes */
if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
(max_frame > adapter->max_hw_frame_size)) {
e_err("Unsupported MTU setting\n");
return -EINVAL;
}
/* Jumbo frame workaround on 82579 requires CRC be stripped */
if ((adapter->hw.mac.type == e1000_pch2lan) &&
!(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
(new_mtu > ETH_DATA_LEN)) {
e_err("Jumbo Frames not supported on 82579 when CRC "
"stripping is disabled.\n");
return -EINVAL;
}
/* 82573 Errata 17 */
if (((adapter->hw.mac.type == e1000_82573) ||
(adapter->hw.mac.type == e1000_82574)) &&
(max_frame > ETH_FRAME_LEN + ETH_FCS_LEN)) {
adapter->flags2 |= FLAG2_DISABLE_ASPM_L1;
e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L1);
}
while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
usleep_range(1000, 2000);
/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
adapter->max_frame_size = max_frame;
e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
netdev->mtu = new_mtu;
if (netif_running(netdev))
e1000e_down(adapter);
/*
* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
* means we reserve 2 more, this pushes us to allocate from the next
* larger slab size.
* i.e. RXBUFFER_2048 --> size-4096 slab
* However with the new *_jumbo_rx* routines, jumbo receives will use
* fragmented skbs
*/
if (max_frame <= 2048)
adapter->rx_buffer_len = 2048;
else
adapter->rx_buffer_len = 4096;
/* adjust allocation if LPE protects us, and we aren't using SBP */
if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
(max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
+ ETH_FCS_LEN;
if (netif_running(netdev))
e1000e_up(adapter);
else
e1000e_reset(adapter);
clear_bit(__E1000_RESETTING, &adapter->state);
return 0;
}
static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
int cmd)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct mii_ioctl_data *data = if_mii(ifr);
if (adapter->hw.phy.media_type != e1000_media_type_copper)
return -EOPNOTSUPP;
switch (cmd) {
case SIOCGMIIPHY:
data->phy_id = adapter->hw.phy.addr;
break;
case SIOCGMIIREG:
e1000_phy_read_status(adapter);
switch (data->reg_num & 0x1F) {
case MII_BMCR:
data->val_out = adapter->phy_regs.bmcr;
break;
case MII_BMSR:
data->val_out = adapter->phy_regs.bmsr;
break;
case MII_PHYSID1:
data->val_out = (adapter->hw.phy.id >> 16);
break;
case MII_PHYSID2:
data->val_out = (adapter->hw.phy.id & 0xFFFF);
break;
case MII_ADVERTISE:
data->val_out = adapter->phy_regs.advertise;
break;
case MII_LPA:
data->val_out = adapter->phy_regs.lpa;
break;
case MII_EXPANSION:
data->val_out = adapter->phy_regs.expansion;
break;
case MII_CTRL1000:
data->val_out = adapter->phy_regs.ctrl1000;
break;
case MII_STAT1000:
data->val_out = adapter->phy_regs.stat1000;
break;
case MII_ESTATUS:
data->val_out = adapter->phy_regs.estatus;
break;
default:
return -EIO;
}
break;
case SIOCSMIIREG:
default:
return -EOPNOTSUPP;
}
return 0;
}
static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
switch (cmd) {
case SIOCGMIIPHY:
case SIOCGMIIREG:
case SIOCSMIIREG:
return e1000_mii_ioctl(netdev, ifr, cmd);
default:
return -EOPNOTSUPP;
}
}
static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
{
struct e1000_hw *hw = &adapter->hw;
u32 i, mac_reg;
u16 phy_reg, wuc_enable;
int retval = 0;
/* copy MAC RARs to PHY RARs */
e1000_copy_rx_addrs_to_phy_ich8lan(hw);
retval = hw->phy.ops.acquire(hw);
if (retval) {
e_err("Could not acquire PHY\n");
return retval;
}
/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
if (retval)
goto out;
/* copy MAC MTA to PHY MTA - only needed for pchlan */
for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
hw->phy.ops.write_reg_page(hw, BM_MTA(i),
(u16)(mac_reg & 0xFFFF));
hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
(u16)((mac_reg >> 16) & 0xFFFF));
}
/* configure PHY Rx Control register */
hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
mac_reg = er32(RCTL);
if (mac_reg & E1000_RCTL_UPE)
phy_reg |= BM_RCTL_UPE;
if (mac_reg & E1000_RCTL_MPE)
phy_reg |= BM_RCTL_MPE;
phy_reg &= ~(BM_RCTL_MO_MASK);
if (mac_reg & E1000_RCTL_MO_3)
phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
<< BM_RCTL_MO_SHIFT);
if (mac_reg & E1000_RCTL_BAM)
phy_reg |= BM_RCTL_BAM;
if (mac_reg & E1000_RCTL_PMCF)
phy_reg |= BM_RCTL_PMCF;
mac_reg = er32(CTRL);
if (mac_reg & E1000_CTRL_RFCE)
phy_reg |= BM_RCTL_RFCE;
hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
/* enable PHY wakeup in MAC register */
ew32(WUFC, wufc);
ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
/* configure and enable PHY wakeup in PHY registers */
hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
/* activate PHY wakeup */
wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
if (retval)
e_err("Could not set PHY Host Wakeup bit\n");
out:
hw->phy.ops.release(hw);
return retval;
}
static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake,
bool runtime)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 ctrl, ctrl_ext, rctl, status;
/* Runtime suspend should only enable wakeup for link changes */
u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
int retval = 0;
netif_device_detach(netdev);
if (netif_running(netdev)) {
WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
e1000e_down(adapter);
e1000_free_irq(adapter);
}
e1000e_reset_interrupt_capability(adapter);
retval = pci_save_state(pdev);
if (retval)
return retval;
status = er32(STATUS);
if (status & E1000_STATUS_LU)
wufc &= ~E1000_WUFC_LNKC;
if (wufc) {
e1000_setup_rctl(adapter);
e1000_set_multi(netdev);
/* turn on all-multi mode if wake on multicast is enabled */
if (wufc & E1000_WUFC_MC) {
rctl = er32(RCTL);
rctl |= E1000_RCTL_MPE;
ew32(RCTL, rctl);
}
ctrl = er32(CTRL);
/* advertise wake from D3Cold */
#define E1000_CTRL_ADVD3WUC 0x00100000
/* phy power management enable */
#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
ctrl |= E1000_CTRL_ADVD3WUC;
if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
ew32(CTRL, ctrl);
if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
adapter->hw.phy.media_type ==
e1000_media_type_internal_serdes) {
/* keep the laser running in D3 */
ctrl_ext = er32(CTRL_EXT);
ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
ew32(CTRL_EXT, ctrl_ext);
}
if (adapter->flags & FLAG_IS_ICH)
e1000_suspend_workarounds_ich8lan(&adapter->hw);
/* Allow time for pending master requests to run */
e1000e_disable_pcie_master(&adapter->hw);
if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
/* enable wakeup by the PHY */
retval = e1000_init_phy_wakeup(adapter, wufc);
if (retval)
return retval;
} else {
/* enable wakeup by the MAC */
ew32(WUFC, wufc);
ew32(WUC, E1000_WUC_PME_EN);
}
} else {
ew32(WUC, 0);
ew32(WUFC, 0);
}
*enable_wake = !!wufc;
/* make sure adapter isn't asleep if manageability is enabled */
if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
(hw->mac.ops.check_mng_mode(hw)))
*enable_wake = true;
if (adapter->hw.phy.type == e1000_phy_igp_3)
e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
/*
* Release control of h/w to f/w. If f/w is AMT enabled, this
* would have already happened in close and is redundant.
*/
e1000e_release_hw_control(adapter);
pci_disable_device(pdev);
return 0;
}
static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
{
if (sleep && wake) {
pci_prepare_to_sleep(pdev);
return;
}
pci_wake_from_d3(pdev, wake);
pci_set_power_state(pdev, PCI_D3hot);
}
static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
bool wake)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct e1000_adapter *adapter = netdev_priv(netdev);
/*
* The pci-e switch on some quad port adapters will report a
* correctable error when the MAC transitions from D0 to D3. To
* prevent this we need to mask off the correctable errors on the
* downstream port of the pci-e switch.
*/
if (adapter->flags & FLAG_IS_QUAD_PORT) {
struct pci_dev *us_dev = pdev->bus->self;
int pos = pci_pcie_cap(us_dev);
u16 devctl;
pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
(devctl & ~PCI_EXP_DEVCTL_CERE));
e1000_power_off(pdev, sleep, wake);
pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
} else {
e1000_power_off(pdev, sleep, wake);
}
}
#ifdef CONFIG_PCIEASPM
static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
{
pci_disable_link_state_locked(pdev, state);
}
#else
static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
{
int pos;
u16 reg16;
/*
* Both device and parent should have the same ASPM setting.
* Disable ASPM in downstream component first and then upstream.
*/
pos = pci_pcie_cap(pdev);
pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, ®16);
reg16 &= ~state;
pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, reg16);
if (!pdev->bus->self)
return;
pos = pci_pcie_cap(pdev->bus->self);
pci_read_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, ®16);
reg16 &= ~state;
pci_write_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, reg16);
}
#endif
static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
{
dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
(state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
(state & PCIE_LINK_STATE_L1) ? "L1" : "");
__e1000e_disable_aspm(pdev, state);
}
#ifdef CONFIG_PM
static bool e1000e_pm_ready(struct e1000_adapter *adapter)
{
return !!adapter->tx_ring->buffer_info;
}
static int __e1000_resume(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u16 aspm_disable_flag = 0;
u32 err;
if (adapter->ecdev)
return -EBUSY;
if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
aspm_disable_flag = PCIE_LINK_STATE_L0S;
if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
aspm_disable_flag |= PCIE_LINK_STATE_L1;
if (aspm_disable_flag)
e1000e_disable_aspm(pdev, aspm_disable_flag);
pci_set_power_state(pdev, PCI_D0);
pci_restore_state(pdev);
pci_save_state(pdev);
e1000e_set_interrupt_capability(adapter);
if (netif_running(netdev)) {
err = e1000_request_irq(adapter);
if (err)
return err;
}
if (hw->mac.type == e1000_pch2lan)
e1000_resume_workarounds_pchlan(&adapter->hw);
e1000e_power_up_phy(adapter);
/* report the system wakeup cause from S3/S4 */
if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
u16 phy_data;
e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
if (phy_data) {
e_info("PHY Wakeup cause - %s\n",
phy_data & E1000_WUS_EX ? "Unicast Packet" :
phy_data & E1000_WUS_MC ? "Multicast Packet" :
phy_data & E1000_WUS_BC ? "Broadcast Packet" :
phy_data & E1000_WUS_MAG ? "Magic Packet" :
phy_data & E1000_WUS_LNKC ? "Link Status "
" Change" : "other");
}
e1e_wphy(&adapter->hw, BM_WUS, ~0);
} else {
u32 wus = er32(WUS);
if (wus) {
e_info("MAC Wakeup cause - %s\n",
wus & E1000_WUS_EX ? "Unicast Packet" :
wus & E1000_WUS_MC ? "Multicast Packet" :
wus & E1000_WUS_BC ? "Broadcast Packet" :
wus & E1000_WUS_MAG ? "Magic Packet" :
wus & E1000_WUS_LNKC ? "Link Status Change" :
"other");
}
ew32(WUS, ~0);
}
e1000e_reset(adapter);
e1000_init_manageability_pt(adapter);
if (netif_running(netdev))
e1000e_up(adapter);
netif_device_attach(netdev);
/*
* If the controller has AMT, do not set DRV_LOAD until the interface
* is up. For all other cases, let the f/w know that the h/w is now
* under the control of the driver.
*/
if (!(adapter->flags & FLAG_HAS_AMT))
e1000e_get_hw_control(adapter);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int e1000_suspend(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
int retval;
bool wake;
struct net_device *netdev = pci_get_drvdata(pdev);
struct e1000_adapter *adapter = netdev_priv(netdev);
if (adapter->ecdev)
return -EBUSY;
retval = __e1000_shutdown(pdev, &wake, false);
if (!retval)
e1000_complete_shutdown(pdev, true, wake);
return retval;
}
static int e1000_resume(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct net_device *netdev = pci_get_drvdata(pdev);
struct e1000_adapter *adapter = netdev_priv(netdev);
if (e1000e_pm_ready(adapter))
adapter->idle_check = true;
return __e1000_resume(pdev);
}
#endif /* CONFIG_PM_SLEEP */
#ifdef CONFIG_PM_RUNTIME
static int e1000_runtime_suspend(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct net_device *netdev = pci_get_drvdata(pdev);
struct e1000_adapter *adapter = netdev_priv(netdev);
if (e1000e_pm_ready(adapter)) {
bool wake;
__e1000_shutdown(pdev, &wake, true);
}
return 0;
}
static int e1000_idle(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct net_device *netdev = pci_get_drvdata(pdev);
struct e1000_adapter *adapter = netdev_priv(netdev);
if (!e1000e_pm_ready(adapter))
return 0;
if (adapter->idle_check) {
adapter->idle_check = false;
if (!e1000e_has_link(adapter))
pm_schedule_suspend(dev, MSEC_PER_SEC);
}
return -EBUSY;
}
static int e1000_runtime_resume(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct net_device *netdev = pci_get_drvdata(pdev);
struct e1000_adapter *adapter = netdev_priv(netdev);
if (!e1000e_pm_ready(adapter))
return 0;
adapter->idle_check = !dev->power.runtime_auto;
return __e1000_resume(pdev);
}
#endif /* CONFIG_PM_RUNTIME */
#endif /* CONFIG_PM */
static void e1000_shutdown(struct pci_dev *pdev)
{
bool wake = false;
struct net_device *netdev = pci_get_drvdata(pdev);
struct e1000_adapter *adapter = netdev_priv(netdev);
if (adapter->ecdev)
return;
__e1000_shutdown(pdev, &wake, false);
if (system_state == SYSTEM_POWER_OFF)
e1000_complete_shutdown(pdev, false, wake);
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static irqreturn_t e1000_intr_msix(int irq, void *data)
{
struct net_device *netdev = data;
struct e1000_adapter *adapter = netdev_priv(netdev);
if (adapter->msix_entries) {
int vector, msix_irq;
vector = 0;
msix_irq = adapter->msix_entries[vector].vector;
disable_irq(msix_irq);
e1000_intr_msix_rx(msix_irq, netdev);
enable_irq(msix_irq);
vector++;
msix_irq = adapter->msix_entries[vector].vector;
disable_irq(msix_irq);
e1000_intr_msix_tx(msix_irq, netdev);
enable_irq(msix_irq);
vector++;
msix_irq = adapter->msix_entries[vector].vector;
disable_irq(msix_irq);
e1000_msix_other(msix_irq, netdev);
enable_irq(msix_irq);
}
return IRQ_HANDLED;
}
/*
* Polling 'interrupt' - used by things like netconsole to send skbs
* without having to re-enable interrupts. It's not called while
* the interrupt routine is executing.
*/
static void e1000_netpoll(struct net_device *netdev)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
switch (adapter->int_mode) {
case E1000E_INT_MODE_MSIX:
e1000_intr_msix(adapter->pdev->irq, netdev);
break;
case E1000E_INT_MODE_MSI:
disable_irq(adapter->pdev->irq);
e1000_intr_msi(adapter->pdev->irq, netdev);
enable_irq(adapter->pdev->irq);
break;
default: /* E1000E_INT_MODE_LEGACY */
disable_irq(adapter->pdev->irq);
e1000_intr(adapter->pdev->irq, netdev);
enable_irq(adapter->pdev->irq);
break;
}
}
#endif
/**
* e1000_io_error_detected - called when PCI error is detected
* @pdev: Pointer to PCI device
* @state: The current pci connection state
*
* This function is called after a PCI bus error affecting
* this device has been detected.
*/
static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
pci_channel_state_t state)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct e1000_adapter *adapter = netdev_priv(netdev);
netif_device_detach(netdev);
if (state == pci_channel_io_perm_failure)
return PCI_ERS_RESULT_DISCONNECT;
if (netif_running(netdev))
e1000e_down(adapter);
pci_disable_device(pdev);
/* Request a slot slot reset. */
return PCI_ERS_RESULT_NEED_RESET;
}
/**
* e1000_io_slot_reset - called after the pci bus has been reset.
* @pdev: Pointer to PCI device
*
* Restart the card from scratch, as if from a cold-boot. Implementation
* resembles the first-half of the e1000_resume routine.
*/
static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u16 aspm_disable_flag = 0;
int err;
pci_ers_result_t result;
if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
aspm_disable_flag = PCIE_LINK_STATE_L0S;
if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
aspm_disable_flag |= PCIE_LINK_STATE_L1;
if (aspm_disable_flag)
e1000e_disable_aspm(pdev, aspm_disable_flag);
err = pci_enable_device_mem(pdev);
if (err) {
dev_err(&pdev->dev,
"Cannot re-enable PCI device after reset.\n");
result = PCI_ERS_RESULT_DISCONNECT;
} else {
pci_set_master(pdev);
pdev->state_saved = true;
pci_restore_state(pdev);
pci_enable_wake(pdev, PCI_D3hot, 0);
pci_enable_wake(pdev, PCI_D3cold, 0);
e1000e_reset(adapter);
ew32(WUS, ~0);
result = PCI_ERS_RESULT_RECOVERED;
}
pci_cleanup_aer_uncorrect_error_status(pdev);
return result;
}
/**
* e1000_io_resume - called when traffic can start flowing again.
* @pdev: Pointer to PCI device
*
* This callback is called when the error recovery driver tells us that
* its OK to resume normal operation. Implementation resembles the
* second-half of the e1000_resume routine.
*/
static void e1000_io_resume(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct e1000_adapter *adapter = netdev_priv(netdev);
e1000_init_manageability_pt(adapter);
if (netif_running(netdev)) {
if (e1000e_up(adapter)) {
dev_err(&pdev->dev,
"can't bring device back up after reset\n");
return;
}
}
netif_device_attach(netdev);
/*
* If the controller has AMT, do not set DRV_LOAD until the interface
* is up. For all other cases, let the f/w know that the h/w is now
* under the control of the driver.
*/
if (!(adapter->flags & FLAG_HAS_AMT))
e1000e_get_hw_control(adapter);
}
static void e1000_print_device_info(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
struct net_device *netdev = adapter->netdev;
u32 ret_val;
u8 pba_str[E1000_PBANUM_LENGTH];
/* print bus type/speed/width info */
e_info("(PCI Express:2.5GT/s:%s) %pM\n",
/* bus width */
((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
"Width x1"),
/* MAC address */
netdev->dev_addr);
e_info("Intel(R) PRO/%s Network Connection\n",
(hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
ret_val = e1000_read_pba_string_generic(hw, pba_str,
E1000_PBANUM_LENGTH);
if (ret_val)
strncpy((char *)pba_str, "Unknown", sizeof(pba_str) - 1);
e_info("MAC: %d, PHY: %d, PBA No: %s\n",
hw->mac.type, hw->phy.type, pba_str);
}
static void e1000_eeprom_checks(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
int ret_val;
u16 buf = 0;
if (hw->mac.type != e1000_82573)
return;
ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
if (!ret_val && (!(le16_to_cpu(buf) & (1 << 0)))) {
/* Deep Smart Power Down (DSPD) */
dev_warn(&adapter->pdev->dev,
"Warning: detected DSPD enabled in EEPROM\n");
}
}
static int e1000_set_features(struct net_device *netdev, u32 features)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
u32 changed = features ^ netdev->features;
if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
adapter->flags |= FLAG_TSO_FORCE;
if (!(changed & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX |
NETIF_F_RXCSUM)))
return 0;
if (netif_running(netdev))
e1000e_reinit_locked(adapter);
else
e1000e_reset(adapter);
return 0;
}
static const struct net_device_ops e1000e_netdev_ops = {
.ndo_open = e1000_open,
.ndo_stop = e1000_close,
.ndo_start_xmit = e1000_xmit_frame,
.ndo_get_stats64 = e1000e_get_stats64,
.ndo_set_rx_mode = e1000_set_multi,
.ndo_set_mac_address = e1000_set_mac,
.ndo_change_mtu = e1000_change_mtu,
.ndo_do_ioctl = e1000_ioctl,
.ndo_tx_timeout = e1000_tx_timeout,
.ndo_validate_addr = eth_validate_addr,
.ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
.ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = e1000_netpoll,
#endif
.ndo_set_features = e1000_set_features,
};
/**
* ec_poll - Ethercat poll Routine
* @netdev: net device structure
*
* This function can never fail.
*
**/
void ec_poll(struct net_device *netdev)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
if (jiffies - adapter->ec_watchdog_jiffies >= 2 * HZ) {
e1000_watchdog((unsigned long) adapter);
adapter->ec_watchdog_jiffies = jiffies;
}
#ifdef CONFIG_PCI_MSI
e1000_intr_msi(0,netdev);
#else
e1000_intr(0,netdev);
#endif
}
/**
* e1000_probe - Device Initialization Routine
* @pdev: PCI device information struct
* @ent: entry in e1000_pci_tbl
*
* Returns 0 on success, negative on failure
*
* e1000_probe initializes an adapter identified by a pci_dev structure.
* The OS initialization, configuring of the adapter private structure,
* and a hardware reset occur.
**/
static int __devinit e1000_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct net_device *netdev;
struct e1000_adapter *adapter;
struct e1000_hw *hw;
const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
resource_size_t mmio_start, mmio_len;
resource_size_t flash_start, flash_len;
static int cards_found;
u16 aspm_disable_flag = 0;
int i, err, pci_using_dac;
u16 eeprom_data = 0;
u16 eeprom_apme_mask = E1000_EEPROM_APME;
if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
aspm_disable_flag = PCIE_LINK_STATE_L0S;
if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
aspm_disable_flag |= PCIE_LINK_STATE_L1;
if (aspm_disable_flag)
e1000e_disable_aspm(pdev, aspm_disable_flag);
err = pci_enable_device_mem(pdev);
if (err)
return err;
pci_using_dac = 0;
err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
if (!err) {
err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
if (!err)
pci_using_dac = 1;
} else {
err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
if (err) {
err = dma_set_coherent_mask(&pdev->dev,
DMA_BIT_MASK(32));
if (err) {
dev_err(&pdev->dev, "No usable DMA "
"configuration, aborting\n");
goto err_dma;
}
}
}
err = pci_request_selected_regions_exclusive(pdev,
pci_select_bars(pdev, IORESOURCE_MEM),
e1000e_driver_name);
if (err)
goto err_pci_reg;
/* AER (Advanced Error Reporting) hooks */
pci_enable_pcie_error_reporting(pdev);
pci_set_master(pdev);
/* PCI config space info */
err = pci_save_state(pdev);
if (err)
goto err_alloc_etherdev;
err = -ENOMEM;
netdev = alloc_etherdev(sizeof(struct e1000_adapter));
if (!netdev)
goto err_alloc_etherdev;
SET_NETDEV_DEV(netdev, &pdev->dev);
netdev->irq = pdev->irq;
pci_set_drvdata(pdev, netdev);
adapter = netdev_priv(netdev);
hw = &adapter->hw;
adapter->netdev = netdev;
adapter->pdev = pdev;
adapter->ei = ei;
adapter->pba = ei->pba;
adapter->flags = ei->flags;
adapter->flags2 = ei->flags2;
adapter->hw.adapter = adapter;
adapter->hw.mac.type = ei->mac;
adapter->max_hw_frame_size = ei->max_hw_frame_size;
adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
mmio_start = pci_resource_start(pdev, 0);
mmio_len = pci_resource_len(pdev, 0);
err = -EIO;
adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
if (!adapter->hw.hw_addr)
goto err_ioremap;
if ((adapter->flags & FLAG_HAS_FLASH) &&
(pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
flash_start = pci_resource_start(pdev, 1);
flash_len = pci_resource_len(pdev, 1);
adapter->hw.flash_address = ioremap(flash_start, flash_len);
if (!adapter->hw.flash_address)
goto err_flashmap;
}
/* construct the net_device struct */
netdev->netdev_ops = &e1000e_netdev_ops;
e1000e_set_ethtool_ops(netdev);
netdev->watchdog_timeo = 5 * HZ;
netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
netdev->mem_start = mmio_start;
netdev->mem_end = mmio_start + mmio_len;
adapter->bd_number = cards_found++;
e1000e_check_options(adapter);
/* setup adapter struct */
err = e1000_sw_init(adapter);
if (err)
goto err_sw_init;
memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
err = ei->get_variants(adapter);
if (err)
goto err_hw_init;
if ((adapter->flags & FLAG_IS_ICH) &&
(adapter->flags & FLAG_READ_ONLY_NVM))
e1000e_write_protect_nvm_ich8lan(&adapter->hw);
hw->mac.ops.get_bus_info(&adapter->hw);
adapter->hw.phy.autoneg_wait_to_complete = 0;
/* Copper options */
if (adapter->hw.phy.media_type == e1000_media_type_copper) {
adapter->hw.phy.mdix = AUTO_ALL_MODES;
adapter->hw.phy.disable_polarity_correction = 0;
adapter->hw.phy.ms_type = e1000_ms_hw_default;
}
if (e1000_check_reset_block(&adapter->hw))
e_info("PHY reset is blocked due to SOL/IDER session.\n");
/* Set initial default active device features */
netdev->features = (NETIF_F_SG |
NETIF_F_HW_VLAN_RX |
NETIF_F_HW_VLAN_TX |
NETIF_F_TSO |
NETIF_F_TSO6 |
NETIF_F_RXCSUM |
NETIF_F_HW_CSUM);
/* Set user-changeable features (subset of all device features) */
netdev->hw_features = netdev->features;
if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
netdev->features |= NETIF_F_HW_VLAN_FILTER;
netdev->vlan_features |= (NETIF_F_SG |
NETIF_F_TSO |
NETIF_F_TSO6 |
NETIF_F_HW_CSUM);
if (pci_using_dac) {
netdev->features |= NETIF_F_HIGHDMA;
netdev->vlan_features |= NETIF_F_HIGHDMA;
}
if (e1000e_enable_mng_pass_thru(&adapter->hw))
adapter->flags |= FLAG_MNG_PT_ENABLED;
/*
* before reading the NVM, reset the controller to
* put the device in a known good starting state
*/
adapter->hw.mac.ops.reset_hw(&adapter->hw);
/*
* systems with ASPM and others may see the checksum fail on the first
* attempt. Let's give it a few tries
*/
for (i = 0;; i++) {
if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
break;
if (i == 2) {
e_err("The NVM Checksum Is Not Valid\n");
err = -EIO;
goto err_eeprom;
}
}
e1000_eeprom_checks(adapter);
/* copy the MAC address */
if (e1000e_read_mac_addr(&adapter->hw))
e_err("NVM Read Error while reading MAC address\n");
memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
if (!is_valid_ether_addr(netdev->perm_addr)) {
e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
err = -EIO;
goto err_eeprom;
}
init_timer(&adapter->watchdog_timer);
adapter->watchdog_timer.function = e1000_watchdog;
adapter->watchdog_timer.data = (unsigned long) adapter;
init_timer(&adapter->phy_info_timer);
adapter->phy_info_timer.function = e1000_update_phy_info;
adapter->phy_info_timer.data = (unsigned long) adapter;
INIT_WORK(&adapter->reset_task, e1000_reset_task);
INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
/* Initialize link parameters. User can change them with ethtool */
adapter->hw.mac.autoneg = 1;
adapter->fc_autoneg = 1;
adapter->hw.fc.requested_mode = e1000_fc_default;
adapter->hw.fc.current_mode = e1000_fc_default;
adapter->hw.phy.autoneg_advertised = 0x2f;
/* ring size defaults */
adapter->rx_ring->count = 256;
adapter->tx_ring->count = 256;
/*
* Initial Wake on LAN setting - If APM wake is enabled in
* the EEPROM, enable the ACPI Magic Packet filter
*/
if (adapter->flags & FLAG_APME_IN_WUC) {
/* APME bit in EEPROM is mapped to WUC.APME */
eeprom_data = er32(WUC);
eeprom_apme_mask = E1000_WUC_APME;
if ((hw->mac.type > e1000_ich10lan) &&
(eeprom_data & E1000_WUC_PHY_WAKE))
adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
(adapter->hw.bus.func == 1))
e1000_read_nvm(&adapter->hw,
NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
else
e1000_read_nvm(&adapter->hw,
NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
}
/* fetch WoL from EEPROM */
if (eeprom_data & eeprom_apme_mask)
adapter->eeprom_wol |= E1000_WUFC_MAG;
/*
* now that we have the eeprom settings, apply the special cases
* where the eeprom may be wrong or the board simply won't support
* wake on lan on a particular port
*/
if (!(adapter->flags & FLAG_HAS_WOL))
adapter->eeprom_wol = 0;
/* initialize the wol settings based on the eeprom settings */
adapter->wol = adapter->eeprom_wol;
device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
/* save off EEPROM version number */
e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
/* reset the hardware with the new settings */
e1000e_reset(adapter);
/*
* If the controller has AMT, do not set DRV_LOAD until the interface
* is up. For all other cases, let the f/w know that the h/w is now
* under the control of the driver.
*/
if (!(adapter->flags & FLAG_HAS_AMT))
e1000e_get_hw_control(adapter);
adapter->ecdev = ecdev_offer(netdev, ec_poll, THIS_MODULE);
if (adapter->ecdev) {
if (ecdev_open(adapter->ecdev)) {
ecdev_withdraw(adapter->ecdev);
goto err_register;
}
} else {
strncpy(netdev->name, "eth%d", sizeof(netdev->name) - 1);
err = register_netdev(netdev);
if (err)
goto err_register;
/* carrier off reporting is important to ethtool even BEFORE open */
netif_carrier_off(netdev);
}
e1000_print_device_info(adapter);
if (pci_dev_run_wake(pdev))
pm_runtime_put_noidle(&pdev->dev);
return 0;
err_register:
if (!(adapter->flags & FLAG_HAS_AMT))
e1000e_release_hw_control(adapter);
err_eeprom:
if (!e1000_check_reset_block(&adapter->hw))
e1000_phy_hw_reset(&adapter->hw);
err_hw_init:
kfree(adapter->tx_ring);
kfree(adapter->rx_ring);
err_sw_init:
if (adapter->hw.flash_address)
iounmap(adapter->hw.flash_address);
e1000e_reset_interrupt_capability(adapter);
err_flashmap:
iounmap(adapter->hw.hw_addr);
err_ioremap:
free_netdev(netdev);
err_alloc_etherdev:
pci_release_selected_regions(pdev,
pci_select_bars(pdev, IORESOURCE_MEM));
err_pci_reg:
err_dma:
pci_disable_device(pdev);
return err;
}
/**
* e1000_remove - Device Removal Routine
* @pdev: PCI device information struct
*
* e1000_remove is called by the PCI subsystem to alert the driver
* that it should release a PCI device. The could be caused by a
* Hot-Plug event, or because the driver is going to be removed from
* memory.
**/
static void __devexit e1000_remove(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct e1000_adapter *adapter = netdev_priv(netdev);
bool down = test_bit(__E1000_DOWN, &adapter->state);
/*
* The timers may be rescheduled, so explicitly disable them
* from being rescheduled.
*/
if (!down)
set_bit(__E1000_DOWN, &adapter->state);
del_timer_sync(&adapter->watchdog_timer);
del_timer_sync(&adapter->phy_info_timer);
cancel_work_sync(&adapter->reset_task);
cancel_work_sync(&adapter->watchdog_task);
cancel_work_sync(&adapter->downshift_task);
cancel_work_sync(&adapter->update_phy_task);
cancel_work_sync(&adapter->print_hang_task);
if (!(netdev->flags & IFF_UP))
e1000_power_down_phy(adapter);
/* Don't lie to e1000_close() down the road. */
if (!down)
clear_bit(__E1000_DOWN, &adapter->state);
if (adapter->ecdev) {
ecdev_close(adapter->ecdev);
ecdev_withdraw(adapter->ecdev);
} else {
unregister_netdev(netdev);
}
if (pci_dev_run_wake(pdev))
pm_runtime_get_noresume(&pdev->dev);
/*
* Release control of h/w to f/w. If f/w is AMT enabled, this
* would have already happened in close and is redundant.
*/
e1000e_release_hw_control(adapter);
e1000e_reset_interrupt_capability(adapter);
kfree(adapter->tx_ring);
kfree(adapter->rx_ring);
iounmap(adapter->hw.hw_addr);
if (adapter->hw.flash_address)
iounmap(adapter->hw.flash_address);
pci_release_selected_regions(pdev,
pci_select_bars(pdev, IORESOURCE_MEM));
free_netdev(netdev);
/* AER disable */
pci_disable_pcie_error_reporting(pdev);
pci_disable_device(pdev);
}
/* PCI Error Recovery (ERS) */
static struct pci_error_handlers e1000_err_handler = {
.error_detected = e1000_io_error_detected,
.slot_reset = e1000_io_slot_reset,
.resume = e1000_io_resume,
};
static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
board_80003es2lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
board_80003es2lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
board_80003es2lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
board_80003es2lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
{ } /* terminate list */
};
//MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
#ifdef CONFIG_PM
static const struct dev_pm_ops e1000_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
SET_RUNTIME_PM_OPS(e1000_runtime_suspend,
e1000_runtime_resume, e1000_idle)
};
#endif
/* PCI Device API Driver */
static struct pci_driver e1000_driver = {
.name = e1000e_driver_name,
.id_table = e1000_pci_tbl,
.probe = e1000_probe,
.remove = __devexit_p(e1000_remove),
#ifdef CONFIG_PM
.driver.pm = &e1000_pm_ops,
#endif
.shutdown = e1000_shutdown,
.err_handler = &e1000_err_handler
};
/**
* e1000_init_module - Driver Registration Routine
*
* e1000_init_module is the first routine called when the driver is
* loaded. All it does is register with the PCI subsystem.
**/
static int __init e1000_init_module(void)
{
int ret;
pr_info("EtherCAT-capable Intel(R) PRO/1000 Network Driver - %s\n",
e1000e_driver_version);
pr_info("Copyright(c) 1999 - 2011 Intel Corporation.\n");
ret = pci_register_driver(&e1000_driver);
return ret;
}
module_init(e1000_init_module);
/**
* e1000_exit_module - Driver Exit Cleanup Routine
*
* e1000_exit_module is called just before the driver is removed
* from memory.
**/
static void __exit e1000_exit_module(void)
{
pci_unregister_driver(&e1000_driver);
}
module_exit(e1000_exit_module);
MODULE_AUTHOR("Intel Corporation, <linux.nics at intel.com>");
MODULE_DESCRIPTION("Ethercat-capable Intel(R) PRO/1000 Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);
/* e1000_main.c */
-------------- n?chster Teil --------------
/*******************************************************************************
Intel PRO/1000 Linux driver
Copyright(c) 1999 - 2011 Intel Corporation.
This program is free software; you can redistribute it and/or modify it
under the terms and conditions of the GNU General Public License,
version 2, as published by the Free Software Foundation.
This program is distributed in the hope it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
The full GNU General Public License is included in this distribution in
the file called "COPYING".
Contact Information:
Linux NICS <linux.nics at intel.com>
e1000-devel Mailing List <e1000-devel at lists.sourceforge.net>
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*******************************************************************************/
/*
* 82562G 10/100 Network Connection
* 82562G-2 10/100 Network Connection
* 82562GT 10/100 Network Connection
* 82562GT-2 10/100 Network Connection
* 82562V 10/100 Network Connection
* 82562V-2 10/100 Network Connection
* 82566DC-2 Gigabit Network Connection
* 82566DC Gigabit Network Connection
* 82566DM-2 Gigabit Network Connection
* 82566DM Gigabit Network Connection
* 82566MC Gigabit Network Connection
* 82566MM Gigabit Network Connection
* 82567LM Gigabit Network Connection
* 82567LF Gigabit Network Connection
* 82567V Gigabit Network Connection
* 82567LM-2 Gigabit Network Connection
* 82567LF-2 Gigabit Network Connection
* 82567V-2 Gigabit Network Connection
* 82567LF-3 Gigabit Network Connection
* 82567LM-3 Gigabit Network Connection
* 82567LM-4 Gigabit Network Connection
* 82577LM Gigabit Network Connection
* 82577LC Gigabit Network Connection
* 82578DM Gigabit Network Connection
* 82578DC Gigabit Network Connection
* 82579LM Gigabit Network Connection
* 82579V Gigabit Network Connection
*/
#include "e1000-3.2.0-ethercat.h"
#define ICH_FLASH_GFPREG 0x0000
#define ICH_FLASH_HSFSTS 0x0004
#define ICH_FLASH_HSFCTL 0x0006
#define ICH_FLASH_FADDR 0x0008
#define ICH_FLASH_FDATA0 0x0010
#define ICH_FLASH_PR0 0x0074
#define ICH_FLASH_READ_COMMAND_TIMEOUT 500
#define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
#define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
#define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
#define ICH_FLASH_CYCLE_REPEAT_COUNT 10
#define ICH_CYCLE_READ 0
#define ICH_CYCLE_WRITE 2
#define ICH_CYCLE_ERASE 3
#define FLASH_GFPREG_BASE_MASK 0x1FFF
#define FLASH_SECTOR_ADDR_SHIFT 12
#define ICH_FLASH_SEG_SIZE_256 256
#define ICH_FLASH_SEG_SIZE_4K 4096
#define ICH_FLASH_SEG_SIZE_8K 8192
#define ICH_FLASH_SEG_SIZE_64K 65536
#define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
/* FW established a valid mode */
#define E1000_ICH_FWSM_FW_VALID 0x00008000
#define E1000_ICH_MNG_IAMT_MODE 0x2
#define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
(ID_LED_DEF1_OFF2 << 8) | \
(ID_LED_DEF1_ON2 << 4) | \
(ID_LED_DEF1_DEF2))
#define E1000_ICH_NVM_SIG_WORD 0x13
#define E1000_ICH_NVM_SIG_MASK 0xC000
#define E1000_ICH_NVM_VALID_SIG_MASK 0xC0
#define E1000_ICH_NVM_SIG_VALUE 0x80
#define E1000_ICH8_LAN_INIT_TIMEOUT 1500
#define E1000_FEXTNVM_SW_CONFIG 1
#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
#define E1000_FEXTNVM4_BEACON_DURATION_MASK 0x7
#define E1000_FEXTNVM4_BEACON_DURATION_8USEC 0x7
#define E1000_FEXTNVM4_BEACON_DURATION_16USEC 0x3
#define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
#define E1000_ICH_RAR_ENTRIES 7
#define PHY_PAGE_SHIFT 5
#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
((reg) & MAX_PHY_REG_ADDRESS))
#define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
#define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
#define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
#define HV_LED_CONFIG PHY_REG(768, 30) /* LED Configuration */
#define SW_FLAG_TIMEOUT 1000 /* SW Semaphore flag timeout in milliseconds */
/* SMBus Address Phy Register */
#define HV_SMB_ADDR PHY_REG(768, 26)
#define HV_SMB_ADDR_MASK 0x007F
#define HV_SMB_ADDR_PEC_EN 0x0200
#define HV_SMB_ADDR_VALID 0x0080
/* PHY Power Management Control */
#define HV_PM_CTRL PHY_REG(770, 17)
/* PHY Low Power Idle Control */
#define I82579_LPI_CTRL PHY_REG(772, 20)
#define I82579_LPI_CTRL_ENABLE_MASK 0x6000
#define I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT 0x80
/* EMI Registers */
#define I82579_EMI_ADDR 0x10
#define I82579_EMI_DATA 0x11
#define I82579_LPI_UPDATE_TIMER 0x4805 /* in 40ns units + 40 ns base value */
/* Strapping Option Register - RO */
#define E1000_STRAP 0x0000C
#define E1000_STRAP_SMBUS_ADDRESS_MASK 0x00FE0000
#define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
/* OEM Bits Phy Register */
#define HV_OEM_BITS PHY_REG(768, 25)
#define HV_OEM_BITS_LPLU 0x0004 /* Low Power Link Up */
#define HV_OEM_BITS_GBE_DIS 0x0040 /* Gigabit Disable */
#define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
#define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
#define E1000_NVM_K1_ENABLE 0x1 /* NVM Enable K1 bit */
/* KMRN Mode Control */
#define HV_KMRN_MODE_CTRL PHY_REG(769, 16)
#define HV_KMRN_MDIO_SLOW 0x0400
/* KMRN FIFO Control and Status */
#define HV_KMRN_FIFO_CTRLSTA PHY_REG(770, 16)
#define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK 0x7000
#define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT 12
/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
/* Offset 04h HSFSTS */
union ich8_hws_flash_status {
struct ich8_hsfsts {
u16 flcdone :1; /* bit 0 Flash Cycle Done */
u16 flcerr :1; /* bit 1 Flash Cycle Error */
u16 dael :1; /* bit 2 Direct Access error Log */
u16 berasesz :2; /* bit 4:3 Sector Erase Size */
u16 flcinprog :1; /* bit 5 flash cycle in Progress */
u16 reserved1 :2; /* bit 13:6 Reserved */
u16 reserved2 :6; /* bit 13:6 Reserved */
u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
u16 flockdn :1; /* bit 15 Flash Config Lock-Down */
} hsf_status;
u16 regval;
};
/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
/* Offset 06h FLCTL */
union ich8_hws_flash_ctrl {
struct ich8_hsflctl {
u16 flcgo :1; /* 0 Flash Cycle Go */
u16 flcycle :2; /* 2:1 Flash Cycle */
u16 reserved :5; /* 7:3 Reserved */
u16 fldbcount :2; /* 9:8 Flash Data Byte Count */
u16 flockdn :6; /* 15:10 Reserved */
} hsf_ctrl;
u16 regval;
};
/* ICH Flash Region Access Permissions */
union ich8_hws_flash_regacc {
struct ich8_flracc {
u32 grra :8; /* 0:7 GbE region Read Access */
u32 grwa :8; /* 8:15 GbE region Write Access */
u32 gmrag :8; /* 23:16 GbE Master Read Access Grant */
u32 gmwag :8; /* 31:24 GbE Master Write Access Grant */
} hsf_flregacc;
u16 regval;
};
/* ICH Flash Protected Region */
union ich8_flash_protected_range {
struct ich8_pr {
u32 base:13; /* 0:12 Protected Range Base */
u32 reserved1:2; /* 13:14 Reserved */
u32 rpe:1; /* 15 Read Protection Enable */
u32 limit:13; /* 16:28 Protected Range Limit */
u32 reserved2:2; /* 29:30 Reserved */
u32 wpe:1; /* 31 Write Protection Enable */
} range;
u32 regval;
};
static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
u32 offset, u8 byte);
static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
u8 *data);
static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
u16 *data);
static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
u8 size, u16 *data);
static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
{
return readw(hw->flash_address + reg);
}
static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
{
return readl(hw->flash_address + reg);
}
static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
{
writew(val, hw->flash_address + reg);
}
static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
{
writel(val, hw->flash_address + reg);
}
#define er16flash(reg) __er16flash(hw, (reg))
#define er32flash(reg) __er32flash(hw, (reg))
#define ew16flash(reg,val) __ew16flash(hw, (reg), (val))
#define ew32flash(reg,val) __ew32flash(hw, (reg), (val))
static void e1000_toggle_lanphypc_value_ich8lan(struct e1000_hw *hw)
{
u32 ctrl;
ctrl = er32(CTRL);
ctrl |= E1000_CTRL_LANPHYPC_OVERRIDE;
ctrl &= ~E1000_CTRL_LANPHYPC_VALUE;
ew32(CTRL, ctrl);
e1e_flush();
udelay(10);
ctrl &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
ew32(CTRL, ctrl);
}
/**
* e1000_init_phy_params_pchlan - Initialize PHY function pointers
* @hw: pointer to the HW structure
*
* Initialize family-specific PHY parameters and function pointers.
**/
static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
u32 fwsm;
s32 ret_val = 0;
phy->addr = 1;
phy->reset_delay_us = 100;
phy->ops.set_page = e1000_set_page_igp;
phy->ops.read_reg = e1000_read_phy_reg_hv;
phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
phy->ops.write_reg = e1000_write_phy_reg_hv;
phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
phy->ops.power_up = e1000_power_up_phy_copper;
phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
/*
* The MAC-PHY interconnect may still be in SMBus mode
* after Sx->S0. If the manageability engine (ME) is
* disabled, then toggle the LANPHYPC Value bit to force
* the interconnect to PCIe mode.
*/
fwsm = er32(FWSM);
if (!(fwsm & E1000_ICH_FWSM_FW_VALID) && !e1000_check_reset_block(hw)) {
e1000_toggle_lanphypc_value_ich8lan(hw);
msleep(50);
/*
* Gate automatic PHY configuration by hardware on
* non-managed 82579
*/
if (hw->mac.type == e1000_pch2lan)
e1000_gate_hw_phy_config_ich8lan(hw, true);
}
/*
* Reset the PHY before any access to it. Doing so, ensures that
* the PHY is in a known good state before we read/write PHY registers.
* The generic reset is sufficient here, because we haven't determined
* the PHY type yet.
*/
ret_val = e1000e_phy_hw_reset_generic(hw);
if (ret_val)
goto out;
/* Ungate automatic PHY configuration on non-managed 82579 */
if ((hw->mac.type == e1000_pch2lan) &&
!(fwsm & E1000_ICH_FWSM_FW_VALID)) {
usleep_range(10000, 20000);
e1000_gate_hw_phy_config_ich8lan(hw, false);
}
phy->id = e1000_phy_unknown;
switch (hw->mac.type) {
default:
ret_val = e1000e_get_phy_id(hw);
if (ret_val)
goto out;
if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
break;
/* fall-through */
case e1000_pch2lan:
/*
* In case the PHY needs to be in mdio slow mode,
* set slow mode and try to get the PHY id again.
*/
ret_val = e1000_set_mdio_slow_mode_hv(hw);
if (ret_val)
goto out;
ret_val = e1000e_get_phy_id(hw);
if (ret_val)
goto out;
break;
}
phy->type = e1000e_get_phy_type_from_id(phy->id);
switch (phy->type) {
case e1000_phy_82577:
case e1000_phy_82579:
phy->ops.check_polarity = e1000_check_polarity_82577;
phy->ops.force_speed_duplex =
e1000_phy_force_speed_duplex_82577;
phy->ops.get_cable_length = e1000_get_cable_length_82577;
phy->ops.get_info = e1000_get_phy_info_82577;
phy->ops.commit = e1000e_phy_sw_reset;
break;
case e1000_phy_82578:
phy->ops.check_polarity = e1000_check_polarity_m88;
phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
phy->ops.get_cable_length = e1000e_get_cable_length_m88;
phy->ops.get_info = e1000e_get_phy_info_m88;
break;
default:
ret_val = -E1000_ERR_PHY;
break;
}
out:
return ret_val;
}
/**
* e1000_init_phy_params_ich8lan - Initialize PHY function pointers
* @hw: pointer to the HW structure
*
* Initialize family-specific PHY parameters and function pointers.
**/
static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 i = 0;
phy->addr = 1;
phy->reset_delay_us = 100;
phy->ops.power_up = e1000_power_up_phy_copper;
phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
/*
* We may need to do this twice - once for IGP and if that fails,
* we'll set BM func pointers and try again
*/
ret_val = e1000e_determine_phy_address(hw);
if (ret_val) {
phy->ops.write_reg = e1000e_write_phy_reg_bm;
phy->ops.read_reg = e1000e_read_phy_reg_bm;
ret_val = e1000e_determine_phy_address(hw);
if (ret_val) {
e_dbg("Cannot determine PHY addr. Erroring out\n");
return ret_val;
}
}
phy->id = 0;
while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
(i++ < 100)) {
usleep_range(1000, 2000);
ret_val = e1000e_get_phy_id(hw);
if (ret_val)
return ret_val;
}
/* Verify phy id */
switch (phy->id) {
case IGP03E1000_E_PHY_ID:
phy->type = e1000_phy_igp_3;
phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
phy->ops.get_info = e1000e_get_phy_info_igp;
phy->ops.check_polarity = e1000_check_polarity_igp;
phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
break;
case IFE_E_PHY_ID:
case IFE_PLUS_E_PHY_ID:
case IFE_C_E_PHY_ID:
phy->type = e1000_phy_ife;
phy->autoneg_mask = E1000_ALL_NOT_GIG;
phy->ops.get_info = e1000_get_phy_info_ife;
phy->ops.check_polarity = e1000_check_polarity_ife;
phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
break;
case BME1000_E_PHY_ID:
phy->type = e1000_phy_bm;
phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
phy->ops.read_reg = e1000e_read_phy_reg_bm;
phy->ops.write_reg = e1000e_write_phy_reg_bm;
phy->ops.commit = e1000e_phy_sw_reset;
phy->ops.get_info = e1000e_get_phy_info_m88;
phy->ops.check_polarity = e1000_check_polarity_m88;
phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
break;
default:
return -E1000_ERR_PHY;
break;
}
return 0;
}
/**
* e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
* @hw: pointer to the HW structure
*
* Initialize family-specific NVM parameters and function
* pointers.
**/
static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
{
struct e1000_nvm_info *nvm = &hw->nvm;
struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
u32 gfpreg, sector_base_addr, sector_end_addr;
u16 i;
/* Can't read flash registers if the register set isn't mapped. */
if (!hw->flash_address) {
e_dbg("ERROR: Flash registers not mapped\n");
return -E1000_ERR_CONFIG;
}
nvm->type = e1000_nvm_flash_sw;
gfpreg = er32flash(ICH_FLASH_GFPREG);
/*
* sector_X_addr is a "sector"-aligned address (4096 bytes)
* Add 1 to sector_end_addr since this sector is included in
* the overall size.
*/
sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
/* flash_base_addr is byte-aligned */
nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
/*
* find total size of the NVM, then cut in half since the total
* size represents two separate NVM banks.
*/
nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
<< FLASH_SECTOR_ADDR_SHIFT;
nvm->flash_bank_size /= 2;
/* Adjust to word count */
nvm->flash_bank_size /= sizeof(u16);
nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
/* Clear shadow ram */
for (i = 0; i < nvm->word_size; i++) {
dev_spec->shadow_ram[i].modified = false;
dev_spec->shadow_ram[i].value = 0xFFFF;
}
return 0;
}
/**
* e1000_init_mac_params_ich8lan - Initialize MAC function pointers
* @hw: pointer to the HW structure
*
* Initialize family-specific MAC parameters and function
* pointers.
**/
static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
struct e1000_mac_info *mac = &hw->mac;
/* Set media type function pointer */
hw->phy.media_type = e1000_media_type_copper;
/* Set mta register count */
mac->mta_reg_count = 32;
/* Set rar entry count */
mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
if (mac->type == e1000_ich8lan)
mac->rar_entry_count--;
/* FWSM register */
mac->has_fwsm = true;
/* ARC subsystem not supported */
mac->arc_subsystem_valid = false;
/* Adaptive IFS supported */
mac->adaptive_ifs = true;
/* LED operations */
switch (mac->type) {
case e1000_ich8lan:
case e1000_ich9lan:
case e1000_ich10lan:
/* check management mode */
mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
/* ID LED init */
mac->ops.id_led_init = e1000e_id_led_init;
/* blink LED */
mac->ops.blink_led = e1000e_blink_led_generic;
/* setup LED */
mac->ops.setup_led = e1000e_setup_led_generic;
/* cleanup LED */
mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
/* turn on/off LED */
mac->ops.led_on = e1000_led_on_ich8lan;
mac->ops.led_off = e1000_led_off_ich8lan;
break;
case e1000_pchlan:
case e1000_pch2lan:
/* check management mode */
mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
/* ID LED init */
mac->ops.id_led_init = e1000_id_led_init_pchlan;
/* setup LED */
mac->ops.setup_led = e1000_setup_led_pchlan;
/* cleanup LED */
mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
/* turn on/off LED */
mac->ops.led_on = e1000_led_on_pchlan;
mac->ops.led_off = e1000_led_off_pchlan;
break;
default:
break;
}
/* Enable PCS Lock-loss workaround for ICH8 */
if (mac->type == e1000_ich8lan)
e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
/* Gate automatic PHY configuration by hardware on managed 82579 */
if ((mac->type == e1000_pch2lan) &&
(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
e1000_gate_hw_phy_config_ich8lan(hw, true);
return 0;
}
/**
* e1000_set_eee_pchlan - Enable/disable EEE support
* @hw: pointer to the HW structure
*
* Enable/disable EEE based on setting in dev_spec structure. The bits in
* the LPI Control register will remain set only if/when link is up.
**/
static s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
{
s32 ret_val = 0;
u16 phy_reg;
if (hw->phy.type != e1000_phy_82579)
goto out;
ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
if (ret_val)
goto out;
if (hw->dev_spec.ich8lan.eee_disable)
phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK;
else
phy_reg |= I82579_LPI_CTRL_ENABLE_MASK;
ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
out:
return ret_val;
}
/**
* e1000_check_for_copper_link_ich8lan - Check for link (Copper)
* @hw: pointer to the HW structure
*
* Checks to see of the link status of the hardware has changed. If a
* change in link status has been detected, then we read the PHY registers
* to get the current speed/duplex if link exists.
**/
static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
s32 ret_val;
bool link;
u16 phy_reg;
/*
* We only want to go out to the PHY registers to see if Auto-Neg
* has completed and/or if our link status has changed. The
* get_link_status flag is set upon receiving a Link Status
* Change or Rx Sequence Error interrupt.
*/
if (!mac->get_link_status) {
ret_val = 0;
goto out;
}
/*
* First we want to see if the MII Status Register reports
* link. If so, then we want to get the current speed/duplex
* of the PHY.
*/
ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
if (ret_val)
goto out;
if (hw->mac.type == e1000_pchlan) {
ret_val = e1000_k1_gig_workaround_hv(hw, link);
if (ret_val)
goto out;
}
if (!link)
goto out; /* No link detected */
mac->get_link_status = false;
switch (hw->mac.type) {
case e1000_pch2lan:
ret_val = e1000_k1_workaround_lv(hw);
if (ret_val)
goto out;
/* fall-thru */
case e1000_pchlan:
if (hw->phy.type == e1000_phy_82578) {
ret_val = e1000_link_stall_workaround_hv(hw);
if (ret_val)
goto out;
}
/*
* Workaround for PCHx parts in half-duplex:
* Set the number of preambles removed from the packet
* when it is passed from the PHY to the MAC to prevent
* the MAC from misinterpreting the packet type.
*/
e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
break;
default:
break;
}
/*
* Check if there was DownShift, must be checked
* immediately after link-up
*/
e1000e_check_downshift(hw);
/* Enable/Disable EEE after link up */
ret_val = e1000_set_eee_pchlan(hw);
if (ret_val)
goto out;
/*
* If we are forcing speed/duplex, then we simply return since
* we have already determined whether we have link or not.
*/
if (!mac->autoneg) {
ret_val = -E1000_ERR_CONFIG;
goto out;
}
/*
* Auto-Neg is enabled. Auto Speed Detection takes care
* of MAC speed/duplex configuration. So we only need to
* configure Collision Distance in the MAC.
*/
e1000e_config_collision_dist(hw);
/*
* Configure Flow Control now that Auto-Neg has completed.
* First, we need to restore the desired flow control
* settings because we may have had to re-autoneg with a
* different link partner.
*/
ret_val = e1000e_config_fc_after_link_up(hw);
if (ret_val)
e_dbg("Error configuring flow control\n");
out:
return ret_val;
}
static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
s32 rc;
rc = e1000_init_mac_params_ich8lan(adapter);
if (rc)
return rc;
rc = e1000_init_nvm_params_ich8lan(hw);
if (rc)
return rc;
switch (hw->mac.type) {
case e1000_ich8lan:
case e1000_ich9lan:
case e1000_ich10lan:
rc = e1000_init_phy_params_ich8lan(hw);
break;
case e1000_pchlan:
case e1000_pch2lan:
rc = e1000_init_phy_params_pchlan(hw);
break;
default:
break;
}
if (rc)
return rc;
/*
* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
* on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
*/
if ((adapter->hw.phy.type == e1000_phy_ife) ||
((adapter->hw.mac.type >= e1000_pch2lan) &&
(!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
hw->mac.ops.blink_led = NULL;
}
if ((adapter->hw.mac.type == e1000_ich8lan) &&
(adapter->hw.phy.type != e1000_phy_ife))
adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
/* Enable workaround for 82579 w/ ME enabled */
if ((adapter->hw.mac.type == e1000_pch2lan) &&
(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
/* Disable EEE by default until IEEE802.3az spec is finalized */
if (adapter->flags2 & FLAG2_HAS_EEE)
adapter->hw.dev_spec.ich8lan.eee_disable = true;
return 0;
}
static DEFINE_MUTEX(nvm_mutex);
/**
* e1000_acquire_nvm_ich8lan - Acquire NVM mutex
* @hw: pointer to the HW structure
*
* Acquires the mutex for performing NVM operations.
**/
static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
{
mutex_lock(&nvm_mutex);
return 0;
}
/**
* e1000_release_nvm_ich8lan - Release NVM mutex
* @hw: pointer to the HW structure
*
* Releases the mutex used while performing NVM operations.
**/
static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
{
mutex_unlock(&nvm_mutex);
}
/**
* e1000_acquire_swflag_ich8lan - Acquire software control flag
* @hw: pointer to the HW structure
*
* Acquires the software control flag for performing PHY and select
* MAC CSR accesses.
**/
static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
{
u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
s32 ret_val = 0;
if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
&hw->adapter->state)) {
e_dbg("contention for Phy access\n");
return -E1000_ERR_PHY;
}
while (timeout) {
extcnf_ctrl = er32(EXTCNF_CTRL);
if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
break;
mdelay(1);
timeout--;
}
if (!timeout) {
e_dbg("SW has already locked the resource.\n");
ret_val = -E1000_ERR_CONFIG;
goto out;
}
timeout = SW_FLAG_TIMEOUT;
extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
ew32(EXTCNF_CTRL, extcnf_ctrl);
while (timeout) {
extcnf_ctrl = er32(EXTCNF_CTRL);
if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
break;
mdelay(1);
timeout--;
}
if (!timeout) {
e_dbg("Failed to acquire the semaphore, FW or HW has it: "
"FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
er32(FWSM), extcnf_ctrl);
extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
ew32(EXTCNF_CTRL, extcnf_ctrl);
ret_val = -E1000_ERR_CONFIG;
goto out;
}
out:
if (ret_val)
clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
return ret_val;
}
/**
* e1000_release_swflag_ich8lan - Release software control flag
* @hw: pointer to the HW structure
*
* Releases the software control flag for performing PHY and select
* MAC CSR accesses.
**/
static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
{
u32 extcnf_ctrl;
extcnf_ctrl = er32(EXTCNF_CTRL);
if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
ew32(EXTCNF_CTRL, extcnf_ctrl);
} else {
e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
}
clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
}
/**
* e1000_check_mng_mode_ich8lan - Checks management mode
* @hw: pointer to the HW structure
*
* This checks if the adapter has any manageability enabled.
* This is a function pointer entry point only called by read/write
* routines for the PHY and NVM parts.
**/
static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
{
u32 fwsm;
fwsm = er32(FWSM);
return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
((fwsm & E1000_FWSM_MODE_MASK) ==
(E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
}
/**
* e1000_check_mng_mode_pchlan - Checks management mode
* @hw: pointer to the HW structure
*
* This checks if the adapter has iAMT enabled.
* This is a function pointer entry point only called by read/write
* routines for the PHY and NVM parts.
**/
static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
{
u32 fwsm;
fwsm = er32(FWSM);
return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
(fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
}
/**
* e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
* @hw: pointer to the HW structure
*
* Checks if firmware is blocking the reset of the PHY.
* This is a function pointer entry point only called by
* reset routines.
**/
static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
{
u32 fwsm;
fwsm = er32(FWSM);
return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
}
/**
* e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
* @hw: pointer to the HW structure
*
* Assumes semaphore already acquired.
*
**/
static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
{
u16 phy_data;
u32 strap = er32(STRAP);
s32 ret_val = 0;
strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
if (ret_val)
goto out;
phy_data &= ~HV_SMB_ADDR_MASK;
phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
ret_val = e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
out:
return ret_val;
}
/**
* e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
* @hw: pointer to the HW structure
*
* SW should configure the LCD from the NVM extended configuration region
* as a workaround for certain parts.
**/
static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
s32 ret_val = 0;
u16 word_addr, reg_data, reg_addr, phy_page = 0;
/*
* Initialize the PHY from the NVM on ICH platforms. This
* is needed due to an issue where the NVM configuration is
* not properly autoloaded after power transitions.
* Therefore, after each PHY reset, we will load the
* configuration data out of the NVM manually.
*/
switch (hw->mac.type) {
case e1000_ich8lan:
if (phy->type != e1000_phy_igp_3)
return ret_val;
if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
(hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
break;
}
/* Fall-thru */
case e1000_pchlan:
case e1000_pch2lan:
sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
break;
default:
return ret_val;
}
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return ret_val;
data = er32(FEXTNVM);
if (!(data & sw_cfg_mask))
goto out;
/*
* Make sure HW does not configure LCD from PHY
* extended configuration before SW configuration
*/
data = er32(EXTCNF_CTRL);
if (!(hw->mac.type == e1000_pch2lan)) {
if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
goto out;
}
cnf_size = er32(EXTCNF_SIZE);
cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
if (!cnf_size)
goto out;
cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
if ((!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) &&
(hw->mac.type == e1000_pchlan)) ||
(hw->mac.type == e1000_pch2lan)) {
/*
* HW configures the SMBus address and LEDs when the
* OEM and LCD Write Enable bits are set in the NVM.
* When both NVM bits are cleared, SW will configure
* them instead.
*/
ret_val = e1000_write_smbus_addr(hw);
if (ret_val)
goto out;
data = er32(LEDCTL);
ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
(u16)data);
if (ret_val)
goto out;
}
/* Configure LCD from extended configuration region. */
/* cnf_base_addr is in DWORD */
word_addr = (u16)(cnf_base_addr << 1);
for (i = 0; i < cnf_size; i++) {
ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
®_data);
if (ret_val)
goto out;
ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
1, ®_addr);
if (ret_val)
goto out;
/* Save off the PHY page for future writes. */
if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
phy_page = reg_data;
continue;
}
reg_addr &= PHY_REG_MASK;
reg_addr |= phy_page;
ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
reg_data);
if (ret_val)
goto out;
}
out:
hw->phy.ops.release(hw);
return ret_val;
}
/**
* e1000_k1_gig_workaround_hv - K1 Si workaround
* @hw: pointer to the HW structure
* @link: link up bool flag
*
* If K1 is enabled for 1Gbps, the MAC might stall when transitioning
* from a lower speed. This workaround disables K1 whenever link is at 1Gig
* If link is down, the function will restore the default K1 setting located
* in the NVM.
**/
static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
{
s32 ret_val = 0;
u16 status_reg = 0;
bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
if (hw->mac.type != e1000_pchlan)
goto out;
/* Wrap the whole flow with the sw flag */
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
goto out;
/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
if (link) {
if (hw->phy.type == e1000_phy_82578) {
ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
&status_reg);
if (ret_val)
goto release;
status_reg &= BM_CS_STATUS_LINK_UP |
BM_CS_STATUS_RESOLVED |
BM_CS_STATUS_SPEED_MASK;
if (status_reg == (BM_CS_STATUS_LINK_UP |
BM_CS_STATUS_RESOLVED |
BM_CS_STATUS_SPEED_1000))
k1_enable = false;
}
if (hw->phy.type == e1000_phy_82577) {
ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
&status_reg);
if (ret_val)
goto release;
status_reg &= HV_M_STATUS_LINK_UP |
HV_M_STATUS_AUTONEG_COMPLETE |
HV_M_STATUS_SPEED_MASK;
if (status_reg == (HV_M_STATUS_LINK_UP |
HV_M_STATUS_AUTONEG_COMPLETE |
HV_M_STATUS_SPEED_1000))
k1_enable = false;
}
/* Link stall fix for link up */
ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
0x0100);
if (ret_val)
goto release;
} else {
/* Link stall fix for link down */
ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
0x4100);
if (ret_val)
goto release;
}
ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
release:
hw->phy.ops.release(hw);
out:
return ret_val;
}
/**
* e1000_configure_k1_ich8lan - Configure K1 power state
* @hw: pointer to the HW structure
* @enable: K1 state to configure
*
* Configure the K1 power state based on the provided parameter.
* Assumes semaphore already acquired.
*
* Success returns 0, Failure returns -E1000_ERR_PHY (-2)
**/
s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
{
s32 ret_val = 0;
u32 ctrl_reg = 0;
u32 ctrl_ext = 0;
u32 reg = 0;
u16 kmrn_reg = 0;
ret_val = e1000e_read_kmrn_reg_locked(hw,
E1000_KMRNCTRLSTA_K1_CONFIG,
&kmrn_reg);
if (ret_val)
goto out;
if (k1_enable)
kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
else
kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
ret_val = e1000e_write_kmrn_reg_locked(hw,
E1000_KMRNCTRLSTA_K1_CONFIG,
kmrn_reg);
if (ret_val)
goto out;
udelay(20);
ctrl_ext = er32(CTRL_EXT);
ctrl_reg = er32(CTRL);
reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
reg |= E1000_CTRL_FRCSPD;
ew32(CTRL, reg);
ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
e1e_flush();
udelay(20);
ew32(CTRL, ctrl_reg);
ew32(CTRL_EXT, ctrl_ext);
e1e_flush();
udelay(20);
out:
return ret_val;
}
/**
* e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
* @hw: pointer to the HW structure
* @d0_state: boolean if entering d0 or d3 device state
*
* SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
* collectively called OEM bits. The OEM Write Enable bit and SW Config bit
* in NVM determines whether HW should configure LPLU and Gbe Disable.
**/
static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
{
s32 ret_val = 0;
u32 mac_reg;
u16 oem_reg;
if ((hw->mac.type != e1000_pch2lan) && (hw->mac.type != e1000_pchlan))
return ret_val;
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return ret_val;
if (!(hw->mac.type == e1000_pch2lan)) {
mac_reg = er32(EXTCNF_CTRL);
if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
goto out;
}
mac_reg = er32(FEXTNVM);
if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
goto out;
mac_reg = er32(PHY_CTRL);
ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
if (ret_val)
goto out;
oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
if (d0_state) {
if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
oem_reg |= HV_OEM_BITS_GBE_DIS;
if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
oem_reg |= HV_OEM_BITS_LPLU;
/* Set Restart auto-neg to activate the bits */
if (!e1000_check_reset_block(hw))
oem_reg |= HV_OEM_BITS_RESTART_AN;
} else {
if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
oem_reg |= HV_OEM_BITS_GBE_DIS;
if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
E1000_PHY_CTRL_NOND0A_LPLU))
oem_reg |= HV_OEM_BITS_LPLU;
}
ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
out:
hw->phy.ops.release(hw);
return ret_val;
}
/**
* e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
* @hw: pointer to the HW structure
**/
static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
{
s32 ret_val;
u16 data;
ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
if (ret_val)
return ret_val;
data |= HV_KMRN_MDIO_SLOW;
ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
return ret_val;
}
/**
* e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
* done after every PHY reset.
**/
static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
{
s32 ret_val = 0;
u16 phy_data;
if (hw->mac.type != e1000_pchlan)
return ret_val;
/* Set MDIO slow mode before any other MDIO access */
if (hw->phy.type == e1000_phy_82577) {
ret_val = e1000_set_mdio_slow_mode_hv(hw);
if (ret_val)
goto out;
}
if (((hw->phy.type == e1000_phy_82577) &&
((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
/* Disable generation of early preamble */
ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
if (ret_val)
return ret_val;
/* Preamble tuning for SSC */
ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
if (ret_val)
return ret_val;
}
if (hw->phy.type == e1000_phy_82578) {
/*
* Return registers to default by doing a soft reset then
* writing 0x3140 to the control register.
*/
if (hw->phy.revision < 2) {
e1000e_phy_sw_reset(hw);
ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
}
}
/* Select page 0 */
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return ret_val;
hw->phy.addr = 1;
ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
hw->phy.ops.release(hw);
if (ret_val)
goto out;
/*
* Configure the K1 Si workaround during phy reset assuming there is
* link so that it disables K1 if link is in 1Gbps.
*/
ret_val = e1000_k1_gig_workaround_hv(hw, true);
if (ret_val)
goto out;
/* Workaround for link disconnects on a busy hub in half duplex */
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
goto out;
ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data);
if (ret_val)
goto release;
ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG,
phy_data & 0x00FF);
release:
hw->phy.ops.release(hw);
out:
return ret_val;
}
/**
* e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
* @hw: pointer to the HW structure
**/
void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
{
u32 mac_reg;
u16 i, phy_reg = 0;
s32 ret_val;
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return;
ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
if (ret_val)
goto release;
/* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
mac_reg = er32(RAL(i));
hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
(u16)(mac_reg & 0xFFFF));
hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
(u16)((mac_reg >> 16) & 0xFFFF));
mac_reg = er32(RAH(i));
hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
(u16)(mac_reg & 0xFFFF));
hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
(u16)((mac_reg & E1000_RAH_AV)
>> 16));
}
e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
release:
hw->phy.ops.release(hw);
}
/**
* e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
* with 82579 PHY
* @hw: pointer to the HW structure
* @enable: flag to enable/disable workaround when enabling/disabling jumbos
**/
s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
{
s32 ret_val = 0;
u16 phy_reg, data;
u32 mac_reg;
u16 i;
if (hw->mac.type != e1000_pch2lan)
goto out;
/* disable Rx path while enabling/disabling workaround */
e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
if (ret_val)
goto out;
if (enable) {
/*
* Write Rx addresses (rar_entry_count for RAL/H, +4 for
* SHRAL/H) and initial CRC values to the MAC
*/
for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
u8 mac_addr[ETH_ALEN] = {0};
u32 addr_high, addr_low;
addr_high = er32(RAH(i));
if (!(addr_high & E1000_RAH_AV))
continue;
addr_low = er32(RAL(i));
mac_addr[0] = (addr_low & 0xFF);
mac_addr[1] = ((addr_low >> 8) & 0xFF);
mac_addr[2] = ((addr_low >> 16) & 0xFF);
mac_addr[3] = ((addr_low >> 24) & 0xFF);
mac_addr[4] = (addr_high & 0xFF);
mac_addr[5] = ((addr_high >> 8) & 0xFF);
ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
}
/* Write Rx addresses to the PHY */
e1000_copy_rx_addrs_to_phy_ich8lan(hw);
/* Enable jumbo frame workaround in the MAC */
mac_reg = er32(FFLT_DBG);
mac_reg &= ~(1 << 14);
mac_reg |= (7 << 15);
ew32(FFLT_DBG, mac_reg);
mac_reg = er32(RCTL);
mac_reg |= E1000_RCTL_SECRC;
ew32(RCTL, mac_reg);
ret_val = e1000e_read_kmrn_reg(hw,
E1000_KMRNCTRLSTA_CTRL_OFFSET,
&data);
if (ret_val)
goto out;
ret_val = e1000e_write_kmrn_reg(hw,
E1000_KMRNCTRLSTA_CTRL_OFFSET,
data | (1 << 0));
if (ret_val)
goto out;
ret_val = e1000e_read_kmrn_reg(hw,
E1000_KMRNCTRLSTA_HD_CTRL,
&data);
if (ret_val)
goto out;
data &= ~(0xF << 8);
data |= (0xB << 8);
ret_val = e1000e_write_kmrn_reg(hw,
E1000_KMRNCTRLSTA_HD_CTRL,
data);
if (ret_val)
goto out;
/* Enable jumbo frame workaround in the PHY */
e1e_rphy(hw, PHY_REG(769, 23), &data);
data &= ~(0x7F << 5);
data |= (0x37 << 5);
ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
if (ret_val)
goto out;
e1e_rphy(hw, PHY_REG(769, 16), &data);
data &= ~(1 << 13);
ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
if (ret_val)
goto out;
e1e_rphy(hw, PHY_REG(776, 20), &data);
data &= ~(0x3FF << 2);
data |= (0x1A << 2);
ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
if (ret_val)
goto out;
ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
if (ret_val)
goto out;
e1e_rphy(hw, HV_PM_CTRL, &data);
ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
if (ret_val)
goto out;
} else {
/* Write MAC register values back to h/w defaults */
mac_reg = er32(FFLT_DBG);
mac_reg &= ~(0xF << 14);
ew32(FFLT_DBG, mac_reg);
mac_reg = er32(RCTL);
mac_reg &= ~E1000_RCTL_SECRC;
ew32(RCTL, mac_reg);
ret_val = e1000e_read_kmrn_reg(hw,
E1000_KMRNCTRLSTA_CTRL_OFFSET,
&data);
if (ret_val)
goto out;
ret_val = e1000e_write_kmrn_reg(hw,
E1000_KMRNCTRLSTA_CTRL_OFFSET,
data & ~(1 << 0));
if (ret_val)
goto out;
ret_val = e1000e_read_kmrn_reg(hw,
E1000_KMRNCTRLSTA_HD_CTRL,
&data);
if (ret_val)
goto out;
data &= ~(0xF << 8);
data |= (0xB << 8);
ret_val = e1000e_write_kmrn_reg(hw,
E1000_KMRNCTRLSTA_HD_CTRL,
data);
if (ret_val)
goto out;
/* Write PHY register values back to h/w defaults */
e1e_rphy(hw, PHY_REG(769, 23), &data);
data &= ~(0x7F << 5);
ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
if (ret_val)
goto out;
e1e_rphy(hw, PHY_REG(769, 16), &data);
data |= (1 << 13);
ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
if (ret_val)
goto out;
e1e_rphy(hw, PHY_REG(776, 20), &data);
data &= ~(0x3FF << 2);
data |= (0x8 << 2);
ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
if (ret_val)
goto out;
ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
if (ret_val)
goto out;
e1e_rphy(hw, HV_PM_CTRL, &data);
ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
if (ret_val)
goto out;
}
/* re-enable Rx path after enabling/disabling workaround */
ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
out:
return ret_val;
}
/**
* e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
* done after every PHY reset.
**/
static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
{
s32 ret_val = 0;
if (hw->mac.type != e1000_pch2lan)
goto out;
/* Set MDIO slow mode before any other MDIO access */
ret_val = e1000_set_mdio_slow_mode_hv(hw);
out:
return ret_val;
}
/**
* e1000_k1_gig_workaround_lv - K1 Si workaround
* @hw: pointer to the HW structure
*
* Workaround to set the K1 beacon duration for 82579 parts
**/
static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
{
s32 ret_val = 0;
u16 status_reg = 0;
u32 mac_reg;
u16 phy_reg;
if (hw->mac.type != e1000_pch2lan)
goto out;
/* Set K1 beacon duration based on 1Gbps speed or otherwise */
ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
if (ret_val)
goto out;
if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
== (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
mac_reg = er32(FEXTNVM4);
mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
if (ret_val)
goto out;
if (status_reg & HV_M_STATUS_SPEED_1000) {
mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
phy_reg &= ~I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
} else {
mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
phy_reg |= I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
}
ew32(FEXTNVM4, mac_reg);
ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
}
out:
return ret_val;
}
/**
* e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
* @hw: pointer to the HW structure
* @gate: boolean set to true to gate, false to ungate
*
* Gate/ungate the automatic PHY configuration via hardware; perform
* the configuration via software instead.
**/
static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
{
u32 extcnf_ctrl;
if (hw->mac.type != e1000_pch2lan)
return;
extcnf_ctrl = er32(EXTCNF_CTRL);
if (gate)
extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
else
extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
ew32(EXTCNF_CTRL, extcnf_ctrl);
return;
}
/**
* e1000_lan_init_done_ich8lan - Check for PHY config completion
* @hw: pointer to the HW structure
*
* Check the appropriate indication the MAC has finished configuring the
* PHY after a software reset.
**/
static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
{
u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
/* Wait for basic configuration completes before proceeding */
do {
data = er32(STATUS);
data &= E1000_STATUS_LAN_INIT_DONE;
udelay(100);
} while ((!data) && --loop);
/*
* If basic configuration is incomplete before the above loop
* count reaches 0, loading the configuration from NVM will
* leave the PHY in a bad state possibly resulting in no link.
*/
if (loop == 0)
e_dbg("LAN_INIT_DONE not set, increase timeout\n");
/* Clear the Init Done bit for the next init event */
data = er32(STATUS);
data &= ~E1000_STATUS_LAN_INIT_DONE;
ew32(STATUS, data);
}
/**
* e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
* @hw: pointer to the HW structure
**/
static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
{
s32 ret_val = 0;
u16 reg;
if (e1000_check_reset_block(hw))
goto out;
/* Allow time for h/w to get to quiescent state after reset */
usleep_range(10000, 20000);
/* Perform any necessary post-reset workarounds */
switch (hw->mac.type) {
case e1000_pchlan:
ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
if (ret_val)
goto out;
break;
case e1000_pch2lan:
ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
if (ret_val)
goto out;
break;
default:
break;
}
/* Clear the host wakeup bit after lcd reset */
if (hw->mac.type >= e1000_pchlan) {
e1e_rphy(hw, BM_PORT_GEN_CFG, ®);
reg &= ~BM_WUC_HOST_WU_BIT;
e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
}
/* Configure the LCD with the extended configuration region in NVM */
ret_val = e1000_sw_lcd_config_ich8lan(hw);
if (ret_val)
goto out;
/* Configure the LCD with the OEM bits in NVM */
ret_val = e1000_oem_bits_config_ich8lan(hw, true);
if (hw->mac.type == e1000_pch2lan) {
/* Ungate automatic PHY configuration on non-managed 82579 */
if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
usleep_range(10000, 20000);
e1000_gate_hw_phy_config_ich8lan(hw, false);
}
/* Set EEE LPI Update Timer to 200usec */
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
goto out;
ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR,
I82579_LPI_UPDATE_TIMER);
if (ret_val)
goto release;
ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA,
0x1387);
release:
hw->phy.ops.release(hw);
}
out:
return ret_val;
}
/**
* e1000_phy_hw_reset_ich8lan - Performs a PHY reset
* @hw: pointer to the HW structure
*
* Resets the PHY
* This is a function pointer entry point called by drivers
* or other shared routines.
**/
static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
{
s32 ret_val = 0;
/* Gate automatic PHY configuration by hardware on non-managed 82579 */
if ((hw->mac.type == e1000_pch2lan) &&
!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
e1000_gate_hw_phy_config_ich8lan(hw, true);
ret_val = e1000e_phy_hw_reset_generic(hw);
if (ret_val)
goto out;
ret_val = e1000_post_phy_reset_ich8lan(hw);
out:
return ret_val;
}
/**
* e1000_set_lplu_state_pchlan - Set Low Power Link Up state
* @hw: pointer to the HW structure
* @active: true to enable LPLU, false to disable
*
* Sets the LPLU state according to the active flag. For PCH, if OEM write
* bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
* the phy speed. This function will manually set the LPLU bit and restart
* auto-neg as hw would do. D3 and D0 LPLU will call the same function
* since it configures the same bit.
**/
static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
{
s32 ret_val = 0;
u16 oem_reg;
ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
if (ret_val)
goto out;
if (active)
oem_reg |= HV_OEM_BITS_LPLU;
else
oem_reg &= ~HV_OEM_BITS_LPLU;
oem_reg |= HV_OEM_BITS_RESTART_AN;
ret_val = e1e_wphy(hw, HV_OEM_BITS, oem_reg);
out:
return ret_val;
}
/**
* e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
* @hw: pointer to the HW structure
* @active: true to enable LPLU, false to disable
*
* Sets the LPLU D0 state according to the active flag. When
* activating LPLU this function also disables smart speed
* and vice versa. LPLU will not be activated unless the
* device autonegotiation advertisement meets standards of
* either 10 or 10/100 or 10/100/1000 at all duplexes.
* This is a function pointer entry point only called by
* PHY setup routines.
**/
static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
{
struct e1000_phy_info *phy = &hw->phy;
u32 phy_ctrl;
s32 ret_val = 0;
u16 data;
if (phy->type == e1000_phy_ife)
return ret_val;
phy_ctrl = er32(PHY_CTRL);
if (active) {
phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
ew32(PHY_CTRL, phy_ctrl);
if (phy->type != e1000_phy_igp_3)
return 0;
/*
* Call gig speed drop workaround on LPLU before accessing
* any PHY registers
*/
if (hw->mac.type == e1000_ich8lan)
e1000e_gig_downshift_workaround_ich8lan(hw);
/* When LPLU is enabled, we should disable SmartSpeed */
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
if (ret_val)
return ret_val;
} else {
phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
ew32(PHY_CTRL, phy_ctrl);
if (phy->type != e1000_phy_igp_3)
return 0;
/*
* LPLU and SmartSpeed are mutually exclusive. LPLU is used
* during Dx states where the power conservation is most
* important. During driver activity we should enable
* SmartSpeed, so performance is maintained.
*/
if (phy->smart_speed == e1000_smart_speed_on) {
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
&data);
if (ret_val)
return ret_val;
data |= IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
data);
if (ret_val)
return ret_val;
} else if (phy->smart_speed == e1000_smart_speed_off) {
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
&data);
if (ret_val)
return ret_val;
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
data);
if (ret_val)
return ret_val;
}
}
return 0;
}
/**
* e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
* @hw: pointer to the HW structure
* @active: true to enable LPLU, false to disable
*
* Sets the LPLU D3 state according to the active flag. When
* activating LPLU this function also disables smart speed
* and vice versa. LPLU will not be activated unless the
* device autonegotiation advertisement meets standards of
* either 10 or 10/100 or 10/100/1000 at all duplexes.
* This is a function pointer entry point only called by
* PHY setup routines.
**/
static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
{
struct e1000_phy_info *phy = &hw->phy;
u32 phy_ctrl;
s32 ret_val;
u16 data;
phy_ctrl = er32(PHY_CTRL);
if (!active) {
phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
ew32(PHY_CTRL, phy_ctrl);
if (phy->type != e1000_phy_igp_3)
return 0;
/*
* LPLU and SmartSpeed are mutually exclusive. LPLU is used
* during Dx states where the power conservation is most
* important. During driver activity we should enable
* SmartSpeed, so performance is maintained.
*/
if (phy->smart_speed == e1000_smart_speed_on) {
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
&data);
if (ret_val)
return ret_val;
data |= IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
data);
if (ret_val)
return ret_val;
} else if (phy->smart_speed == e1000_smart_speed_off) {
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
&data);
if (ret_val)
return ret_val;
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
data);
if (ret_val)
return ret_val;
}
} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
(phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
(phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
ew32(PHY_CTRL, phy_ctrl);
if (phy->type != e1000_phy_igp_3)
return 0;
/*
* Call gig speed drop workaround on LPLU before accessing
* any PHY registers
*/
if (hw->mac.type == e1000_ich8lan)
e1000e_gig_downshift_workaround_ich8lan(hw);
/* When LPLU is enabled, we should disable SmartSpeed */
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
if (ret_val)
return ret_val;
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
}
return 0;
}
/**
* e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
* @hw: pointer to the HW structure
* @bank: pointer to the variable that returns the active bank
*
* Reads signature byte from the NVM using the flash access registers.
* Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
**/
static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
{
u32 eecd;
struct e1000_nvm_info *nvm = &hw->nvm;
u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
u8 sig_byte = 0;
s32 ret_val = 0;
switch (hw->mac.type) {
case e1000_ich8lan:
case e1000_ich9lan:
eecd = er32(EECD);
if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
E1000_EECD_SEC1VAL_VALID_MASK) {
if (eecd & E1000_EECD_SEC1VAL)
*bank = 1;
else
*bank = 0;
return 0;
}
e_dbg("Unable to determine valid NVM bank via EEC - "
"reading flash signature\n");
/* fall-thru */
default:
/* set bank to 0 in case flash read fails */
*bank = 0;
/* Check bank 0 */
ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
&sig_byte);
if (ret_val)
return ret_val;
if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
E1000_ICH_NVM_SIG_VALUE) {
*bank = 0;
return 0;
}
/* Check bank 1 */
ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
bank1_offset,
&sig_byte);
if (ret_val)
return ret_val;
if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
E1000_ICH_NVM_SIG_VALUE) {
*bank = 1;
return 0;
}
e_dbg("ERROR: No valid NVM bank present\n");
return -E1000_ERR_NVM;
}
return 0;
}
/**
* e1000_read_nvm_ich8lan - Read word(s) from the NVM
* @hw: pointer to the HW structure
* @offset: The offset (in bytes) of the word(s) to read.
* @words: Size of data to read in words
* @data: Pointer to the word(s) to read at offset.
*
* Reads a word(s) from the NVM using the flash access registers.
**/
static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
u16 *data)
{
struct e1000_nvm_info *nvm = &hw->nvm;
struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
u32 act_offset;
s32 ret_val = 0;
u32 bank = 0;
u16 i, word;
if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
(words == 0)) {
e_dbg("nvm parameter(s) out of bounds\n");
ret_val = -E1000_ERR_NVM;
goto out;
}
nvm->ops.acquire(hw);
ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
if (ret_val) {
e_dbg("Could not detect valid bank, assuming bank 0\n");
bank = 0;
}
act_offset = (bank) ? nvm->flash_bank_size : 0;
act_offset += offset;
ret_val = 0;
for (i = 0; i < words; i++) {
if (dev_spec->shadow_ram[offset+i].modified) {
data[i] = dev_spec->shadow_ram[offset+i].value;
} else {
ret_val = e1000_read_flash_word_ich8lan(hw,
act_offset + i,
&word);
if (ret_val)
break;
data[i] = word;
}
}
nvm->ops.release(hw);
out:
if (ret_val)
e_dbg("NVM read error: %d\n", ret_val);
return ret_val;
}
/**
* e1000_flash_cycle_init_ich8lan - Initialize flash
* @hw: pointer to the HW structure
*
* This function does initial flash setup so that a new read/write/erase cycle
* can be started.
**/
static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
{
union ich8_hws_flash_status hsfsts;
s32 ret_val = -E1000_ERR_NVM;
hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
/* Check if the flash descriptor is valid */
if (hsfsts.hsf_status.fldesvalid == 0) {
e_dbg("Flash descriptor invalid. "
"SW Sequencing must be used.\n");
return -E1000_ERR_NVM;
}
/* Clear FCERR and DAEL in hw status by writing 1 */
hsfsts.hsf_status.flcerr = 1;
hsfsts.hsf_status.dael = 1;
ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
/*
* Either we should have a hardware SPI cycle in progress
* bit to check against, in order to start a new cycle or
* FDONE bit should be changed in the hardware so that it
* is 1 after hardware reset, which can then be used as an
* indication whether a cycle is in progress or has been
* completed.
*/
if (hsfsts.hsf_status.flcinprog == 0) {
/*
* There is no cycle running at present,
* so we can start a cycle.
* Begin by setting Flash Cycle Done.
*/
hsfsts.hsf_status.flcdone = 1;
ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
ret_val = 0;
} else {
s32 i = 0;
/*
* Otherwise poll for sometime so the current
* cycle has a chance to end before giving up.
*/
for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
if (hsfsts.hsf_status.flcinprog == 0) {
ret_val = 0;
break;
}
udelay(1);
}
if (ret_val == 0) {
/*
* Successful in waiting for previous cycle to timeout,
* now set the Flash Cycle Done.
*/
hsfsts.hsf_status.flcdone = 1;
ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
} else {
e_dbg("Flash controller busy, cannot get access\n");
}
}
return ret_val;
}
/**
* e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
* @hw: pointer to the HW structure
* @timeout: maximum time to wait for completion
*
* This function starts a flash cycle and waits for its completion.
**/
static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
{
union ich8_hws_flash_ctrl hsflctl;
union ich8_hws_flash_status hsfsts;
s32 ret_val = -E1000_ERR_NVM;
u32 i = 0;
/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
hsflctl.hsf_ctrl.flcgo = 1;
ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
/* wait till FDONE bit is set to 1 */
do {
hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
if (hsfsts.hsf_status.flcdone == 1)
break;
udelay(1);
} while (i++ < timeout);
if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
return 0;
return ret_val;
}
/**
* e1000_read_flash_word_ich8lan - Read word from flash
* @hw: pointer to the HW structure
* @offset: offset to data location
* @data: pointer to the location for storing the data
*
* Reads the flash word at offset into data. Offset is converted
* to bytes before read.
**/
static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
u16 *data)
{
/* Must convert offset into bytes. */
offset <<= 1;
return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
}
/**
* e1000_read_flash_byte_ich8lan - Read byte from flash
* @hw: pointer to the HW structure
* @offset: The offset of the byte to read.
* @data: Pointer to a byte to store the value read.
*
* Reads a single byte from the NVM using the flash access registers.
**/
static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
u8 *data)
{
s32 ret_val;
u16 word = 0;
ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
if (ret_val)
return ret_val;
*data = (u8)word;
return 0;
}
/**
* e1000_read_flash_data_ich8lan - Read byte or word from NVM
* @hw: pointer to the HW structure
* @offset: The offset (in bytes) of the byte or word to read.
* @size: Size of data to read, 1=byte 2=word
* @data: Pointer to the word to store the value read.
*
* Reads a byte or word from the NVM using the flash access registers.
**/
static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
u8 size, u16 *data)
{
union ich8_hws_flash_status hsfsts;
union ich8_hws_flash_ctrl hsflctl;
u32 flash_linear_addr;
u32 flash_data = 0;
s32 ret_val = -E1000_ERR_NVM;
u8 count = 0;
if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
return -E1000_ERR_NVM;
flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
hw->nvm.flash_base_addr;
do {
udelay(1);
/* Steps */
ret_val = e1000_flash_cycle_init_ich8lan(hw);
if (ret_val != 0)
break;
hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
hsflctl.hsf_ctrl.fldbcount = size - 1;
hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
ret_val = e1000_flash_cycle_ich8lan(hw,
ICH_FLASH_READ_COMMAND_TIMEOUT);
/*
* Check if FCERR is set to 1, if set to 1, clear it
* and try the whole sequence a few more times, else
* read in (shift in) the Flash Data0, the order is
* least significant byte first msb to lsb
*/
if (ret_val == 0) {
flash_data = er32flash(ICH_FLASH_FDATA0);
if (size == 1)
*data = (u8)(flash_data & 0x000000FF);
else if (size == 2)
*data = (u16)(flash_data & 0x0000FFFF);
break;
} else {
/*
* If we've gotten here, then things are probably
* completely hosed, but if the error condition is
* detected, it won't hurt to give it another try...
* ICH_FLASH_CYCLE_REPEAT_COUNT times.
*/
hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
if (hsfsts.hsf_status.flcerr == 1) {
/* Repeat for some time before giving up. */
continue;
} else if (hsfsts.hsf_status.flcdone == 0) {
e_dbg("Timeout error - flash cycle "
"did not complete.\n");
break;
}
}
} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
return ret_val;
}
/**
* e1000_write_nvm_ich8lan - Write word(s) to the NVM
* @hw: pointer to the HW structure
* @offset: The offset (in bytes) of the word(s) to write.
* @words: Size of data to write in words
* @data: Pointer to the word(s) to write at offset.
*
* Writes a byte or word to the NVM using the flash access registers.
**/
static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
u16 *data)
{
struct e1000_nvm_info *nvm = &hw->nvm;
struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
u16 i;
if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
(words == 0)) {
e_dbg("nvm parameter(s) out of bounds\n");
return -E1000_ERR_NVM;
}
nvm->ops.acquire(hw);
for (i = 0; i < words; i++) {
dev_spec->shadow_ram[offset+i].modified = true;
dev_spec->shadow_ram[offset+i].value = data[i];
}
nvm->ops.release(hw);
return 0;
}
/**
* e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
* @hw: pointer to the HW structure
*
* The NVM checksum is updated by calling the generic update_nvm_checksum,
* which writes the checksum to the shadow ram. The changes in the shadow
* ram are then committed to the EEPROM by processing each bank at a time
* checking for the modified bit and writing only the pending changes.
* After a successful commit, the shadow ram is cleared and is ready for
* future writes.
**/
static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
{
struct e1000_nvm_info *nvm = &hw->nvm;
struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
s32 ret_val;
u16 data;
ret_val = e1000e_update_nvm_checksum_generic(hw);
if (ret_val)
goto out;
if (nvm->type != e1000_nvm_flash_sw)
goto out;
nvm->ops.acquire(hw);
/*
* We're writing to the opposite bank so if we're on bank 1,
* write to bank 0 etc. We also need to erase the segment that
* is going to be written
*/
ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
if (ret_val) {
e_dbg("Could not detect valid bank, assuming bank 0\n");
bank = 0;
}
if (bank == 0) {
new_bank_offset = nvm->flash_bank_size;
old_bank_offset = 0;
ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
if (ret_val)
goto release;
} else {
old_bank_offset = nvm->flash_bank_size;
new_bank_offset = 0;
ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
if (ret_val)
goto release;
}
for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
/*
* Determine whether to write the value stored
* in the other NVM bank or a modified value stored
* in the shadow RAM
*/
if (dev_spec->shadow_ram[i].modified) {
data = dev_spec->shadow_ram[i].value;
} else {
ret_val = e1000_read_flash_word_ich8lan(hw, i +
old_bank_offset,
&data);
if (ret_val)
break;
}
/*
* If the word is 0x13, then make sure the signature bits
* (15:14) are 11b until the commit has completed.
* This will allow us to write 10b which indicates the
* signature is valid. We want to do this after the write
* has completed so that we don't mark the segment valid
* while the write is still in progress
*/
if (i == E1000_ICH_NVM_SIG_WORD)
data |= E1000_ICH_NVM_SIG_MASK;
/* Convert offset to bytes. */
act_offset = (i + new_bank_offset) << 1;
udelay(100);
/* Write the bytes to the new bank. */
ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
act_offset,
(u8)data);
if (ret_val)
break;
udelay(100);
ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
act_offset + 1,
(u8)(data >> 8));
if (ret_val)
break;
}
/*
* Don't bother writing the segment valid bits if sector
* programming failed.
*/
if (ret_val) {
/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
e_dbg("Flash commit failed.\n");
goto release;
}
/*
* Finally validate the new segment by setting bit 15:14
* to 10b in word 0x13 , this can be done without an
* erase as well since these bits are 11 to start with
* and we need to change bit 14 to 0b
*/
act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
if (ret_val)
goto release;
data &= 0xBFFF;
ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
act_offset * 2 + 1,
(u8)(data >> 8));
if (ret_val)
goto release;
/*
* And invalidate the previously valid segment by setting
* its signature word (0x13) high_byte to 0b. This can be
* done without an erase because flash erase sets all bits
* to 1's. We can write 1's to 0's without an erase
*/
act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
if (ret_val)
goto release;
/* Great! Everything worked, we can now clear the cached entries. */
for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
dev_spec->shadow_ram[i].modified = false;
dev_spec->shadow_ram[i].value = 0xFFFF;
}
release:
nvm->ops.release(hw);
/*
* Reload the EEPROM, or else modifications will not appear
* until after the next adapter reset.
*/
if (!ret_val) {
e1000e_reload_nvm(hw);
usleep_range(10000, 20000);
}
out:
if (ret_val)
e_dbg("NVM update error: %d\n", ret_val);
return ret_val;
}
/**
* e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
* @hw: pointer to the HW structure
*
* Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
* If the bit is 0, that the EEPROM had been modified, but the checksum was not
* calculated, in which case we need to calculate the checksum and set bit 6.
**/
static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
{
s32 ret_val;
u16 data;
/*
* Read 0x19 and check bit 6. If this bit is 0, the checksum
* needs to be fixed. This bit is an indication that the NVM
* was prepared by OEM software and did not calculate the
* checksum...a likely scenario.
*/
ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
if (ret_val)
return ret_val;
if ((data & 0x40) == 0) {
data |= 0x40;
ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
if (ret_val)
return ret_val;
ret_val = e1000e_update_nvm_checksum(hw);
if (ret_val)
return ret_val;
}
return e1000e_validate_nvm_checksum_generic(hw);
}
/**
* e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
* @hw: pointer to the HW structure
*
* To prevent malicious write/erase of the NVM, set it to be read-only
* so that the hardware ignores all write/erase cycles of the NVM via
* the flash control registers. The shadow-ram copy of the NVM will
* still be updated, however any updates to this copy will not stick
* across driver reloads.
**/
void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
{
struct e1000_nvm_info *nvm = &hw->nvm;
union ich8_flash_protected_range pr0;
union ich8_hws_flash_status hsfsts;
u32 gfpreg;
nvm->ops.acquire(hw);
gfpreg = er32flash(ICH_FLASH_GFPREG);
/* Write-protect GbE Sector of NVM */
pr0.regval = er32flash(ICH_FLASH_PR0);
pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
pr0.range.wpe = true;
ew32flash(ICH_FLASH_PR0, pr0.regval);
/*
* Lock down a subset of GbE Flash Control Registers, e.g.
* PR0 to prevent the write-protection from being lifted.
* Once FLOCKDN is set, the registers protected by it cannot
* be written until FLOCKDN is cleared by a hardware reset.
*/
hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
hsfsts.hsf_status.flockdn = true;
ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
nvm->ops.release(hw);
}
/**
* e1000_write_flash_data_ich8lan - Writes bytes to the NVM
* @hw: pointer to the HW structure
* @offset: The offset (in bytes) of the byte/word to read.
* @size: Size of data to read, 1=byte 2=word
* @data: The byte(s) to write to the NVM.
*
* Writes one/two bytes to the NVM using the flash access registers.
**/
static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
u8 size, u16 data)
{
union ich8_hws_flash_status hsfsts;
union ich8_hws_flash_ctrl hsflctl;
u32 flash_linear_addr;
u32 flash_data = 0;
s32 ret_val;
u8 count = 0;
if (size < 1 || size > 2 || data > size * 0xff ||
offset > ICH_FLASH_LINEAR_ADDR_MASK)
return -E1000_ERR_NVM;
flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
hw->nvm.flash_base_addr;
do {
udelay(1);
/* Steps */
ret_val = e1000_flash_cycle_init_ich8lan(hw);
if (ret_val)
break;
hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
hsflctl.hsf_ctrl.fldbcount = size -1;
hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
if (size == 1)
flash_data = (u32)data & 0x00FF;
else
flash_data = (u32)data;
ew32flash(ICH_FLASH_FDATA0, flash_data);
/*
* check if FCERR is set to 1 , if set to 1, clear it
* and try the whole sequence a few more times else done
*/
ret_val = e1000_flash_cycle_ich8lan(hw,
ICH_FLASH_WRITE_COMMAND_TIMEOUT);
if (!ret_val)
break;
/*
* If we're here, then things are most likely
* completely hosed, but if the error condition
* is detected, it won't hurt to give it another
* try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
*/
hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
if (hsfsts.hsf_status.flcerr == 1)
/* Repeat for some time before giving up. */
continue;
if (hsfsts.hsf_status.flcdone == 0) {
e_dbg("Timeout error - flash cycle "
"did not complete.");
break;
}
} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
return ret_val;
}
/**
* e1000_write_flash_byte_ich8lan - Write a single byte to NVM
* @hw: pointer to the HW structure
* @offset: The index of the byte to read.
* @data: The byte to write to the NVM.
*
* Writes a single byte to the NVM using the flash access registers.
**/
static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
u8 data)
{
u16 word = (u16)data;
return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
}
/**
* e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
* @hw: pointer to the HW structure
* @offset: The offset of the byte to write.
* @byte: The byte to write to the NVM.
*
* Writes a single byte to the NVM using the flash access registers.
* Goes through a retry algorithm before giving up.
**/
static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
u32 offset, u8 byte)
{
s32 ret_val;
u16 program_retries;
ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
if (!ret_val)
return ret_val;
for (program_retries = 0; program_retries < 100; program_retries++) {
e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
udelay(100);
ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
if (!ret_val)
break;
}
if (program_retries == 100)
return -E1000_ERR_NVM;
return 0;
}
/**
* e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
* @hw: pointer to the HW structure
* @bank: 0 for first bank, 1 for second bank, etc.
*
* Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
* bank N is 4096 * N + flash_reg_addr.
**/
static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
{
struct e1000_nvm_info *nvm = &hw->nvm;
union ich8_hws_flash_status hsfsts;
union ich8_hws_flash_ctrl hsflctl;
u32 flash_linear_addr;
/* bank size is in 16bit words - adjust to bytes */
u32 flash_bank_size = nvm->flash_bank_size * 2;
s32 ret_val;
s32 count = 0;
s32 j, iteration, sector_size;
hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
/*
* Determine HW Sector size: Read BERASE bits of hw flash status
* register
* 00: The Hw sector is 256 bytes, hence we need to erase 16
* consecutive sectors. The start index for the nth Hw sector
* can be calculated as = bank * 4096 + n * 256
* 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
* The start index for the nth Hw sector can be calculated
* as = bank * 4096
* 10: The Hw sector is 8K bytes, nth sector = bank * 8192
* (ich9 only, otherwise error condition)
* 11: The Hw sector is 64K bytes, nth sector = bank * 65536
*/
switch (hsfsts.hsf_status.berasesz) {
case 0:
/* Hw sector size 256 */
sector_size = ICH_FLASH_SEG_SIZE_256;
iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
break;
case 1:
sector_size = ICH_FLASH_SEG_SIZE_4K;
iteration = 1;
break;
case 2:
sector_size = ICH_FLASH_SEG_SIZE_8K;
iteration = 1;
break;
case 3:
sector_size = ICH_FLASH_SEG_SIZE_64K;
iteration = 1;
break;
default:
return -E1000_ERR_NVM;
}
/* Start with the base address, then add the sector offset. */
flash_linear_addr = hw->nvm.flash_base_addr;
flash_linear_addr += (bank) ? flash_bank_size : 0;
for (j = 0; j < iteration ; j++) {
do {
/* Steps */
ret_val = e1000_flash_cycle_init_ich8lan(hw);
if (ret_val)
return ret_val;
/*
* Write a value 11 (block Erase) in Flash
* Cycle field in hw flash control
*/
hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
/*
* Write the last 24 bits of an index within the
* block into Flash Linear address field in Flash
* Address.
*/
flash_linear_addr += (j * sector_size);
ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
ret_val = e1000_flash_cycle_ich8lan(hw,
ICH_FLASH_ERASE_COMMAND_TIMEOUT);
if (ret_val == 0)
break;
/*
* Check if FCERR is set to 1. If 1,
* clear it and try the whole sequence
* a few more times else Done
*/
hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
if (hsfsts.hsf_status.flcerr == 1)
/* repeat for some time before giving up */
continue;
else if (hsfsts.hsf_status.flcdone == 0)
return ret_val;
} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
}
return 0;
}
/**
* e1000_valid_led_default_ich8lan - Set the default LED settings
* @hw: pointer to the HW structure
* @data: Pointer to the LED settings
*
* Reads the LED default settings from the NVM to data. If the NVM LED
* settings is all 0's or F's, set the LED default to a valid LED default
* setting.
**/
static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
{
s32 ret_val;
ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
if (ret_val) {
e_dbg("NVM Read Error\n");
return ret_val;
}
if (*data == ID_LED_RESERVED_0000 ||
*data == ID_LED_RESERVED_FFFF)
*data = ID_LED_DEFAULT_ICH8LAN;
return 0;
}
/**
* e1000_id_led_init_pchlan - store LED configurations
* @hw: pointer to the HW structure
*
* PCH does not control LEDs via the LEDCTL register, rather it uses
* the PHY LED configuration register.
*
* PCH also does not have an "always on" or "always off" mode which
* complicates the ID feature. Instead of using the "on" mode to indicate
* in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
* use "link_up" mode. The LEDs will still ID on request if there is no
* link based on logic in e1000_led_[on|off]_pchlan().
**/
static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
s32 ret_val;
const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
u16 data, i, temp, shift;
/* Get default ID LED modes */
ret_val = hw->nvm.ops.valid_led_default(hw, &data);
if (ret_val)
goto out;
mac->ledctl_default = er32(LEDCTL);
mac->ledctl_mode1 = mac->ledctl_default;
mac->ledctl_mode2 = mac->ledctl_default;
for (i = 0; i < 4; i++) {
temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
shift = (i * 5);
switch (temp) {
case ID_LED_ON1_DEF2:
case ID_LED_ON1_ON2:
case ID_LED_ON1_OFF2:
mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
mac->ledctl_mode1 |= (ledctl_on << shift);
break;
case ID_LED_OFF1_DEF2:
case ID_LED_OFF1_ON2:
case ID_LED_OFF1_OFF2:
mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
mac->ledctl_mode1 |= (ledctl_off << shift);
break;
default:
/* Do nothing */
break;
}
switch (temp) {
case ID_LED_DEF1_ON2:
case ID_LED_ON1_ON2:
case ID_LED_OFF1_ON2:
mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
mac->ledctl_mode2 |= (ledctl_on << shift);
break;
case ID_LED_DEF1_OFF2:
case ID_LED_ON1_OFF2:
case ID_LED_OFF1_OFF2:
mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
mac->ledctl_mode2 |= (ledctl_off << shift);
break;
default:
/* Do nothing */
break;
}
}
out:
return ret_val;
}
/**
* e1000_get_bus_info_ich8lan - Get/Set the bus type and width
* @hw: pointer to the HW structure
*
* ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
* register, so the the bus width is hard coded.
**/
static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
{
struct e1000_bus_info *bus = &hw->bus;
s32 ret_val;
ret_val = e1000e_get_bus_info_pcie(hw);
/*
* ICH devices are "PCI Express"-ish. They have
* a configuration space, but do not contain
* PCI Express Capability registers, so bus width
* must be hardcoded.
*/
if (bus->width == e1000_bus_width_unknown)
bus->width = e1000_bus_width_pcie_x1;
return ret_val;
}
/**
* e1000_reset_hw_ich8lan - Reset the hardware
* @hw: pointer to the HW structure
*
* Does a full reset of the hardware which includes a reset of the PHY and
* MAC.
**/
static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
{
struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
u16 reg;
u32 ctrl, kab;
s32 ret_val;
/*
* Prevent the PCI-E bus from sticking if there is no TLP connection
* on the last TLP read/write transaction when MAC is reset.
*/
ret_val = e1000e_disable_pcie_master(hw);
if (ret_val)
e_dbg("PCI-E Master disable polling has failed.\n");
e_dbg("Masking off all interrupts\n");
ew32(IMC, 0xffffffff);
/*
* Disable the Transmit and Receive units. Then delay to allow
* any pending transactions to complete before we hit the MAC
* with the global reset.
*/
ew32(RCTL, 0);
ew32(TCTL, E1000_TCTL_PSP);
e1e_flush();
usleep_range(10000, 20000);
/* Workaround for ICH8 bit corruption issue in FIFO memory */
if (hw->mac.type == e1000_ich8lan) {
/* Set Tx and Rx buffer allocation to 8k apiece. */
ew32(PBA, E1000_PBA_8K);
/* Set Packet Buffer Size to 16k. */
ew32(PBS, E1000_PBS_16K);
}
if (hw->mac.type == e1000_pchlan) {
/* Save the NVM K1 bit setting*/
ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, ®);
if (ret_val)
return ret_val;
if (reg & E1000_NVM_K1_ENABLE)
dev_spec->nvm_k1_enabled = true;
else
dev_spec->nvm_k1_enabled = false;
}
ctrl = er32(CTRL);
if (!e1000_check_reset_block(hw)) {
/*
* Full-chip reset requires MAC and PHY reset at the same
* time to make sure the interface between MAC and the
* external PHY is reset.
*/
ctrl |= E1000_CTRL_PHY_RST;
/*
* Gate automatic PHY configuration by hardware on
* non-managed 82579
*/
if ((hw->mac.type == e1000_pch2lan) &&
!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
e1000_gate_hw_phy_config_ich8lan(hw, true);
}
ret_val = e1000_acquire_swflag_ich8lan(hw);
e_dbg("Issuing a global reset to ich8lan\n");
ew32(CTRL, (ctrl | E1000_CTRL_RST));
/* cannot issue a flush here because it hangs the hardware */
msleep(20);
if (!ret_val)
clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
if (ctrl & E1000_CTRL_PHY_RST) {
ret_val = hw->phy.ops.get_cfg_done(hw);
if (ret_val)
goto out;
ret_val = e1000_post_phy_reset_ich8lan(hw);
if (ret_val)
goto out;
}
/*
* For PCH, this write will make sure that any noise
* will be detected as a CRC error and be dropped rather than show up
* as a bad packet to the DMA engine.
*/
if (hw->mac.type == e1000_pchlan)
ew32(CRC_OFFSET, 0x65656565);
ew32(IMC, 0xffffffff);
er32(ICR);
kab = er32(KABGTXD);
kab |= E1000_KABGTXD_BGSQLBIAS;
ew32(KABGTXD, kab);
out:
return ret_val;
}
/**
* e1000_init_hw_ich8lan - Initialize the hardware
* @hw: pointer to the HW structure
*
* Prepares the hardware for transmit and receive by doing the following:
* - initialize hardware bits
* - initialize LED identification
* - setup receive address registers
* - setup flow control
* - setup transmit descriptors
* - clear statistics
**/
static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
u32 ctrl_ext, txdctl, snoop;
s32 ret_val;
u16 i;
e1000_initialize_hw_bits_ich8lan(hw);
/* Initialize identification LED */
ret_val = mac->ops.id_led_init(hw);
if (ret_val)
e_dbg("Error initializing identification LED\n");
/* This is not fatal and we should not stop init due to this */
/* Setup the receive address. */
e1000e_init_rx_addrs(hw, mac->rar_entry_count);
/* Zero out the Multicast HASH table */
e_dbg("Zeroing the MTA\n");
for (i = 0; i < mac->mta_reg_count; i++)
E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
/*
* The 82578 Rx buffer will stall if wakeup is enabled in host and
* the ME. Disable wakeup by clearing the host wakeup bit.
* Reset the phy after disabling host wakeup to reset the Rx buffer.
*/
if (hw->phy.type == e1000_phy_82578) {
e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
i &= ~BM_WUC_HOST_WU_BIT;
e1e_wphy(hw, BM_PORT_GEN_CFG, i);
ret_val = e1000_phy_hw_reset_ich8lan(hw);
if (ret_val)
return ret_val;
}
/* Setup link and flow control */
ret_val = e1000_setup_link_ich8lan(hw);
/* Set the transmit descriptor write-back policy for both queues */
txdctl = er32(TXDCTL(0));
txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
E1000_TXDCTL_FULL_TX_DESC_WB;
txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
ew32(TXDCTL(0), txdctl);
txdctl = er32(TXDCTL(1));
txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
E1000_TXDCTL_FULL_TX_DESC_WB;
txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
ew32(TXDCTL(1), txdctl);
/*
* ICH8 has opposite polarity of no_snoop bits.
* By default, we should use snoop behavior.
*/
if (mac->type == e1000_ich8lan)
snoop = PCIE_ICH8_SNOOP_ALL;
else
snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
e1000e_set_pcie_no_snoop(hw, snoop);
ctrl_ext = er32(CTRL_EXT);
ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
ew32(CTRL_EXT, ctrl_ext);
/*
* Clear all of the statistics registers (clear on read). It is
* important that we do this after we have tried to establish link
* because the symbol error count will increment wildly if there
* is no link.
*/
e1000_clear_hw_cntrs_ich8lan(hw);
return 0;
}
/**
* e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
* @hw: pointer to the HW structure
*
* Sets/Clears required hardware bits necessary for correctly setting up the
* hardware for transmit and receive.
**/
static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
{
u32 reg;
/* Extended Device Control */
reg = er32(CTRL_EXT);
reg |= (1 << 22);
/* Enable PHY low-power state when MAC is at D3 w/o WoL */
if (hw->mac.type >= e1000_pchlan)
reg |= E1000_CTRL_EXT_PHYPDEN;
ew32(CTRL_EXT, reg);
/* Transmit Descriptor Control 0 */
reg = er32(TXDCTL(0));
reg |= (1 << 22);
ew32(TXDCTL(0), reg);
/* Transmit Descriptor Control 1 */
reg = er32(TXDCTL(1));
reg |= (1 << 22);
ew32(TXDCTL(1), reg);
/* Transmit Arbitration Control 0 */
reg = er32(TARC(0));
if (hw->mac.type == e1000_ich8lan)
reg |= (1 << 28) | (1 << 29);
reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
ew32(TARC(0), reg);
/* Transmit Arbitration Control 1 */
reg = er32(TARC(1));
if (er32(TCTL) & E1000_TCTL_MULR)
reg &= ~(1 << 28);
else
reg |= (1 << 28);
reg |= (1 << 24) | (1 << 26) | (1 << 30);
ew32(TARC(1), reg);
/* Device Status */
if (hw->mac.type == e1000_ich8lan) {
reg = er32(STATUS);
reg &= ~(1 << 31);
ew32(STATUS, reg);
}
/*
* work-around descriptor data corruption issue during nfs v2 udp
* traffic, just disable the nfs filtering capability
*/
reg = er32(RFCTL);
reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
ew32(RFCTL, reg);
}
/**
* e1000_setup_link_ich8lan - Setup flow control and link settings
* @hw: pointer to the HW structure
*
* Determines which flow control settings to use, then configures flow
* control. Calls the appropriate media-specific link configuration
* function. Assuming the adapter has a valid link partner, a valid link
* should be established. Assumes the hardware has previously been reset
* and the transmitter and receiver are not enabled.
**/
static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
{
s32 ret_val;
if (e1000_check_reset_block(hw))
return 0;
/*
* ICH parts do not have a word in the NVM to determine
* the default flow control setting, so we explicitly
* set it to full.
*/
if (hw->fc.requested_mode == e1000_fc_default) {
/* Workaround h/w hang when Tx flow control enabled */
if (hw->mac.type == e1000_pchlan)
hw->fc.requested_mode = e1000_fc_rx_pause;
else
hw->fc.requested_mode = e1000_fc_full;
}
/*
* Save off the requested flow control mode for use later. Depending
* on the link partner's capabilities, we may or may not use this mode.
*/
hw->fc.current_mode = hw->fc.requested_mode;
e_dbg("After fix-ups FlowControl is now = %x\n",
hw->fc.current_mode);
/* Continue to configure the copper link. */
ret_val = e1000_setup_copper_link_ich8lan(hw);
if (ret_val)
return ret_val;
ew32(FCTTV, hw->fc.pause_time);
if ((hw->phy.type == e1000_phy_82578) ||
(hw->phy.type == e1000_phy_82579) ||
(hw->phy.type == e1000_phy_82577)) {
ew32(FCRTV_PCH, hw->fc.refresh_time);
ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
hw->fc.pause_time);
if (ret_val)
return ret_val;
}
return e1000e_set_fc_watermarks(hw);
}
/**
* e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
* @hw: pointer to the HW structure
*
* Configures the kumeran interface to the PHY to wait the appropriate time
* when polling the PHY, then call the generic setup_copper_link to finish
* configuring the copper link.
**/
static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
{
u32 ctrl;
s32 ret_val;
u16 reg_data;
ctrl = er32(CTRL);
ctrl |= E1000_CTRL_SLU;
ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
ew32(CTRL, ctrl);
/*
* Set the mac to wait the maximum time between each iteration
* and increase the max iterations when polling the phy;
* this fixes erroneous timeouts at 10Mbps.
*/
ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
if (ret_val)
return ret_val;
ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
®_data);
if (ret_val)
return ret_val;
reg_data |= 0x3F;
ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
reg_data);
if (ret_val)
return ret_val;
switch (hw->phy.type) {
case e1000_phy_igp_3:
ret_val = e1000e_copper_link_setup_igp(hw);
if (ret_val)
return ret_val;
break;
case e1000_phy_bm:
case e1000_phy_82578:
ret_val = e1000e_copper_link_setup_m88(hw);
if (ret_val)
return ret_val;
break;
case e1000_phy_82577:
case e1000_phy_82579:
ret_val = e1000_copper_link_setup_82577(hw);
if (ret_val)
return ret_val;
break;
case e1000_phy_ife:
ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, ®_data);
if (ret_val)
return ret_val;
reg_data &= ~IFE_PMC_AUTO_MDIX;
switch (hw->phy.mdix) {
case 1:
reg_data &= ~IFE_PMC_FORCE_MDIX;
break;
case 2:
reg_data |= IFE_PMC_FORCE_MDIX;
break;
case 0:
default:
reg_data |= IFE_PMC_AUTO_MDIX;
break;
}
ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
if (ret_val)
return ret_val;
break;
default:
break;
}
return e1000e_setup_copper_link(hw);
}
/**
* e1000_get_link_up_info_ich8lan - Get current link speed and duplex
* @hw: pointer to the HW structure
* @speed: pointer to store current link speed
* @duplex: pointer to store the current link duplex
*
* Calls the generic get_speed_and_duplex to retrieve the current link
* information and then calls the Kumeran lock loss workaround for links at
* gigabit speeds.
**/
static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
u16 *duplex)
{
s32 ret_val;
ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
if (ret_val)
return ret_val;
if ((hw->mac.type == e1000_ich8lan) &&
(hw->phy.type == e1000_phy_igp_3) &&
(*speed == SPEED_1000)) {
ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
}
return ret_val;
}
/**
* e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
* @hw: pointer to the HW structure
*
* Work-around for 82566 Kumeran PCS lock loss:
* On link status change (i.e. PCI reset, speed change) and link is up and
* speed is gigabit-
* 0) if workaround is optionally disabled do nothing
* 1) wait 1ms for Kumeran link to come up
* 2) check Kumeran Diagnostic register PCS lock loss bit
* 3) if not set the link is locked (all is good), otherwise...
* 4) reset the PHY
* 5) repeat up to 10 times
* Note: this is only called for IGP3 copper when speed is 1gb.
**/
static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
{
struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
u32 phy_ctrl;
s32 ret_val;
u16 i, data;
bool link;
if (!dev_spec->kmrn_lock_loss_workaround_enabled)
return 0;
/*
* Make sure link is up before proceeding. If not just return.
* Attempting this while link is negotiating fouled up link
* stability
*/
ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
if (!link)
return 0;
for (i = 0; i < 10; i++) {
/* read once to clear */
ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
if (ret_val)
return ret_val;
/* and again to get new status */
ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
if (ret_val)
return ret_val;
/* check for PCS lock */
if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
return 0;
/* Issue PHY reset */
e1000_phy_hw_reset(hw);
mdelay(5);
}
/* Disable GigE link negotiation */
phy_ctrl = er32(PHY_CTRL);
phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
ew32(PHY_CTRL, phy_ctrl);
/*
* Call gig speed drop workaround on Gig disable before accessing
* any PHY registers
*/
e1000e_gig_downshift_workaround_ich8lan(hw);
/* unable to acquire PCS lock */
return -E1000_ERR_PHY;
}
/**
* e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
* @hw: pointer to the HW structure
* @state: boolean value used to set the current Kumeran workaround state
*
* If ICH8, set the current Kumeran workaround state (enabled - true
* /disabled - false).
**/
void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
bool state)
{
struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
if (hw->mac.type != e1000_ich8lan) {
e_dbg("Workaround applies to ICH8 only.\n");
return;
}
dev_spec->kmrn_lock_loss_workaround_enabled = state;
}
/**
* e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
* @hw: pointer to the HW structure
*
* Workaround for 82566 power-down on D3 entry:
* 1) disable gigabit link
* 2) write VR power-down enable
* 3) read it back
* Continue if successful, else issue LCD reset and repeat
**/
void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
{
u32 reg;
u16 data;
u8 retry = 0;
if (hw->phy.type != e1000_phy_igp_3)
return;
/* Try the workaround twice (if needed) */
do {
/* Disable link */
reg = er32(PHY_CTRL);
reg |= (E1000_PHY_CTRL_GBE_DISABLE |
E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
ew32(PHY_CTRL, reg);
/*
* Call gig speed drop workaround on Gig disable before
* accessing any PHY registers
*/
if (hw->mac.type == e1000_ich8lan)
e1000e_gig_downshift_workaround_ich8lan(hw);
/* Write VR power-down enable */
e1e_rphy(hw, IGP3_VR_CTRL, &data);
data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
/* Read it back and test */
e1e_rphy(hw, IGP3_VR_CTRL, &data);
data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
break;
/* Issue PHY reset and repeat at most one more time */
reg = er32(CTRL);
ew32(CTRL, reg | E1000_CTRL_PHY_RST);
retry++;
} while (retry);
}
/**
* e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
* @hw: pointer to the HW structure
*
* Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
* LPLU, Gig disable, MDIC PHY reset):
* 1) Set Kumeran Near-end loopback
* 2) Clear Kumeran Near-end loopback
* Should only be called for ICH8[m] devices with any 1G Phy.
**/
void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
{
s32 ret_val;
u16 reg_data;
if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
return;
ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
®_data);
if (ret_val)
return;
reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
reg_data);
if (ret_val)
return;
reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
reg_data);
}
/**
* e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
* @hw: pointer to the HW structure
*
* During S0 to Sx transition, it is possible the link remains at gig
* instead of negotiating to a lower speed. Before going to Sx, set
* 'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
* to a lower speed. For PCH and newer parts, the OEM bits PHY register
* (LED, GbE disable and LPLU configurations) also needs to be written.
**/
void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
{
u32 phy_ctrl;
s32 ret_val;
phy_ctrl = er32(PHY_CTRL);
phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU | E1000_PHY_CTRL_GBE_DISABLE;
ew32(PHY_CTRL, phy_ctrl);
if (hw->mac.type == e1000_ich8lan)
e1000e_gig_downshift_workaround_ich8lan(hw);
if (hw->mac.type >= e1000_pchlan) {
e1000_oem_bits_config_ich8lan(hw, false);
e1000_phy_hw_reset_ich8lan(hw);
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return;
e1000_write_smbus_addr(hw);
hw->phy.ops.release(hw);
}
}
/**
* e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
* @hw: pointer to the HW structure
*
* During Sx to S0 transitions on non-managed devices or managed devices
* on which PHY resets are not blocked, if the PHY registers cannot be
* accessed properly by the s/w toggle the LANPHYPC value to power cycle
* the PHY.
**/
void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
{
u32 fwsm;
if (hw->mac.type != e1000_pch2lan)
return;
fwsm = er32(FWSM);
if (!(fwsm & E1000_ICH_FWSM_FW_VALID) || !e1000_check_reset_block(hw)) {
u16 phy_id1, phy_id2;
s32 ret_val;
ret_val = hw->phy.ops.acquire(hw);
if (ret_val) {
e_dbg("Failed to acquire PHY semaphore in resume\n");
return;
}
/* Test access to the PHY registers by reading the ID regs */
ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_id1);
if (ret_val)
goto release;
ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_id2);
if (ret_val)
goto release;
if (hw->phy.id == ((u32)(phy_id1 << 16) |
(u32)(phy_id2 & PHY_REVISION_MASK)))
goto release;
e1000_toggle_lanphypc_value_ich8lan(hw);
hw->phy.ops.release(hw);
msleep(50);
e1000_phy_hw_reset(hw);
msleep(50);
return;
}
release:
hw->phy.ops.release(hw);
return;
}
/**
* e1000_cleanup_led_ich8lan - Restore the default LED operation
* @hw: pointer to the HW structure
*
* Return the LED back to the default configuration.
**/
static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
{
if (hw->phy.type == e1000_phy_ife)
return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
ew32(LEDCTL, hw->mac.ledctl_default);
return 0;
}
/**
* e1000_led_on_ich8lan - Turn LEDs on
* @hw: pointer to the HW structure
*
* Turn on the LEDs.
**/
static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
{
if (hw->phy.type == e1000_phy_ife)
return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
ew32(LEDCTL, hw->mac.ledctl_mode2);
return 0;
}
/**
* e1000_led_off_ich8lan - Turn LEDs off
* @hw: pointer to the HW structure
*
* Turn off the LEDs.
**/
static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
{
if (hw->phy.type == e1000_phy_ife)
return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
(IFE_PSCL_PROBE_MODE |
IFE_PSCL_PROBE_LEDS_OFF));
ew32(LEDCTL, hw->mac.ledctl_mode1);
return 0;
}
/**
* e1000_setup_led_pchlan - Configures SW controllable LED
* @hw: pointer to the HW structure
*
* This prepares the SW controllable LED for use.
**/
static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
{
return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
}
/**
* e1000_cleanup_led_pchlan - Restore the default LED operation
* @hw: pointer to the HW structure
*
* Return the LED back to the default configuration.
**/
static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
{
return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
}
/**
* e1000_led_on_pchlan - Turn LEDs on
* @hw: pointer to the HW structure
*
* Turn on the LEDs.
**/
static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
{
u16 data = (u16)hw->mac.ledctl_mode2;
u32 i, led;
/*
* If no link, then turn LED on by setting the invert bit
* for each LED that's mode is "link_up" in ledctl_mode2.
*/
if (!(er32(STATUS) & E1000_STATUS_LU)) {
for (i = 0; i < 3; i++) {
led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
if ((led & E1000_PHY_LED0_MODE_MASK) !=
E1000_LEDCTL_MODE_LINK_UP)
continue;
if (led & E1000_PHY_LED0_IVRT)
data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
else
data |= (E1000_PHY_LED0_IVRT << (i * 5));
}
}
return e1e_wphy(hw, HV_LED_CONFIG, data);
}
/**
* e1000_led_off_pchlan - Turn LEDs off
* @hw: pointer to the HW structure
*
* Turn off the LEDs.
**/
static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
{
u16 data = (u16)hw->mac.ledctl_mode1;
u32 i, led;
/*
* If no link, then turn LED off by clearing the invert bit
* for each LED that's mode is "link_up" in ledctl_mode1.
*/
if (!(er32(STATUS) & E1000_STATUS_LU)) {
for (i = 0; i < 3; i++) {
led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
if ((led & E1000_PHY_LED0_MODE_MASK) !=
E1000_LEDCTL_MODE_LINK_UP)
continue;
if (led & E1000_PHY_LED0_IVRT)
data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
else
data |= (E1000_PHY_LED0_IVRT << (i * 5));
}
}
return e1e_wphy(hw, HV_LED_CONFIG, data);
}
/**
* e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
* @hw: pointer to the HW structure
*
* Read appropriate register for the config done bit for completion status
* and configure the PHY through s/w for EEPROM-less parts.
*
* NOTE: some silicon which is EEPROM-less will fail trying to read the
* config done bit, so only an error is logged and continues. If we were
* to return with error, EEPROM-less silicon would not be able to be reset
* or change link.
**/
static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
{
s32 ret_val = 0;
u32 bank = 0;
u32 status;
e1000e_get_cfg_done(hw);
/* Wait for indication from h/w that it has completed basic config */
if (hw->mac.type >= e1000_ich10lan) {
e1000_lan_init_done_ich8lan(hw);
} else {
ret_val = e1000e_get_auto_rd_done(hw);
if (ret_val) {
/*
* When auto config read does not complete, do not
* return with an error. This can happen in situations
* where there is no eeprom and prevents getting link.
*/
e_dbg("Auto Read Done did not complete\n");
ret_val = 0;
}
}
/* Clear PHY Reset Asserted bit */
status = er32(STATUS);
if (status & E1000_STATUS_PHYRA)
ew32(STATUS, status & ~E1000_STATUS_PHYRA);
else
e_dbg("PHY Reset Asserted not set - needs delay\n");
/* If EEPROM is not marked present, init the IGP 3 PHY manually */
if (hw->mac.type <= e1000_ich9lan) {
if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
(hw->phy.type == e1000_phy_igp_3)) {
e1000e_phy_init_script_igp3(hw);
}
} else {
if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
/* Maybe we should do a basic PHY config */
e_dbg("EEPROM not present\n");
ret_val = -E1000_ERR_CONFIG;
}
}
return ret_val;
}
/**
* e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
* @hw: pointer to the HW structure
*
* In the case of a PHY power down to save power, or to turn off link during a
* driver unload, or wake on lan is not enabled, remove the link.
**/
static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
{
/* If the management interface is not enabled, then power down */
if (!(hw->mac.ops.check_mng_mode(hw) ||
hw->phy.ops.check_reset_block(hw)))
e1000_power_down_phy_copper(hw);
}
/**
* e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
* @hw: pointer to the HW structure
*
* Clears hardware counters specific to the silicon family and calls
* clear_hw_cntrs_generic to clear all general purpose counters.
**/
static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
{
u16 phy_data;
s32 ret_val;
e1000e_clear_hw_cntrs_base(hw);
er32(ALGNERRC);
er32(RXERRC);
er32(TNCRS);
er32(CEXTERR);
er32(TSCTC);
er32(TSCTFC);
er32(MGTPRC);
er32(MGTPDC);
er32(MGTPTC);
er32(IAC);
er32(ICRXOC);
/* Clear PHY statistics registers */
if ((hw->phy.type == e1000_phy_82578) ||
(hw->phy.type == e1000_phy_82579) ||
(hw->phy.type == e1000_phy_82577)) {
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return;
ret_val = hw->phy.ops.set_page(hw,
HV_STATS_PAGE << IGP_PAGE_SHIFT);
if (ret_val)
goto release;
hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
release:
hw->phy.ops.release(hw);
}
}
static const struct e1000_mac_operations ich8_mac_ops = {
.id_led_init = e1000e_id_led_init,
/* check_mng_mode dependent on mac type */
.check_for_link = e1000_check_for_copper_link_ich8lan,
/* cleanup_led dependent on mac type */
.clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
.get_bus_info = e1000_get_bus_info_ich8lan,
.set_lan_id = e1000_set_lan_id_single_port,
.get_link_up_info = e1000_get_link_up_info_ich8lan,
/* led_on dependent on mac type */
/* led_off dependent on mac type */
.update_mc_addr_list = e1000e_update_mc_addr_list_generic,
.reset_hw = e1000_reset_hw_ich8lan,
.init_hw = e1000_init_hw_ich8lan,
.setup_link = e1000_setup_link_ich8lan,
.setup_physical_interface= e1000_setup_copper_link_ich8lan,
/* id_led_init dependent on mac type */
};
static const struct e1000_phy_operations ich8_phy_ops = {
.acquire = e1000_acquire_swflag_ich8lan,
.check_reset_block = e1000_check_reset_block_ich8lan,
.commit = NULL,
.get_cfg_done = e1000_get_cfg_done_ich8lan,
.get_cable_length = e1000e_get_cable_length_igp_2,
.read_reg = e1000e_read_phy_reg_igp,
.release = e1000_release_swflag_ich8lan,
.reset = e1000_phy_hw_reset_ich8lan,
.set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
.set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
.write_reg = e1000e_write_phy_reg_igp,
};
static const struct e1000_nvm_operations ich8_nvm_ops = {
.acquire = e1000_acquire_nvm_ich8lan,
.read = e1000_read_nvm_ich8lan,
.release = e1000_release_nvm_ich8lan,
.update = e1000_update_nvm_checksum_ich8lan,
.valid_led_default = e1000_valid_led_default_ich8lan,
.validate = e1000_validate_nvm_checksum_ich8lan,
.write = e1000_write_nvm_ich8lan,
};
const struct e1000_info e1000_ich8_info = {
.mac = e1000_ich8lan,
.flags = FLAG_HAS_WOL
| FLAG_IS_ICH
| FLAG_HAS_CTRLEXT_ON_LOAD
| FLAG_HAS_AMT
| FLAG_HAS_FLASH
| FLAG_APME_IN_WUC,
.pba = 8,
.max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
.get_variants = e1000_get_variants_ich8lan,
.mac_ops = &ich8_mac_ops,
.phy_ops = &ich8_phy_ops,
.nvm_ops = &ich8_nvm_ops,
};
const struct e1000_info e1000_ich9_info = {
.mac = e1000_ich9lan,
.flags = FLAG_HAS_JUMBO_FRAMES
| FLAG_IS_ICH
| FLAG_HAS_WOL
| FLAG_HAS_CTRLEXT_ON_LOAD
| FLAG_HAS_AMT
| FLAG_HAS_ERT
| FLAG_HAS_FLASH
| FLAG_APME_IN_WUC,
.pba = 10,
.max_hw_frame_size = DEFAULT_JUMBO,
.get_variants = e1000_get_variants_ich8lan,
.mac_ops = &ich8_mac_ops,
.phy_ops = &ich8_phy_ops,
.nvm_ops = &ich8_nvm_ops,
};
const struct e1000_info e1000_ich10_info = {
.mac = e1000_ich10lan,
.flags = FLAG_HAS_JUMBO_FRAMES
| FLAG_IS_ICH
| FLAG_HAS_WOL
| FLAG_HAS_CTRLEXT_ON_LOAD
| FLAG_HAS_AMT
| FLAG_HAS_ERT
| FLAG_HAS_FLASH
| FLAG_APME_IN_WUC,
.pba = 10,
.max_hw_frame_size = DEFAULT_JUMBO,
.get_variants = e1000_get_variants_ich8lan,
.mac_ops = &ich8_mac_ops,
.phy_ops = &ich8_phy_ops,
.nvm_ops = &ich8_nvm_ops,
};
const struct e1000_info e1000_pch_info = {
.mac = e1000_pchlan,
.flags = FLAG_IS_ICH
| FLAG_HAS_WOL
| FLAG_HAS_CTRLEXT_ON_LOAD
| FLAG_HAS_AMT
| FLAG_HAS_FLASH
| FLAG_HAS_JUMBO_FRAMES
| FLAG_DISABLE_FC_PAUSE_TIME /* errata */
| FLAG_APME_IN_WUC,
.flags2 = FLAG2_HAS_PHY_STATS,
.pba = 26,
.max_hw_frame_size = 4096,
.get_variants = e1000_get_variants_ich8lan,
.mac_ops = &ich8_mac_ops,
.phy_ops = &ich8_phy_ops,
.nvm_ops = &ich8_nvm_ops,
};
const struct e1000_info e1000_pch2_info = {
.mac = e1000_pch2lan,
.flags = FLAG_IS_ICH
| FLAG_HAS_WOL
| FLAG_HAS_CTRLEXT_ON_LOAD
| FLAG_HAS_AMT
| FLAG_HAS_FLASH
| FLAG_HAS_JUMBO_FRAMES
| FLAG_APME_IN_WUC,
.flags2 = FLAG2_HAS_PHY_STATS
| FLAG2_HAS_EEE,
.pba = 26,
.max_hw_frame_size = DEFAULT_JUMBO,
.get_variants = e1000_get_variants_ich8lan,
.mac_ops = &ich8_mac_ops,
.phy_ops = &ich8_phy_ops,
.nvm_ops = &ich8_nvm_ops,
};
-------------- n?chster Teil --------------
/*******************************************************************************
Intel PRO/1000 Linux driver
Copyright(c) 1999 - 2011 Intel Corporation.
This program is free software; you can redistribute it and/or modify it
under the terms and conditions of the GNU General Public License,
version 2, as published by the Free Software Foundation.
This program is distributed in the hope it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
The full GNU General Public License is included in this distribution in
the file called "COPYING".
Contact Information:
Linux NICS <linux.nics at intel.com>
e1000-devel Mailing List <e1000-devel at lists.sourceforge.net>
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*******************************************************************************/
/*
* 82571EB Gigabit Ethernet Controller
* 82571EB Gigabit Ethernet Controller (Copper)
* 82571EB Gigabit Ethernet Controller (Fiber)
* 82571EB Dual Port Gigabit Mezzanine Adapter
* 82571EB Quad Port Gigabit Mezzanine Adapter
* 82571PT Gigabit PT Quad Port Server ExpressModule
* 82572EI Gigabit Ethernet Controller (Copper)
* 82572EI Gigabit Ethernet Controller (Fiber)
* 82572EI Gigabit Ethernet Controller
* 82573V Gigabit Ethernet Controller (Copper)
* 82573E Gigabit Ethernet Controller (Copper)
* 82573L Gigabit Ethernet Controller
* 82574L Gigabit Network Connection
* 82583V Gigabit Network Connection
*/
#include "e1000-3.2.0-ethercat.h"
#define ID_LED_RESERVED_F746 0xF746
#define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
(ID_LED_OFF1_ON2 << 8) | \
(ID_LED_DEF1_DEF2 << 4) | \
(ID_LED_DEF1_DEF2))
#define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
#define AN_RETRY_COUNT 5 /* Autoneg Retry Count value */
#define E1000_BASE1000T_STATUS 10
#define E1000_IDLE_ERROR_COUNT_MASK 0xFF
#define E1000_RECEIVE_ERROR_COUNTER 21
#define E1000_RECEIVE_ERROR_MAX 0xFFFF
#define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */
static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
u16 words, u16 *data);
static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
static s32 e1000_setup_link_82571(struct e1000_hw *hw);
static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
static void e1000_clear_vfta_82571(struct e1000_hw *hw);
static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
static s32 e1000_led_on_82574(struct e1000_hw *hw);
static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw);
static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw);
static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw);
static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active);
static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active);
/**
* e1000_init_phy_params_82571 - Init PHY func ptrs.
* @hw: pointer to the HW structure
**/
static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val __attribute__ ((unused));
if (hw->phy.media_type != e1000_media_type_copper) {
phy->type = e1000_phy_none;
return 0;
}
phy->addr = 1;
phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
phy->reset_delay_us = 100;
phy->ops.power_up = e1000_power_up_phy_copper;
phy->ops.power_down = e1000_power_down_phy_copper_82571;
switch (hw->mac.type) {
case e1000_82571:
case e1000_82572:
phy->type = e1000_phy_igp_2;
break;
case e1000_82573:
phy->type = e1000_phy_m88;
break;
case e1000_82574:
case e1000_82583:
phy->type = e1000_phy_bm;
phy->ops.acquire = e1000_get_hw_semaphore_82574;
phy->ops.release = e1000_put_hw_semaphore_82574;
phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574;
phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574;
break;
default:
return -E1000_ERR_PHY;
break;
}
/* This can only be done after all function pointers are setup. */
ret_val = e1000_get_phy_id_82571(hw);
if (ret_val) {
e_dbg("Error getting PHY ID\n");
return ret_val;
}
/* Verify phy id */
switch (hw->mac.type) {
case e1000_82571:
case e1000_82572:
if (phy->id != IGP01E1000_I_PHY_ID)
ret_val = -E1000_ERR_PHY;
break;
case e1000_82573:
if (phy->id != M88E1111_I_PHY_ID)
ret_val = -E1000_ERR_PHY;
break;
case e1000_82574:
case e1000_82583:
if (phy->id != BME1000_E_PHY_ID_R2)
ret_val = -E1000_ERR_PHY;
break;
default:
ret_val = -E1000_ERR_PHY;
break;
}
if (ret_val)
e_dbg("PHY ID unknown: type = 0x%08x\n", phy->id);
return ret_val;
}
/**
* e1000_init_nvm_params_82571 - Init NVM func ptrs.
* @hw: pointer to the HW structure
**/
static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
{
struct e1000_nvm_info *nvm = &hw->nvm;
u32 eecd = er32(EECD);
u16 size;
nvm->opcode_bits = 8;
nvm->delay_usec = 1;
switch (nvm->override) {
case e1000_nvm_override_spi_large:
nvm->page_size = 32;
nvm->address_bits = 16;
break;
case e1000_nvm_override_spi_small:
nvm->page_size = 8;
nvm->address_bits = 8;
break;
default:
nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
break;
}
switch (hw->mac.type) {
case e1000_82573:
case e1000_82574:
case e1000_82583:
if (((eecd >> 15) & 0x3) == 0x3) {
nvm->type = e1000_nvm_flash_hw;
nvm->word_size = 2048;
/*
* Autonomous Flash update bit must be cleared due
* to Flash update issue.
*/
eecd &= ~E1000_EECD_AUPDEN;
ew32(EECD, eecd);
break;
}
/* Fall Through */
default:
nvm->type = e1000_nvm_eeprom_spi;
size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
E1000_EECD_SIZE_EX_SHIFT);
/*
* Added to a constant, "size" becomes the left-shift value
* for setting word_size.
*/
size += NVM_WORD_SIZE_BASE_SHIFT;
/* EEPROM access above 16k is unsupported */
if (size > 14)
size = 14;
nvm->word_size = 1 << size;
break;
}
/* Function Pointers */
switch (hw->mac.type) {
case e1000_82574:
case e1000_82583:
nvm->ops.acquire = e1000_get_hw_semaphore_82574;
nvm->ops.release = e1000_put_hw_semaphore_82574;
break;
default:
break;
}
return 0;
}
/**
* e1000_init_mac_params_82571 - Init MAC func ptrs.
* @hw: pointer to the HW structure
**/
static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
struct e1000_mac_info *mac = &hw->mac;
struct e1000_mac_operations *func = &mac->ops;
u32 swsm = 0;
u32 swsm2 = 0;
bool force_clear_smbi = false;
/* Set media type */
switch (adapter->pdev->device) {
case E1000_DEV_ID_82571EB_FIBER:
case E1000_DEV_ID_82572EI_FIBER:
case E1000_DEV_ID_82571EB_QUAD_FIBER:
hw->phy.media_type = e1000_media_type_fiber;
break;
case E1000_DEV_ID_82571EB_SERDES:
case E1000_DEV_ID_82572EI_SERDES:
case E1000_DEV_ID_82571EB_SERDES_DUAL:
case E1000_DEV_ID_82571EB_SERDES_QUAD:
hw->phy.media_type = e1000_media_type_internal_serdes;
break;
default:
hw->phy.media_type = e1000_media_type_copper;
break;
}
/* Set mta register count */
mac->mta_reg_count = 128;
/* Set rar entry count */
mac->rar_entry_count = E1000_RAR_ENTRIES;
/* Adaptive IFS supported */
mac->adaptive_ifs = true;
/* check for link */
switch (hw->phy.media_type) {
case e1000_media_type_copper:
func->setup_physical_interface = e1000_setup_copper_link_82571;
func->check_for_link = e1000e_check_for_copper_link;
func->get_link_up_info = e1000e_get_speed_and_duplex_copper;
break;
case e1000_media_type_fiber:
func->setup_physical_interface =
e1000_setup_fiber_serdes_link_82571;
func->check_for_link = e1000e_check_for_fiber_link;
func->get_link_up_info =
e1000e_get_speed_and_duplex_fiber_serdes;
break;
case e1000_media_type_internal_serdes:
func->setup_physical_interface =
e1000_setup_fiber_serdes_link_82571;
func->check_for_link = e1000_check_for_serdes_link_82571;
func->get_link_up_info =
e1000e_get_speed_and_duplex_fiber_serdes;
break;
default:
return -E1000_ERR_CONFIG;
break;
}
switch (hw->mac.type) {
case e1000_82573:
func->set_lan_id = e1000_set_lan_id_single_port;
func->check_mng_mode = e1000e_check_mng_mode_generic;
func->led_on = e1000e_led_on_generic;
func->blink_led = e1000e_blink_led_generic;
/* FWSM register */
mac->has_fwsm = true;
/*
* ARC supported; valid only if manageability features are
* enabled.
*/
mac->arc_subsystem_valid =
(er32(FWSM) & E1000_FWSM_MODE_MASK)
? true : false;
break;
case e1000_82574:
case e1000_82583:
func->set_lan_id = e1000_set_lan_id_single_port;
func->check_mng_mode = e1000_check_mng_mode_82574;
func->led_on = e1000_led_on_82574;
break;
default:
func->check_mng_mode = e1000e_check_mng_mode_generic;
func->led_on = e1000e_led_on_generic;
func->blink_led = e1000e_blink_led_generic;
/* FWSM register */
mac->has_fwsm = true;
break;
}
/*
* Ensure that the inter-port SWSM.SMBI lock bit is clear before
* first NVM or PHY access. This should be done for single-port
* devices, and for one port only on dual-port devices so that
* for those devices we can still use the SMBI lock to synchronize
* inter-port accesses to the PHY & NVM.
*/
switch (hw->mac.type) {
case e1000_82571:
case e1000_82572:
swsm2 = er32(SWSM2);
if (!(swsm2 & E1000_SWSM2_LOCK)) {
/* Only do this for the first interface on this card */
ew32(SWSM2,
swsm2 | E1000_SWSM2_LOCK);
force_clear_smbi = true;
} else
force_clear_smbi = false;
break;
default:
force_clear_smbi = true;
break;
}
if (force_clear_smbi) {
/* Make sure SWSM.SMBI is clear */
swsm = er32(SWSM);
if (swsm & E1000_SWSM_SMBI) {
/* This bit should not be set on a first interface, and
* indicates that the bootagent or EFI code has
* improperly left this bit enabled
*/
e_dbg("Please update your 82571 Bootagent\n");
}
ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
}
/*
* Initialize device specific counter of SMBI acquisition
* timeouts.
*/
hw->dev_spec.e82571.smb_counter = 0;
return 0;
}
static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
static int global_quad_port_a; /* global port a indication */
struct pci_dev *pdev = adapter->pdev;
int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
s32 rc;
rc = e1000_init_mac_params_82571(adapter);
if (rc)
return rc;
rc = e1000_init_nvm_params_82571(hw);
if (rc)
return rc;
rc = e1000_init_phy_params_82571(hw);
if (rc)
return rc;
/* tag quad port adapters first, it's used below */
switch (pdev->device) {
case E1000_DEV_ID_82571EB_QUAD_COPPER:
case E1000_DEV_ID_82571EB_QUAD_FIBER:
case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
case E1000_DEV_ID_82571PT_QUAD_COPPER:
adapter->flags |= FLAG_IS_QUAD_PORT;
/* mark the first port */
if (global_quad_port_a == 0)
adapter->flags |= FLAG_IS_QUAD_PORT_A;
/* Reset for multiple quad port adapters */
global_quad_port_a++;
if (global_quad_port_a == 4)
global_quad_port_a = 0;
break;
default:
break;
}
switch (adapter->hw.mac.type) {
case e1000_82571:
/* these dual ports don't have WoL on port B at all */
if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
(pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
(pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
(is_port_b))
adapter->flags &= ~FLAG_HAS_WOL;
/* quad ports only support WoL on port A */
if (adapter->flags & FLAG_IS_QUAD_PORT &&
(!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
adapter->flags &= ~FLAG_HAS_WOL;
/* Does not support WoL on any port */
if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
adapter->flags &= ~FLAG_HAS_WOL;
break;
case e1000_82573:
if (pdev->device == E1000_DEV_ID_82573L) {
adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
adapter->max_hw_frame_size = DEFAULT_JUMBO;
}
break;
default:
break;
}
return 0;
}
/**
* e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
* @hw: pointer to the HW structure
*
* Reads the PHY registers and stores the PHY ID and possibly the PHY
* revision in the hardware structure.
**/
static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 phy_id = 0;
switch (hw->mac.type) {
case e1000_82571:
case e1000_82572:
/*
* The 82571 firmware may still be configuring the PHY.
* In this case, we cannot access the PHY until the
* configuration is done. So we explicitly set the
* PHY ID.
*/
phy->id = IGP01E1000_I_PHY_ID;
break;
case e1000_82573:
return e1000e_get_phy_id(hw);
break;
case e1000_82574:
case e1000_82583:
ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
if (ret_val)
return ret_val;
phy->id = (u32)(phy_id << 16);
udelay(20);
ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
if (ret_val)
return ret_val;
phy->id |= (u32)(phy_id);
phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
break;
default:
return -E1000_ERR_PHY;
break;
}
return 0;
}
/**
* e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
* @hw: pointer to the HW structure
*
* Acquire the HW semaphore to access the PHY or NVM
**/
static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
{
u32 swsm;
s32 sw_timeout = hw->nvm.word_size + 1;
s32 fw_timeout = hw->nvm.word_size + 1;
s32 i = 0;
/*
* If we have timedout 3 times on trying to acquire
* the inter-port SMBI semaphore, there is old code
* operating on the other port, and it is not
* releasing SMBI. Modify the number of times that
* we try for the semaphore to interwork with this
* older code.
*/
if (hw->dev_spec.e82571.smb_counter > 2)
sw_timeout = 1;
/* Get the SW semaphore */
while (i < sw_timeout) {
swsm = er32(SWSM);
if (!(swsm & E1000_SWSM_SMBI))
break;
udelay(50);
i++;
}
if (i == sw_timeout) {
e_dbg("Driver can't access device - SMBI bit is set.\n");
hw->dev_spec.e82571.smb_counter++;
}
/* Get the FW semaphore. */
for (i = 0; i < fw_timeout; i++) {
swsm = er32(SWSM);
ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
/* Semaphore acquired if bit latched */
if (er32(SWSM) & E1000_SWSM_SWESMBI)
break;
udelay(50);
}
if (i == fw_timeout) {
/* Release semaphores */
e1000_put_hw_semaphore_82571(hw);
e_dbg("Driver can't access the NVM\n");
return -E1000_ERR_NVM;
}
return 0;
}
/**
* e1000_put_hw_semaphore_82571 - Release hardware semaphore
* @hw: pointer to the HW structure
*
* Release hardware semaphore used to access the PHY or NVM
**/
static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
{
u32 swsm;
swsm = er32(SWSM);
swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
ew32(SWSM, swsm);
}
/**
* e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
* @hw: pointer to the HW structure
*
* Acquire the HW semaphore during reset.
*
**/
static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw)
{
u32 extcnf_ctrl;
s32 ret_val = 0;
s32 i = 0;
extcnf_ctrl = er32(EXTCNF_CTRL);
extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
do {
ew32(EXTCNF_CTRL, extcnf_ctrl);
extcnf_ctrl = er32(EXTCNF_CTRL);
if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
break;
extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
usleep_range(2000, 4000);
i++;
} while (i < MDIO_OWNERSHIP_TIMEOUT);
if (i == MDIO_OWNERSHIP_TIMEOUT) {
/* Release semaphores */
e1000_put_hw_semaphore_82573(hw);
e_dbg("Driver can't access the PHY\n");
ret_val = -E1000_ERR_PHY;
goto out;
}
out:
return ret_val;
}
/**
* e1000_put_hw_semaphore_82573 - Release hardware semaphore
* @hw: pointer to the HW structure
*
* Release hardware semaphore used during reset.
*
**/
static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw)
{
u32 extcnf_ctrl;
extcnf_ctrl = er32(EXTCNF_CTRL);
extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
ew32(EXTCNF_CTRL, extcnf_ctrl);
}
static DEFINE_MUTEX(swflag_mutex);
/**
* e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
* @hw: pointer to the HW structure
*
* Acquire the HW semaphore to access the PHY or NVM.
*
**/
static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw)
{
s32 ret_val;
mutex_lock(&swflag_mutex);
ret_val = e1000_get_hw_semaphore_82573(hw);
if (ret_val)
mutex_unlock(&swflag_mutex);
return ret_val;
}
/**
* e1000_put_hw_semaphore_82574 - Release hardware semaphore
* @hw: pointer to the HW structure
*
* Release hardware semaphore used to access the PHY or NVM
*
**/
static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw)
{
e1000_put_hw_semaphore_82573(hw);
mutex_unlock(&swflag_mutex);
}
/**
* e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
* @hw: pointer to the HW structure
* @active: true to enable LPLU, false to disable
*
* Sets the LPLU D0 state according to the active flag.
* LPLU will not be activated unless the
* device autonegotiation advertisement meets standards of
* either 10 or 10/100 or 10/100/1000 at all duplexes.
* This is a function pointer entry point only called by
* PHY setup routines.
**/
static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active)
{
u16 data = er32(POEMB);
if (active)
data |= E1000_PHY_CTRL_D0A_LPLU;
else
data &= ~E1000_PHY_CTRL_D0A_LPLU;
ew32(POEMB, data);
return 0;
}
/**
* e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
* @hw: pointer to the HW structure
* @active: boolean used to enable/disable lplu
*
* The low power link up (lplu) state is set to the power management level D3
* when active is true, else clear lplu for D3. LPLU
* is used during Dx states where the power conservation is most important.
* During driver activity, SmartSpeed should be enabled so performance is
* maintained.
**/
static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active)
{
u16 data = er32(POEMB);
if (!active) {
data &= ~E1000_PHY_CTRL_NOND0A_LPLU;
} else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
(hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) ||
(hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) {
data |= E1000_PHY_CTRL_NOND0A_LPLU;
}
ew32(POEMB, data);
return 0;
}
/**
* e1000_acquire_nvm_82571 - Request for access to the EEPROM
* @hw: pointer to the HW structure
*
* To gain access to the EEPROM, first we must obtain a hardware semaphore.
* Then for non-82573 hardware, set the EEPROM access request bit and wait
* for EEPROM access grant bit. If the access grant bit is not set, release
* hardware semaphore.
**/
static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
{
s32 ret_val;
ret_val = e1000_get_hw_semaphore_82571(hw);
if (ret_val)
return ret_val;
switch (hw->mac.type) {
case e1000_82573:
break;
default:
ret_val = e1000e_acquire_nvm(hw);
break;
}
if (ret_val)
e1000_put_hw_semaphore_82571(hw);
return ret_val;
}
/**
* e1000_release_nvm_82571 - Release exclusive access to EEPROM
* @hw: pointer to the HW structure
*
* Stop any current commands to the EEPROM and clear the EEPROM request bit.
**/
static void e1000_release_nvm_82571(struct e1000_hw *hw)
{
e1000e_release_nvm(hw);
e1000_put_hw_semaphore_82571(hw);
}
/**
* e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
* @hw: pointer to the HW structure
* @offset: offset within the EEPROM to be written to
* @words: number of words to write
* @data: 16 bit word(s) to be written to the EEPROM
*
* For non-82573 silicon, write data to EEPROM at offset using SPI interface.
*
* If e1000e_update_nvm_checksum is not called after this function, the
* EEPROM will most likely contain an invalid checksum.
**/
static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
u16 *data)
{
s32 ret_val;
switch (hw->mac.type) {
case e1000_82573:
case e1000_82574:
case e1000_82583:
ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
break;
case e1000_82571:
case e1000_82572:
ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
break;
default:
ret_val = -E1000_ERR_NVM;
break;
}
return ret_val;
}
/**
* e1000_update_nvm_checksum_82571 - Update EEPROM checksum
* @hw: pointer to the HW structure
*
* Updates the EEPROM checksum by reading/adding each word of the EEPROM
* up to the checksum. Then calculates the EEPROM checksum and writes the
* value to the EEPROM.
**/
static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
{
u32 eecd;
s32 ret_val;
u16 i;
ret_val = e1000e_update_nvm_checksum_generic(hw);
if (ret_val)
return ret_val;
/*
* If our nvm is an EEPROM, then we're done
* otherwise, commit the checksum to the flash NVM.
*/
if (hw->nvm.type != e1000_nvm_flash_hw)
return ret_val;
/* Check for pending operations. */
for (i = 0; i < E1000_FLASH_UPDATES; i++) {
usleep_range(1000, 2000);
if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
break;
}
if (i == E1000_FLASH_UPDATES)
return -E1000_ERR_NVM;
/* Reset the firmware if using STM opcode. */
if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
/*
* The enabling of and the actual reset must be done
* in two write cycles.
*/
ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
e1e_flush();
ew32(HICR, E1000_HICR_FW_RESET);
}
/* Commit the write to flash */
eecd = er32(EECD) | E1000_EECD_FLUPD;
ew32(EECD, eecd);
for (i = 0; i < E1000_FLASH_UPDATES; i++) {
usleep_range(1000, 2000);
if ((er32(EECD) & E1000_EECD_FLUPD) == 0)
break;
}
if (i == E1000_FLASH_UPDATES)
return -E1000_ERR_NVM;
return 0;
}
/**
* e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
* @hw: pointer to the HW structure
*
* Calculates the EEPROM checksum by reading/adding each word of the EEPROM
* and then verifies that the sum of the EEPROM is equal to 0xBABA.
**/
static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
{
if (hw->nvm.type == e1000_nvm_flash_hw)
e1000_fix_nvm_checksum_82571(hw);
return e1000e_validate_nvm_checksum_generic(hw);
}
/**
* e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
* @hw: pointer to the HW structure
* @offset: offset within the EEPROM to be written to
* @words: number of words to write
* @data: 16 bit word(s) to be written to the EEPROM
*
* After checking for invalid values, poll the EEPROM to ensure the previous
* command has completed before trying to write the next word. After write
* poll for completion.
*
* If e1000e_update_nvm_checksum is not called after this function, the
* EEPROM will most likely contain an invalid checksum.
**/
static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
u16 words, u16 *data)
{
struct e1000_nvm_info *nvm = &hw->nvm;
u32 i, eewr = 0;
s32 ret_val = 0;
/*
* A check for invalid values: offset too large, too many words,
* and not enough words.
*/
if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
(words == 0)) {
e_dbg("nvm parameter(s) out of bounds\n");
return -E1000_ERR_NVM;
}
for (i = 0; i < words; i++) {
eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
E1000_NVM_RW_REG_START;
ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
if (ret_val)
break;
ew32(EEWR, eewr);
ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
if (ret_val)
break;
}
return ret_val;
}
/**
* e1000_get_cfg_done_82571 - Poll for configuration done
* @hw: pointer to the HW structure
*
* Reads the management control register for the config done bit to be set.
**/
static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
{
s32 timeout = PHY_CFG_TIMEOUT;
while (timeout) {
if (er32(EEMNGCTL) &
E1000_NVM_CFG_DONE_PORT_0)
break;
usleep_range(1000, 2000);
timeout--;
}
if (!timeout) {
e_dbg("MNG configuration cycle has not completed.\n");
return -E1000_ERR_RESET;
}
return 0;
}
/**
* e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
* @hw: pointer to the HW structure
* @active: true to enable LPLU, false to disable
*
* Sets the LPLU D0 state according to the active flag. When activating LPLU
* this function also disables smart speed and vice versa. LPLU will not be
* activated unless the device autonegotiation advertisement meets standards
* of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function
* pointer entry point only called by PHY setup routines.
**/
static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 data;
ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
if (ret_val)
return ret_val;
if (active) {
data |= IGP02E1000_PM_D0_LPLU;
ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
if (ret_val)
return ret_val;
/* When LPLU is enabled, we should disable SmartSpeed */
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
if (ret_val)
return ret_val;
} else {
data &= ~IGP02E1000_PM_D0_LPLU;
ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
/*
* LPLU and SmartSpeed are mutually exclusive. LPLU is used
* during Dx states where the power conservation is most
* important. During driver activity we should enable
* SmartSpeed, so performance is maintained.
*/
if (phy->smart_speed == e1000_smart_speed_on) {
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
&data);
if (ret_val)
return ret_val;
data |= IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
data);
if (ret_val)
return ret_val;
} else if (phy->smart_speed == e1000_smart_speed_off) {
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
&data);
if (ret_val)
return ret_val;
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
data);
if (ret_val)
return ret_val;
}
}
return 0;
}
/**
* e1000_reset_hw_82571 - Reset hardware
* @hw: pointer to the HW structure
*
* This resets the hardware into a known state.
**/
static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
{
u32 ctrl, ctrl_ext;
s32 ret_val;
/*
* Prevent the PCI-E bus from sticking if there is no TLP connection
* on the last TLP read/write transaction when MAC is reset.
*/
ret_val = e1000e_disable_pcie_master(hw);
if (ret_val)
e_dbg("PCI-E Master disable polling has failed.\n");
e_dbg("Masking off all interrupts\n");
ew32(IMC, 0xffffffff);
ew32(RCTL, 0);
ew32(TCTL, E1000_TCTL_PSP);
e1e_flush();
usleep_range(10000, 20000);
/*
* Must acquire the MDIO ownership before MAC reset.
* Ownership defaults to firmware after a reset.
*/
switch (hw->mac.type) {
case e1000_82573:
ret_val = e1000_get_hw_semaphore_82573(hw);
break;
case e1000_82574:
case e1000_82583:
ret_val = e1000_get_hw_semaphore_82574(hw);
break;
default:
break;
}
if (ret_val)
e_dbg("Cannot acquire MDIO ownership\n");
ctrl = er32(CTRL);
e_dbg("Issuing a global reset to MAC\n");
ew32(CTRL, ctrl | E1000_CTRL_RST);
/* Must release MDIO ownership and mutex after MAC reset. */
switch (hw->mac.type) {
case e1000_82574:
case e1000_82583:
e1000_put_hw_semaphore_82574(hw);
break;
default:
break;
}
if (hw->nvm.type == e1000_nvm_flash_hw) {
udelay(10);
ctrl_ext = er32(CTRL_EXT);
ctrl_ext |= E1000_CTRL_EXT_EE_RST;
ew32(CTRL_EXT, ctrl_ext);
e1e_flush();
}
ret_val = e1000e_get_auto_rd_done(hw);
if (ret_val)
/* We don't want to continue accessing MAC registers. */
return ret_val;
/*
* Phy configuration from NVM just starts after EECD_AUTO_RD is set.
* Need to wait for Phy configuration completion before accessing
* NVM and Phy.
*/
switch (hw->mac.type) {
case e1000_82573:
case e1000_82574:
case e1000_82583:
msleep(25);
break;
default:
break;
}
/* Clear any pending interrupt events. */
ew32(IMC, 0xffffffff);
er32(ICR);
if (hw->mac.type == e1000_82571) {
/* Install any alternate MAC address into RAR0 */
ret_val = e1000_check_alt_mac_addr_generic(hw);
if (ret_val)
return ret_val;
e1000e_set_laa_state_82571(hw, true);
}
/* Reinitialize the 82571 serdes link state machine */
if (hw->phy.media_type == e1000_media_type_internal_serdes)
hw->mac.serdes_link_state = e1000_serdes_link_down;
return 0;
}
/**
* e1000_init_hw_82571 - Initialize hardware
* @hw: pointer to the HW structure
*
* This inits the hardware readying it for operation.
**/
static s32 e1000_init_hw_82571(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
u32 reg_data;
s32 ret_val;
u16 i, rar_count = mac->rar_entry_count;
e1000_initialize_hw_bits_82571(hw);
/* Initialize identification LED */
ret_val = e1000e_id_led_init(hw);
if (ret_val)
e_dbg("Error initializing identification LED\n");
/* This is not fatal and we should not stop init due to this */
/* Disabling VLAN filtering */
e_dbg("Initializing the IEEE VLAN\n");
mac->ops.clear_vfta(hw);
/* Setup the receive address. */
/*
* If, however, a locally administered address was assigned to the
* 82571, we must reserve a RAR for it to work around an issue where
* resetting one port will reload the MAC on the other port.
*/
if (e1000e_get_laa_state_82571(hw))
rar_count--;
e1000e_init_rx_addrs(hw, rar_count);
/* Zero out the Multicast HASH table */
e_dbg("Zeroing the MTA\n");
for (i = 0; i < mac->mta_reg_count; i++)
E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
/* Setup link and flow control */
ret_val = e1000_setup_link_82571(hw);
/* Set the transmit descriptor write-back policy */
reg_data = er32(TXDCTL(0));
reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
E1000_TXDCTL_FULL_TX_DESC_WB |
E1000_TXDCTL_COUNT_DESC;
ew32(TXDCTL(0), reg_data);
/* ...for both queues. */
switch (mac->type) {
case e1000_82573:
e1000e_enable_tx_pkt_filtering(hw);
/* fall through */
case e1000_82574:
case e1000_82583:
reg_data = er32(GCR);
reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
ew32(GCR, reg_data);
break;
default:
reg_data = er32(TXDCTL(1));
reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
E1000_TXDCTL_FULL_TX_DESC_WB |
E1000_TXDCTL_COUNT_DESC;
ew32(TXDCTL(1), reg_data);
break;
}
/*
* Clear all of the statistics registers (clear on read). It is
* important that we do this after we have tried to establish link
* because the symbol error count will increment wildly if there
* is no link.
*/
e1000_clear_hw_cntrs_82571(hw);
return ret_val;
}
/**
* e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
* @hw: pointer to the HW structure
*
* Initializes required hardware-dependent bits needed for normal operation.
**/
static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
{
u32 reg;
/* Transmit Descriptor Control 0 */
reg = er32(TXDCTL(0));
reg |= (1 << 22);
ew32(TXDCTL(0), reg);
/* Transmit Descriptor Control 1 */
reg = er32(TXDCTL(1));
reg |= (1 << 22);
ew32(TXDCTL(1), reg);
/* Transmit Arbitration Control 0 */
reg = er32(TARC(0));
reg &= ~(0xF << 27); /* 30:27 */
switch (hw->mac.type) {
case e1000_82571:
case e1000_82572:
reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
break;
default:
break;
}
ew32(TARC(0), reg);
/* Transmit Arbitration Control 1 */
reg = er32(TARC(1));
switch (hw->mac.type) {
case e1000_82571:
case e1000_82572:
reg &= ~((1 << 29) | (1 << 30));
reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
if (er32(TCTL) & E1000_TCTL_MULR)
reg &= ~(1 << 28);
else
reg |= (1 << 28);
ew32(TARC(1), reg);
break;
default:
break;
}
/* Device Control */
switch (hw->mac.type) {
case e1000_82573:
case e1000_82574:
case e1000_82583:
reg = er32(CTRL);
reg &= ~(1 << 29);
ew32(CTRL, reg);
break;
default:
break;
}
/* Extended Device Control */
switch (hw->mac.type) {
case e1000_82573:
case e1000_82574:
case e1000_82583:
reg = er32(CTRL_EXT);
reg &= ~(1 << 23);
reg |= (1 << 22);
ew32(CTRL_EXT, reg);
break;
default:
break;
}
if (hw->mac.type == e1000_82571) {
reg = er32(PBA_ECC);
reg |= E1000_PBA_ECC_CORR_EN;
ew32(PBA_ECC, reg);
}
/*
* Workaround for hardware errata.
* Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
*/
if ((hw->mac.type == e1000_82571) ||
(hw->mac.type == e1000_82572)) {
reg = er32(CTRL_EXT);
reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
ew32(CTRL_EXT, reg);
}
/* PCI-Ex Control Registers */
switch (hw->mac.type) {
case e1000_82574:
case e1000_82583:
reg = er32(GCR);
reg |= (1 << 22);
ew32(GCR, reg);
/*
* Workaround for hardware errata.
* apply workaround for hardware errata documented in errata
* docs Fixes issue where some error prone or unreliable PCIe
* completions are occurring, particularly with ASPM enabled.
* Without fix, issue can cause Tx timeouts.
*/
reg = er32(GCR2);
reg |= 1;
ew32(GCR2, reg);
break;
default:
break;
}
}
/**
* e1000_clear_vfta_82571 - Clear VLAN filter table
* @hw: pointer to the HW structure
*
* Clears the register array which contains the VLAN filter table by
* setting all the values to 0.
**/
static void e1000_clear_vfta_82571(struct e1000_hw *hw)
{
u32 offset;
u32 vfta_value = 0;
u32 vfta_offset = 0;
u32 vfta_bit_in_reg = 0;
switch (hw->mac.type) {
case e1000_82573:
case e1000_82574:
case e1000_82583:
if (hw->mng_cookie.vlan_id != 0) {
/*
* The VFTA is a 4096b bit-field, each identifying
* a single VLAN ID. The following operations
* determine which 32b entry (i.e. offset) into the
* array we want to set the VLAN ID (i.e. bit) of
* the manageability unit.
*/
vfta_offset = (hw->mng_cookie.vlan_id >>
E1000_VFTA_ENTRY_SHIFT) &
E1000_VFTA_ENTRY_MASK;
vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
}
break;
default:
break;
}
for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
/*
* If the offset we want to clear is the same offset of the
* manageability VLAN ID, then clear all bits except that of
* the manageability unit.
*/
vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
e1e_flush();
}
}
/**
* e1000_check_mng_mode_82574 - Check manageability is enabled
* @hw: pointer to the HW structure
*
* Reads the NVM Initialization Control Word 2 and returns true
* (>0) if any manageability is enabled, else false (0).
**/
static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
{
u16 data;
e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
}
/**
* e1000_led_on_82574 - Turn LED on
* @hw: pointer to the HW structure
*
* Turn LED on.
**/
static s32 e1000_led_on_82574(struct e1000_hw *hw)
{
u32 ctrl;
u32 i;
ctrl = hw->mac.ledctl_mode2;
if (!(E1000_STATUS_LU & er32(STATUS))) {
/*
* If no link, then turn LED on by setting the invert bit
* for each LED that's "on" (0x0E) in ledctl_mode2.
*/
for (i = 0; i < 4; i++)
if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
E1000_LEDCTL_MODE_LED_ON)
ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
}
ew32(LEDCTL, ctrl);
return 0;
}
/**
* e1000_check_phy_82574 - check 82574 phy hung state
* @hw: pointer to the HW structure
*
* Returns whether phy is hung or not
**/
bool e1000_check_phy_82574(struct e1000_hw *hw)
{
u16 status_1kbt = 0;
u16 receive_errors = 0;
bool phy_hung = false;
s32 ret_val = 0;
/*
* Read PHY Receive Error counter first, if its is max - all F's then
* read the Base1000T status register If both are max then PHY is hung.
*/
ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors);
if (ret_val)
goto out;
if (receive_errors == E1000_RECEIVE_ERROR_MAX) {
ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt);
if (ret_val)
goto out;
if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
E1000_IDLE_ERROR_COUNT_MASK)
phy_hung = true;
}
out:
return phy_hung;
}
/**
* e1000_setup_link_82571 - Setup flow control and link settings
* @hw: pointer to the HW structure
*
* Determines which flow control settings to use, then configures flow
* control. Calls the appropriate media-specific link configuration
* function. Assuming the adapter has a valid link partner, a valid link
* should be established. Assumes the hardware has previously been reset
* and the transmitter and receiver are not enabled.
**/
static s32 e1000_setup_link_82571(struct e1000_hw *hw)
{
/*
* 82573 does not have a word in the NVM to determine
* the default flow control setting, so we explicitly
* set it to full.
*/
switch (hw->mac.type) {
case e1000_82573:
case e1000_82574:
case e1000_82583:
if (hw->fc.requested_mode == e1000_fc_default)
hw->fc.requested_mode = e1000_fc_full;
break;
default:
break;
}
return e1000e_setup_link(hw);
}
/**
* e1000_setup_copper_link_82571 - Configure copper link settings
* @hw: pointer to the HW structure
*
* Configures the link for auto-neg or forced speed and duplex. Then we check
* for link, once link is established calls to configure collision distance
* and flow control are called.
**/
static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
{
u32 ctrl;
s32 ret_val;
ctrl = er32(CTRL);
ctrl |= E1000_CTRL_SLU;
ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
ew32(CTRL, ctrl);
switch (hw->phy.type) {
case e1000_phy_m88:
case e1000_phy_bm:
ret_val = e1000e_copper_link_setup_m88(hw);
break;
case e1000_phy_igp_2:
ret_val = e1000e_copper_link_setup_igp(hw);
break;
default:
return -E1000_ERR_PHY;
break;
}
if (ret_val)
return ret_val;
ret_val = e1000e_setup_copper_link(hw);
return ret_val;
}
/**
* e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
* @hw: pointer to the HW structure
*
* Configures collision distance and flow control for fiber and serdes links.
* Upon successful setup, poll for link.
**/
static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
{
switch (hw->mac.type) {
case e1000_82571:
case e1000_82572:
/*
* If SerDes loopback mode is entered, there is no form
* of reset to take the adapter out of that mode. So we
* have to explicitly take the adapter out of loopback
* mode. This prevents drivers from twiddling their thumbs
* if another tool failed to take it out of loopback mode.
*/
ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
break;
default:
break;
}
return e1000e_setup_fiber_serdes_link(hw);
}
/**
* e1000_check_for_serdes_link_82571 - Check for link (Serdes)
* @hw: pointer to the HW structure
*
* Reports the link state as up or down.
*
* If autonegotiation is supported by the link partner, the link state is
* determined by the result of autonegotiation. This is the most likely case.
* If autonegotiation is not supported by the link partner, and the link
* has a valid signal, force the link up.
*
* The link state is represented internally here by 4 states:
*
* 1) down
* 2) autoneg_progress
* 3) autoneg_complete (the link successfully autonegotiated)
* 4) forced_up (the link has been forced up, it did not autonegotiate)
*
**/
static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
u32 rxcw;
u32 ctrl;
u32 status;
u32 txcw;
u32 i;
s32 ret_val = 0;
ctrl = er32(CTRL);
status = er32(STATUS);
rxcw = er32(RXCW);
if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
/* Receiver is synchronized with no invalid bits. */
switch (mac->serdes_link_state) {
case e1000_serdes_link_autoneg_complete:
if (!(status & E1000_STATUS_LU)) {
/*
* We have lost link, retry autoneg before
* reporting link failure
*/
mac->serdes_link_state =
e1000_serdes_link_autoneg_progress;
mac->serdes_has_link = false;
e_dbg("AN_UP -> AN_PROG\n");
} else {
mac->serdes_has_link = true;
}
break;
case e1000_serdes_link_forced_up:
/*
* If we are receiving /C/ ordered sets, re-enable
* auto-negotiation in the TXCW register and disable
* forced link in the Device Control register in an
* attempt to auto-negotiate with our link partner.
* If the partner code word is null, stop forcing
* and restart auto negotiation.
*/
if ((rxcw & E1000_RXCW_C) || !(rxcw & E1000_RXCW_CW)) {
/* Enable autoneg, and unforce link up */
ew32(TXCW, mac->txcw);
ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
mac->serdes_link_state =
e1000_serdes_link_autoneg_progress;
mac->serdes_has_link = false;
e_dbg("FORCED_UP -> AN_PROG\n");
} else {
mac->serdes_has_link = true;
}
break;
case e1000_serdes_link_autoneg_progress:
if (rxcw & E1000_RXCW_C) {
/*
* We received /C/ ordered sets, meaning the
* link partner has autonegotiated, and we can
* trust the Link Up (LU) status bit.
*/
if (status & E1000_STATUS_LU) {
mac->serdes_link_state =
e1000_serdes_link_autoneg_complete;
e_dbg("AN_PROG -> AN_UP\n");
mac->serdes_has_link = true;
} else {
/* Autoneg completed, but failed. */
mac->serdes_link_state =
e1000_serdes_link_down;
e_dbg("AN_PROG -> DOWN\n");
}
} else {
/*
* The link partner did not autoneg.
* Force link up and full duplex, and change
* state to forced.
*/
ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
ew32(CTRL, ctrl);
/* Configure Flow Control after link up. */
ret_val = e1000e_config_fc_after_link_up(hw);
if (ret_val) {
e_dbg("Error config flow control\n");
break;
}
mac->serdes_link_state =
e1000_serdes_link_forced_up;
mac->serdes_has_link = true;
e_dbg("AN_PROG -> FORCED_UP\n");
}
break;
case e1000_serdes_link_down:
default:
/*
* The link was down but the receiver has now gained
* valid sync, so lets see if we can bring the link
* up.
*/
ew32(TXCW, mac->txcw);
ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
mac->serdes_link_state =
e1000_serdes_link_autoneg_progress;
mac->serdes_has_link = false;
e_dbg("DOWN -> AN_PROG\n");
break;
}
} else {
if (!(rxcw & E1000_RXCW_SYNCH)) {
mac->serdes_has_link = false;
mac->serdes_link_state = e1000_serdes_link_down;
e_dbg("ANYSTATE -> DOWN\n");
} else {
/*
* Check several times, if Sync and Config
* both are consistently 1 then simply ignore
* the Invalid bit and restart Autoneg
*/
for (i = 0; i < AN_RETRY_COUNT; i++) {
udelay(10);
rxcw = er32(RXCW);
if ((rxcw & E1000_RXCW_IV) &&
!((rxcw & E1000_RXCW_SYNCH) &&
(rxcw & E1000_RXCW_C))) {
mac->serdes_has_link = false;
mac->serdes_link_state =
e1000_serdes_link_down;
e_dbg("ANYSTATE -> DOWN\n");
break;
}
}
if (i == AN_RETRY_COUNT) {
txcw = er32(TXCW);
txcw |= E1000_TXCW_ANE;
ew32(TXCW, txcw);
mac->serdes_link_state =
e1000_serdes_link_autoneg_progress;
mac->serdes_has_link = false;
e_dbg("ANYSTATE -> AN_PROG\n");
}
}
}
return ret_val;
}
/**
* e1000_valid_led_default_82571 - Verify a valid default LED config
* @hw: pointer to the HW structure
* @data: pointer to the NVM (EEPROM)
*
* Read the EEPROM for the current default LED configuration. If the
* LED configuration is not valid, set to a valid LED configuration.
**/
static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
{
s32 ret_val;
ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
if (ret_val) {
e_dbg("NVM Read Error\n");
return ret_val;
}
switch (hw->mac.type) {
case e1000_82573:
case e1000_82574:
case e1000_82583:
if (*data == ID_LED_RESERVED_F746)
*data = ID_LED_DEFAULT_82573;
break;
default:
if (*data == ID_LED_RESERVED_0000 ||
*data == ID_LED_RESERVED_FFFF)
*data = ID_LED_DEFAULT;
break;
}
return 0;
}
/**
* e1000e_get_laa_state_82571 - Get locally administered address state
* @hw: pointer to the HW structure
*
* Retrieve and return the current locally administered address state.
**/
bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
{
if (hw->mac.type != e1000_82571)
return false;
return hw->dev_spec.e82571.laa_is_present;
}
/**
* e1000e_set_laa_state_82571 - Set locally administered address state
* @hw: pointer to the HW structure
* @state: enable/disable locally administered address
*
* Enable/Disable the current locally administered address state.
**/
void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
{
if (hw->mac.type != e1000_82571)
return;
hw->dev_spec.e82571.laa_is_present = state;
/* If workaround is activated... */
if (state)
/*
* Hold a copy of the LAA in RAR[14] This is done so that
* between the time RAR[0] gets clobbered and the time it
* gets fixed, the actual LAA is in one of the RARs and no
* incoming packets directed to this port are dropped.
* Eventually the LAA will be in RAR[0] and RAR[14].
*/
e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1);
}
/**
* e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
* @hw: pointer to the HW structure
*
* Verifies that the EEPROM has completed the update. After updating the
* EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If
* the checksum fix is not implemented, we need to set the bit and update
* the checksum. Otherwise, if bit 15 is set and the checksum is incorrect,
* we need to return bad checksum.
**/
static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
{
struct e1000_nvm_info *nvm = &hw->nvm;
s32 ret_val;
u16 data;
if (nvm->type != e1000_nvm_flash_hw)
return 0;
/*
* Check bit 4 of word 10h. If it is 0, firmware is done updating
* 10h-12h. Checksum may need to be fixed.
*/
ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
if (ret_val)
return ret_val;
if (!(data & 0x10)) {
/*
* Read 0x23 and check bit 15. This bit is a 1
* when the checksum has already been fixed. If
* the checksum is still wrong and this bit is a
* 1, we need to return bad checksum. Otherwise,
* we need to set this bit to a 1 and update the
* checksum.
*/
ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
if (ret_val)
return ret_val;
if (!(data & 0x8000)) {
data |= 0x8000;
ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
if (ret_val)
return ret_val;
ret_val = e1000e_update_nvm_checksum(hw);
}
}
return 0;
}
/**
* e1000_read_mac_addr_82571 - Read device MAC address
* @hw: pointer to the HW structure
**/
static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
{
s32 ret_val = 0;
if (hw->mac.type == e1000_82571) {
/*
* If there's an alternate MAC address place it in RAR0
* so that it will override the Si installed default perm
* address.
*/
ret_val = e1000_check_alt_mac_addr_generic(hw);
if (ret_val)
goto out;
}
ret_val = e1000_read_mac_addr_generic(hw);
out:
return ret_val;
}
/**
* e1000_power_down_phy_copper_82571 - Remove link during PHY power down
* @hw: pointer to the HW structure
*
* In the case of a PHY power down to save power, or to turn off link during a
* driver unload, or wake on lan is not enabled, remove the link.
**/
static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
struct e1000_mac_info *mac = &hw->mac;
if (!(phy->ops.check_reset_block))
return;
/* If the management interface is not enabled, then power down */
if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
e1000_power_down_phy_copper(hw);
}
/**
* e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
* @hw: pointer to the HW structure
*
* Clears the hardware counters by reading the counter registers.
**/
static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
{
e1000e_clear_hw_cntrs_base(hw);
er32(PRC64);
er32(PRC127);
er32(PRC255);
er32(PRC511);
er32(PRC1023);
er32(PRC1522);
er32(PTC64);
er32(PTC127);
er32(PTC255);
er32(PTC511);
er32(PTC1023);
er32(PTC1522);
er32(ALGNERRC);
er32(RXERRC);
er32(TNCRS);
er32(CEXTERR);
er32(TSCTC);
er32(TSCTFC);
er32(MGTPRC);
er32(MGTPDC);
er32(MGTPTC);
er32(IAC);
er32(ICRXOC);
er32(ICRXPTC);
er32(ICRXATC);
er32(ICTXPTC);
er32(ICTXATC);
er32(ICTXQEC);
er32(ICTXQMTC);
er32(ICRXDMTC);
}
static const struct e1000_mac_operations e82571_mac_ops = {
/* .check_mng_mode: mac type dependent */
/* .check_for_link: media type dependent */
.id_led_init = e1000e_id_led_init,
.cleanup_led = e1000e_cleanup_led_generic,
.clear_hw_cntrs = e1000_clear_hw_cntrs_82571,
.get_bus_info = e1000e_get_bus_info_pcie,
.set_lan_id = e1000_set_lan_id_multi_port_pcie,
/* .get_link_up_info: media type dependent */
/* .led_on: mac type dependent */
.led_off = e1000e_led_off_generic,
.update_mc_addr_list = e1000e_update_mc_addr_list_generic,
.write_vfta = e1000_write_vfta_generic,
.clear_vfta = e1000_clear_vfta_82571,
.reset_hw = e1000_reset_hw_82571,
.init_hw = e1000_init_hw_82571,
.setup_link = e1000_setup_link_82571,
/* .setup_physical_interface: media type dependent */
.setup_led = e1000e_setup_led_generic,
.read_mac_addr = e1000_read_mac_addr_82571,
};
static const struct e1000_phy_operations e82_phy_ops_igp = {
.acquire = e1000_get_hw_semaphore_82571,
.check_polarity = e1000_check_polarity_igp,
.check_reset_block = e1000e_check_reset_block_generic,
.commit = NULL,
.force_speed_duplex = e1000e_phy_force_speed_duplex_igp,
.get_cfg_done = e1000_get_cfg_done_82571,
.get_cable_length = e1000e_get_cable_length_igp_2,
.get_info = e1000e_get_phy_info_igp,
.read_reg = e1000e_read_phy_reg_igp,
.release = e1000_put_hw_semaphore_82571,
.reset = e1000e_phy_hw_reset_generic,
.set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
.set_d3_lplu_state = e1000e_set_d3_lplu_state,
.write_reg = e1000e_write_phy_reg_igp,
.cfg_on_link_up = NULL,
};
static const struct e1000_phy_operations e82_phy_ops_m88 = {
.acquire = e1000_get_hw_semaphore_82571,
.check_polarity = e1000_check_polarity_m88,
.check_reset_block = e1000e_check_reset_block_generic,
.commit = e1000e_phy_sw_reset,
.force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
.get_cfg_done = e1000e_get_cfg_done,
.get_cable_length = e1000e_get_cable_length_m88,
.get_info = e1000e_get_phy_info_m88,
.read_reg = e1000e_read_phy_reg_m88,
.release = e1000_put_hw_semaphore_82571,
.reset = e1000e_phy_hw_reset_generic,
.set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
.set_d3_lplu_state = e1000e_set_d3_lplu_state,
.write_reg = e1000e_write_phy_reg_m88,
.cfg_on_link_up = NULL,
};
static const struct e1000_phy_operations e82_phy_ops_bm = {
.acquire = e1000_get_hw_semaphore_82571,
.check_polarity = e1000_check_polarity_m88,
.check_reset_block = e1000e_check_reset_block_generic,
.commit = e1000e_phy_sw_reset,
.force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
.get_cfg_done = e1000e_get_cfg_done,
.get_cable_length = e1000e_get_cable_length_m88,
.get_info = e1000e_get_phy_info_m88,
.read_reg = e1000e_read_phy_reg_bm2,
.release = e1000_put_hw_semaphore_82571,
.reset = e1000e_phy_hw_reset_generic,
.set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
.set_d3_lplu_state = e1000e_set_d3_lplu_state,
.write_reg = e1000e_write_phy_reg_bm2,
.cfg_on_link_up = NULL,
};
static const struct e1000_nvm_operations e82571_nvm_ops = {
.acquire = e1000_acquire_nvm_82571,
.read = e1000e_read_nvm_eerd,
.release = e1000_release_nvm_82571,
.update = e1000_update_nvm_checksum_82571,
.valid_led_default = e1000_valid_led_default_82571,
.validate = e1000_validate_nvm_checksum_82571,
.write = e1000_write_nvm_82571,
};
const struct e1000_info e1000_82571_info = {
.mac = e1000_82571,
.flags = FLAG_HAS_HW_VLAN_FILTER
| FLAG_HAS_JUMBO_FRAMES
| FLAG_HAS_WOL
| FLAG_APME_IN_CTRL3
| FLAG_HAS_CTRLEXT_ON_LOAD
| FLAG_HAS_SMART_POWER_DOWN
| FLAG_RESET_OVERWRITES_LAA /* errata */
| FLAG_TARC_SPEED_MODE_BIT /* errata */
| FLAG_APME_CHECK_PORT_B,
.flags2 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
| FLAG2_DMA_BURST,
.pba = 38,
.max_hw_frame_size = DEFAULT_JUMBO,
.get_variants = e1000_get_variants_82571,
.mac_ops = &e82571_mac_ops,
.phy_ops = &e82_phy_ops_igp,
.nvm_ops = &e82571_nvm_ops,
};
const struct e1000_info e1000_82572_info = {
.mac = e1000_82572,
.flags = FLAG_HAS_HW_VLAN_FILTER
| FLAG_HAS_JUMBO_FRAMES
| FLAG_HAS_WOL
| FLAG_APME_IN_CTRL3
| FLAG_HAS_CTRLEXT_ON_LOAD
| FLAG_TARC_SPEED_MODE_BIT, /* errata */
.flags2 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
| FLAG2_DMA_BURST,
.pba = 38,
.max_hw_frame_size = DEFAULT_JUMBO,
.get_variants = e1000_get_variants_82571,
.mac_ops = &e82571_mac_ops,
.phy_ops = &e82_phy_ops_igp,
.nvm_ops = &e82571_nvm_ops,
};
const struct e1000_info e1000_82573_info = {
.mac = e1000_82573,
.flags = FLAG_HAS_HW_VLAN_FILTER
| FLAG_HAS_WOL
| FLAG_APME_IN_CTRL3
| FLAG_HAS_SMART_POWER_DOWN
| FLAG_HAS_AMT
| FLAG_HAS_SWSM_ON_LOAD,
.flags2 = FLAG2_DISABLE_ASPM_L1
| FLAG2_DISABLE_ASPM_L0S,
.pba = 20,
.max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
.get_variants = e1000_get_variants_82571,
.mac_ops = &e82571_mac_ops,
.phy_ops = &e82_phy_ops_m88,
.nvm_ops = &e82571_nvm_ops,
};
const struct e1000_info e1000_82574_info = {
.mac = e1000_82574,
.flags = FLAG_HAS_HW_VLAN_FILTER
| FLAG_HAS_MSIX
| FLAG_HAS_JUMBO_FRAMES
| FLAG_HAS_WOL
| FLAG_APME_IN_CTRL3
| FLAG_HAS_SMART_POWER_DOWN
| FLAG_HAS_AMT
| FLAG_HAS_CTRLEXT_ON_LOAD,
.flags2 = FLAG2_CHECK_PHY_HANG
| FLAG2_DISABLE_ASPM_L0S
| FLAG2_NO_DISABLE_RX,
.pba = 32,
.max_hw_frame_size = DEFAULT_JUMBO,
.get_variants = e1000_get_variants_82571,
.mac_ops = &e82571_mac_ops,
.phy_ops = &e82_phy_ops_bm,
.nvm_ops = &e82571_nvm_ops,
};
const struct e1000_info e1000_82583_info = {
.mac = e1000_82583,
.flags = FLAG_HAS_HW_VLAN_FILTER
| FLAG_HAS_WOL
| FLAG_APME_IN_CTRL3
| FLAG_HAS_SMART_POWER_DOWN
| FLAG_HAS_AMT
| FLAG_HAS_JUMBO_FRAMES
| FLAG_HAS_CTRLEXT_ON_LOAD,
.flags2 = FLAG2_DISABLE_ASPM_L0S
| FLAG2_NO_DISABLE_RX,
.pba = 32,
.max_hw_frame_size = DEFAULT_JUMBO,
.get_variants = e1000_get_variants_82571,
.mac_ops = &e82571_mac_ops,
.phy_ops = &e82_phy_ops_bm,
.nvm_ops = &e82571_nvm_ops,
};
-------------- n?chster Teil --------------
/*******************************************************************************
Intel PRO/1000 Linux driver
Copyright(c) 1999 - 2011 Intel Corporation.
This program is free software; you can redistribute it and/or modify it
under the terms and conditions of the GNU General Public License,
version 2, as published by the Free Software Foundation.
This program is distributed in the hope it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
The full GNU General Public License is included in this distribution in
the file called "COPYING".
Contact Information:
Linux NICS <linux.nics at intel.com>
e1000-devel Mailing List <e1000-devel at lists.sourceforge.net>
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*******************************************************************************/
#include <linux/delay.h>
#include "e1000-3.2.0-ethercat.h"
static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
static s32 e1000_wait_autoneg(struct e1000_hw *hw);
static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg);
static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
u16 *data, bool read, bool page_set);
static u32 e1000_get_phy_addr_for_hv_page(u32 page);
static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
u16 *data, bool read);
/* Cable length tables */
static const u16 e1000_m88_cable_length_table[] = {
0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
ARRAY_SIZE(e1000_m88_cable_length_table)
static const u16 e1000_igp_2_cable_length_table[] = {
0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
124};
#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
ARRAY_SIZE(e1000_igp_2_cable_length_table)
#define BM_PHY_REG_PAGE(offset) \
((u16)(((offset) >> PHY_PAGE_SHIFT) & 0xFFFF))
#define BM_PHY_REG_NUM(offset) \
((u16)(((offset) & MAX_PHY_REG_ADDRESS) |\
(((offset) >> (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)) &\
~MAX_PHY_REG_ADDRESS)))
#define HV_INTC_FC_PAGE_START 768
#define I82578_ADDR_REG 29
#define I82577_ADDR_REG 16
#define I82577_CFG_REG 22
#define I82577_CFG_ASSERT_CRS_ON_TX (1 << 15)
#define I82577_CFG_ENABLE_DOWNSHIFT (3 << 10) /* auto downshift 100/10 */
#define I82577_CTRL_REG 23
/* 82577 specific PHY registers */
#define I82577_PHY_CTRL_2 18
#define I82577_PHY_STATUS_2 26
#define I82577_PHY_DIAG_STATUS 31
/* I82577 PHY Status 2 */
#define I82577_PHY_STATUS2_REV_POLARITY 0x0400
#define I82577_PHY_STATUS2_MDIX 0x0800
#define I82577_PHY_STATUS2_SPEED_MASK 0x0300
#define I82577_PHY_STATUS2_SPEED_1000MBPS 0x0200
/* I82577 PHY Control 2 */
#define I82577_PHY_CTRL2_AUTO_MDIX 0x0400
#define I82577_PHY_CTRL2_FORCE_MDI_MDIX 0x0200
/* I82577 PHY Diagnostics Status */
#define I82577_DSTATUS_CABLE_LENGTH 0x03FC
#define I82577_DSTATUS_CABLE_LENGTH_SHIFT 2
/* BM PHY Copper Specific Control 1 */
#define BM_CS_CTRL1 16
#define HV_MUX_DATA_CTRL PHY_REG(776, 16)
#define HV_MUX_DATA_CTRL_GEN_TO_MAC 0x0400
#define HV_MUX_DATA_CTRL_FORCE_SPEED 0x0004
/**
* e1000e_check_reset_block_generic - Check if PHY reset is blocked
* @hw: pointer to the HW structure
*
* Read the PHY management control register and check whether a PHY reset
* is blocked. If a reset is not blocked return 0, otherwise
* return E1000_BLK_PHY_RESET (12).
**/
s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
{
u32 manc;
manc = er32(MANC);
return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
E1000_BLK_PHY_RESET : 0;
}
/**
* e1000e_get_phy_id - Retrieve the PHY ID and revision
* @hw: pointer to the HW structure
*
* Reads the PHY registers and stores the PHY ID and possibly the PHY
* revision in the hardware structure.
**/
s32 e1000e_get_phy_id(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val = 0;
u16 phy_id;
u16 retry_count = 0;
if (!(phy->ops.read_reg))
goto out;
while (retry_count < 2) {
ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
if (ret_val)
goto out;
phy->id = (u32)(phy_id << 16);
udelay(20);
ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
if (ret_val)
goto out;
phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
goto out;
retry_count++;
}
out:
return ret_val;
}
/**
* e1000e_phy_reset_dsp - Reset PHY DSP
* @hw: pointer to the HW structure
*
* Reset the digital signal processor.
**/
s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
{
s32 ret_val;
ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
if (ret_val)
return ret_val;
return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
}
/**
* e1000e_read_phy_reg_mdic - Read MDI control register
* @hw: pointer to the HW structure
* @offset: register offset to be read
* @data: pointer to the read data
*
* Reads the MDI control register in the PHY at offset and stores the
* information read to data.
**/
s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
{
struct e1000_phy_info *phy = &hw->phy;
u32 i, mdic = 0;
if (offset > MAX_PHY_REG_ADDRESS) {
e_dbg("PHY Address %d is out of range\n", offset);
return -E1000_ERR_PARAM;
}
/*
* Set up Op-code, Phy Address, and register offset in the MDI
* Control register. The MAC will take care of interfacing with the
* PHY to retrieve the desired data.
*/
mdic = ((offset << E1000_MDIC_REG_SHIFT) |
(phy->addr << E1000_MDIC_PHY_SHIFT) |
(E1000_MDIC_OP_READ));
ew32(MDIC, mdic);
/*
* Poll the ready bit to see if the MDI read completed
* Increasing the time out as testing showed failures with
* the lower time out
*/
for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
udelay(50);
mdic = er32(MDIC);
if (mdic & E1000_MDIC_READY)
break;
}
if (!(mdic & E1000_MDIC_READY)) {
e_dbg("MDI Read did not complete\n");
return -E1000_ERR_PHY;
}
if (mdic & E1000_MDIC_ERROR) {
e_dbg("MDI Error\n");
return -E1000_ERR_PHY;
}
*data = (u16) mdic;
/*
* Allow some time after each MDIC transaction to avoid
* reading duplicate data in the next MDIC transaction.
*/
if (hw->mac.type == e1000_pch2lan)
udelay(100);
return 0;
}
/**
* e1000e_write_phy_reg_mdic - Write MDI control register
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write to register at offset
*
* Writes data to MDI control register in the PHY at offset.
**/
s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
{
struct e1000_phy_info *phy = &hw->phy;
u32 i, mdic = 0;
if (offset > MAX_PHY_REG_ADDRESS) {
e_dbg("PHY Address %d is out of range\n", offset);
return -E1000_ERR_PARAM;
}
/*
* Set up Op-code, Phy Address, and register offset in the MDI
* Control register. The MAC will take care of interfacing with the
* PHY to retrieve the desired data.
*/
mdic = (((u32)data) |
(offset << E1000_MDIC_REG_SHIFT) |
(phy->addr << E1000_MDIC_PHY_SHIFT) |
(E1000_MDIC_OP_WRITE));
ew32(MDIC, mdic);
/*
* Poll the ready bit to see if the MDI read completed
* Increasing the time out as testing showed failures with
* the lower time out
*/
for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
udelay(50);
mdic = er32(MDIC);
if (mdic & E1000_MDIC_READY)
break;
}
if (!(mdic & E1000_MDIC_READY)) {
e_dbg("MDI Write did not complete\n");
return -E1000_ERR_PHY;
}
if (mdic & E1000_MDIC_ERROR) {
e_dbg("MDI Error\n");
return -E1000_ERR_PHY;
}
/*
* Allow some time after each MDIC transaction to avoid
* reading duplicate data in the next MDIC transaction.
*/
if (hw->mac.type == e1000_pch2lan)
udelay(100);
return 0;
}
/**
* e1000e_read_phy_reg_m88 - Read m88 PHY register
* @hw: pointer to the HW structure
* @offset: register offset to be read
* @data: pointer to the read data
*
* Acquires semaphore, if necessary, then reads the PHY register at offset
* and storing the retrieved information in data. Release any acquired
* semaphores before exiting.
**/
s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
{
s32 ret_val;
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return ret_val;
ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
data);
hw->phy.ops.release(hw);
return ret_val;
}
/**
* e1000e_write_phy_reg_m88 - Write m88 PHY register
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write at register offset
*
* Acquires semaphore, if necessary, then writes the data to PHY register
* at the offset. Release any acquired semaphores before exiting.
**/
s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
{
s32 ret_val;
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return ret_val;
ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
data);
hw->phy.ops.release(hw);
return ret_val;
}
/**
* e1000_set_page_igp - Set page as on IGP-like PHY(s)
* @hw: pointer to the HW structure
* @page: page to set (shifted left when necessary)
*
* Sets PHY page required for PHY register access. Assumes semaphore is
* already acquired. Note, this function sets phy.addr to 1 so the caller
* must set it appropriately (if necessary) after this function returns.
**/
s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
{
e_dbg("Setting page 0x%x\n", page);
hw->phy.addr = 1;
return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
}
/**
* __e1000e_read_phy_reg_igp - Read igp PHY register
* @hw: pointer to the HW structure
* @offset: register offset to be read
* @data: pointer to the read data
* @locked: semaphore has already been acquired or not
*
* Acquires semaphore, if necessary, then reads the PHY register at offset
* and stores the retrieved information in data. Release any acquired
* semaphores before exiting.
**/
static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
bool locked)
{
s32 ret_val = 0;
if (!locked) {
if (!(hw->phy.ops.acquire))
goto out;
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
goto out;
}
if (offset > MAX_PHY_MULTI_PAGE_REG) {
ret_val = e1000e_write_phy_reg_mdic(hw,
IGP01E1000_PHY_PAGE_SELECT,
(u16)offset);
if (ret_val)
goto release;
}
ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
data);
release:
if (!locked)
hw->phy.ops.release(hw);
out:
return ret_val;
}
/**
* e1000e_read_phy_reg_igp - Read igp PHY register
* @hw: pointer to the HW structure
* @offset: register offset to be read
* @data: pointer to the read data
*
* Acquires semaphore then reads the PHY register at offset and stores the
* retrieved information in data.
* Release the acquired semaphore before exiting.
**/
s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
{
return __e1000e_read_phy_reg_igp(hw, offset, data, false);
}
/**
* e1000e_read_phy_reg_igp_locked - Read igp PHY register
* @hw: pointer to the HW structure
* @offset: register offset to be read
* @data: pointer to the read data
*
* Reads the PHY register at offset and stores the retrieved information
* in data. Assumes semaphore already acquired.
**/
s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
{
return __e1000e_read_phy_reg_igp(hw, offset, data, true);
}
/**
* e1000e_write_phy_reg_igp - Write igp PHY register
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write at register offset
* @locked: semaphore has already been acquired or not
*
* Acquires semaphore, if necessary, then writes the data to PHY register
* at the offset. Release any acquired semaphores before exiting.
**/
static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
bool locked)
{
s32 ret_val = 0;
if (!locked) {
if (!(hw->phy.ops.acquire))
goto out;
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
goto out;
}
if (offset > MAX_PHY_MULTI_PAGE_REG) {
ret_val = e1000e_write_phy_reg_mdic(hw,
IGP01E1000_PHY_PAGE_SELECT,
(u16)offset);
if (ret_val)
goto release;
}
ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
data);
release:
if (!locked)
hw->phy.ops.release(hw);
out:
return ret_val;
}
/**
* e1000e_write_phy_reg_igp - Write igp PHY register
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write at register offset
*
* Acquires semaphore then writes the data to PHY register
* at the offset. Release any acquired semaphores before exiting.
**/
s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
{
return __e1000e_write_phy_reg_igp(hw, offset, data, false);
}
/**
* e1000e_write_phy_reg_igp_locked - Write igp PHY register
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write at register offset
*
* Writes the data to PHY register at the offset.
* Assumes semaphore already acquired.
**/
s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
{
return __e1000e_write_phy_reg_igp(hw, offset, data, true);
}
/**
* __e1000_read_kmrn_reg - Read kumeran register
* @hw: pointer to the HW structure
* @offset: register offset to be read
* @data: pointer to the read data
* @locked: semaphore has already been acquired or not
*
* Acquires semaphore, if necessary. Then reads the PHY register at offset
* using the kumeran interface. The information retrieved is stored in data.
* Release any acquired semaphores before exiting.
**/
static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
bool locked)
{
u32 kmrnctrlsta;
s32 ret_val = 0;
if (!locked) {
if (!(hw->phy.ops.acquire))
goto out;
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
goto out;
}
kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
ew32(KMRNCTRLSTA, kmrnctrlsta);
e1e_flush();
udelay(2);
kmrnctrlsta = er32(KMRNCTRLSTA);
*data = (u16)kmrnctrlsta;
if (!locked)
hw->phy.ops.release(hw);
out:
return ret_val;
}
/**
* e1000e_read_kmrn_reg - Read kumeran register
* @hw: pointer to the HW structure
* @offset: register offset to be read
* @data: pointer to the read data
*
* Acquires semaphore then reads the PHY register at offset using the
* kumeran interface. The information retrieved is stored in data.
* Release the acquired semaphore before exiting.
**/
s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
{
return __e1000_read_kmrn_reg(hw, offset, data, false);
}
/**
* e1000e_read_kmrn_reg_locked - Read kumeran register
* @hw: pointer to the HW structure
* @offset: register offset to be read
* @data: pointer to the read data
*
* Reads the PHY register at offset using the kumeran interface. The
* information retrieved is stored in data.
* Assumes semaphore already acquired.
**/
s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
{
return __e1000_read_kmrn_reg(hw, offset, data, true);
}
/**
* __e1000_write_kmrn_reg - Write kumeran register
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write at register offset
* @locked: semaphore has already been acquired or not
*
* Acquires semaphore, if necessary. Then write the data to PHY register
* at the offset using the kumeran interface. Release any acquired semaphores
* before exiting.
**/
static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
bool locked)
{
u32 kmrnctrlsta;
s32 ret_val = 0;
if (!locked) {
if (!(hw->phy.ops.acquire))
goto out;
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
goto out;
}
kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
E1000_KMRNCTRLSTA_OFFSET) | data;
ew32(KMRNCTRLSTA, kmrnctrlsta);
e1e_flush();
udelay(2);
if (!locked)
hw->phy.ops.release(hw);
out:
return ret_val;
}
/**
* e1000e_write_kmrn_reg - Write kumeran register
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write at register offset
*
* Acquires semaphore then writes the data to the PHY register at the offset
* using the kumeran interface. Release the acquired semaphore before exiting.
**/
s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
{
return __e1000_write_kmrn_reg(hw, offset, data, false);
}
/**
* e1000e_write_kmrn_reg_locked - Write kumeran register
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write at register offset
*
* Write the data to PHY register at the offset using the kumeran interface.
* Assumes semaphore already acquired.
**/
s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
{
return __e1000_write_kmrn_reg(hw, offset, data, true);
}
/**
* e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
* @hw: pointer to the HW structure
*
* Sets up Carrier-sense on Transmit and downshift values.
**/
s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
{
s32 ret_val;
u16 phy_data;
/* Enable CRS on Tx. This must be set for half-duplex operation. */
ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data);
if (ret_val)
goto out;
phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
/* Enable downshift */
phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data);
out:
return ret_val;
}
/**
* e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
* @hw: pointer to the HW structure
*
* Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
* and downshift values are set also.
**/
s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 phy_data;
/* Enable CRS on Tx. This must be set for half-duplex operation. */
ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
if (ret_val)
return ret_val;
/* For BM PHY this bit is downshift enable */
if (phy->type != e1000_phy_bm)
phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
/*
* Options:
* MDI/MDI-X = 0 (default)
* 0 - Auto for all speeds
* 1 - MDI mode
* 2 - MDI-X mode
* 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
*/
phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
switch (phy->mdix) {
case 1:
phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
break;
case 2:
phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
break;
case 3:
phy_data |= M88E1000_PSCR_AUTO_X_1000T;
break;
case 0:
default:
phy_data |= M88E1000_PSCR_AUTO_X_MODE;
break;
}
/*
* Options:
* disable_polarity_correction = 0 (default)
* Automatic Correction for Reversed Cable Polarity
* 0 - Disabled
* 1 - Enabled
*/
phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
if (phy->disable_polarity_correction == 1)
phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
/* Enable downshift on BM (disabled by default) */
if (phy->type == e1000_phy_bm)
phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
if (ret_val)
return ret_val;
if ((phy->type == e1000_phy_m88) &&
(phy->revision < E1000_REVISION_4) &&
(phy->id != BME1000_E_PHY_ID_R2)) {
/*
* Force TX_CLK in the Extended PHY Specific Control Register
* to 25MHz clock.
*/
ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
if (ret_val)
return ret_val;
phy_data |= M88E1000_EPSCR_TX_CLK_25;
if ((phy->revision == 2) &&
(phy->id == M88E1111_I_PHY_ID)) {
/* 82573L PHY - set the downshift counter to 5x. */
phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
} else {
/* Configure Master and Slave downshift values */
phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
}
ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
if (ret_val)
return ret_val;
}
if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
/* Set PHY page 0, register 29 to 0x0003 */
ret_val = e1e_wphy(hw, 29, 0x0003);
if (ret_val)
return ret_val;
/* Set PHY page 0, register 30 to 0x0000 */
ret_val = e1e_wphy(hw, 30, 0x0000);
if (ret_val)
return ret_val;
}
/* Commit the changes. */
ret_val = e1000e_commit_phy(hw);
if (ret_val) {
e_dbg("Error committing the PHY changes\n");
return ret_val;
}
if (phy->type == e1000_phy_82578) {
ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
if (ret_val)
return ret_val;
/* 82578 PHY - set the downshift count to 1x. */
phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
if (ret_val)
return ret_val;
}
return 0;
}
/**
* e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
* @hw: pointer to the HW structure
*
* Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
* igp PHY's.
**/
s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 data;
ret_val = e1000_phy_hw_reset(hw);
if (ret_val) {
e_dbg("Error resetting the PHY.\n");
return ret_val;
}
/*
* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
* timeout issues when LFS is enabled.
*/
msleep(100);
/* disable lplu d0 during driver init */
ret_val = e1000_set_d0_lplu_state(hw, false);
if (ret_val) {
e_dbg("Error Disabling LPLU D0\n");
return ret_val;
}
/* Configure mdi-mdix settings */
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
if (ret_val)
return ret_val;
data &= ~IGP01E1000_PSCR_AUTO_MDIX;
switch (phy->mdix) {
case 1:
data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
break;
case 2:
data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
break;
case 0:
default:
data |= IGP01E1000_PSCR_AUTO_MDIX;
break;
}
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
if (ret_val)
return ret_val;
/* set auto-master slave resolution settings */
if (hw->mac.autoneg) {
/*
* when autonegotiation advertisement is only 1000Mbps then we
* should disable SmartSpeed and enable Auto MasterSlave
* resolution as hardware default.
*/
if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
/* Disable SmartSpeed */
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
&data);
if (ret_val)
return ret_val;
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
data);
if (ret_val)
return ret_val;
/* Set auto Master/Slave resolution process */
ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
if (ret_val)
return ret_val;
data &= ~CR_1000T_MS_ENABLE;
ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
if (ret_val)
return ret_val;
}
ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
if (ret_val)
return ret_val;
/* load defaults for future use */
phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
((data & CR_1000T_MS_VALUE) ?
e1000_ms_force_master :
e1000_ms_force_slave) :
e1000_ms_auto;
switch (phy->ms_type) {
case e1000_ms_force_master:
data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
break;
case e1000_ms_force_slave:
data |= CR_1000T_MS_ENABLE;
data &= ~(CR_1000T_MS_VALUE);
break;
case e1000_ms_auto:
data &= ~CR_1000T_MS_ENABLE;
default:
break;
}
ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
}
return ret_val;
}
/**
* e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
* @hw: pointer to the HW structure
*
* Reads the MII auto-neg advertisement register and/or the 1000T control
* register and if the PHY is already setup for auto-negotiation, then
* return successful. Otherwise, setup advertisement and flow control to
* the appropriate values for the wanted auto-negotiation.
**/
static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 mii_autoneg_adv_reg;
u16 mii_1000t_ctrl_reg = 0;
phy->autoneg_advertised &= phy->autoneg_mask;
/* Read the MII Auto-Neg Advertisement Register (Address 4). */
ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
if (ret_val)
return ret_val;
if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
/* Read the MII 1000Base-T Control Register (Address 9). */
ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
if (ret_val)
return ret_val;
}
/*
* Need to parse both autoneg_advertised and fc and set up
* the appropriate PHY registers. First we will parse for
* autoneg_advertised software override. Since we can advertise
* a plethora of combinations, we need to check each bit
* individually.
*/
/*
* First we clear all the 10/100 mb speed bits in the Auto-Neg
* Advertisement Register (Address 4) and the 1000 mb speed bits in
* the 1000Base-T Control Register (Address 9).
*/
mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
NWAY_AR_100TX_HD_CAPS |
NWAY_AR_10T_FD_CAPS |
NWAY_AR_10T_HD_CAPS);
mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
/* Do we want to advertise 10 Mb Half Duplex? */
if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
e_dbg("Advertise 10mb Half duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
}
/* Do we want to advertise 10 Mb Full Duplex? */
if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
e_dbg("Advertise 10mb Full duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
}
/* Do we want to advertise 100 Mb Half Duplex? */
if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
e_dbg("Advertise 100mb Half duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
}
/* Do we want to advertise 100 Mb Full Duplex? */
if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
e_dbg("Advertise 100mb Full duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
}
/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
e_dbg("Advertise 1000mb Half duplex request denied!\n");
/* Do we want to advertise 1000 Mb Full Duplex? */
if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
e_dbg("Advertise 1000mb Full duplex\n");
mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
}
/*
* Check for a software override of the flow control settings, and
* setup the PHY advertisement registers accordingly. If
* auto-negotiation is enabled, then software will have to set the
* "PAUSE" bits to the correct value in the Auto-Negotiation
* Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
* negotiation.
*
* The possible values of the "fc" parameter are:
* 0: Flow control is completely disabled
* 1: Rx flow control is enabled (we can receive pause frames
* but not send pause frames).
* 2: Tx flow control is enabled (we can send pause frames
* but we do not support receiving pause frames).
* 3: Both Rx and Tx flow control (symmetric) are enabled.
* other: No software override. The flow control configuration
* in the EEPROM is used.
*/
switch (hw->fc.current_mode) {
case e1000_fc_none:
/*
* Flow control (Rx & Tx) is completely disabled by a
* software over-ride.
*/
mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
break;
case e1000_fc_rx_pause:
/*
* Rx Flow control is enabled, and Tx Flow control is
* disabled, by a software over-ride.
*
* Since there really isn't a way to advertise that we are
* capable of Rx Pause ONLY, we will advertise that we
* support both symmetric and asymmetric Rx PAUSE. Later
* (in e1000e_config_fc_after_link_up) we will disable the
* hw's ability to send PAUSE frames.
*/
mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
break;
case e1000_fc_tx_pause:
/*
* Tx Flow control is enabled, and Rx Flow control is
* disabled, by a software over-ride.
*/
mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
break;
case e1000_fc_full:
/*
* Flow control (both Rx and Tx) is enabled by a software
* over-ride.
*/
mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
break;
default:
e_dbg("Flow control param set incorrectly\n");
ret_val = -E1000_ERR_CONFIG;
return ret_val;
}
ret_val = e1e_wphy(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
if (ret_val)
return ret_val;
e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
if (phy->autoneg_mask & ADVERTISE_1000_FULL)
ret_val = e1e_wphy(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
return ret_val;
}
/**
* e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
* @hw: pointer to the HW structure
*
* Performs initial bounds checking on autoneg advertisement parameter, then
* configure to advertise the full capability. Setup the PHY to autoneg
* and restart the negotiation process between the link partner. If
* autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
**/
static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 phy_ctrl;
/*
* Perform some bounds checking on the autoneg advertisement
* parameter.
*/
phy->autoneg_advertised &= phy->autoneg_mask;
/*
* If autoneg_advertised is zero, we assume it was not defaulted
* by the calling code so we set to advertise full capability.
*/
if (phy->autoneg_advertised == 0)
phy->autoneg_advertised = phy->autoneg_mask;
e_dbg("Reconfiguring auto-neg advertisement params\n");
ret_val = e1000_phy_setup_autoneg(hw);
if (ret_val) {
e_dbg("Error Setting up Auto-Negotiation\n");
return ret_val;
}
e_dbg("Restarting Auto-Neg\n");
/*
* Restart auto-negotiation by setting the Auto Neg Enable bit and
* the Auto Neg Restart bit in the PHY control register.
*/
ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
if (ret_val)
return ret_val;
phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
if (ret_val)
return ret_val;
/*
* Does the user want to wait for Auto-Neg to complete here, or
* check at a later time (for example, callback routine).
*/
if (phy->autoneg_wait_to_complete) {
ret_val = e1000_wait_autoneg(hw);
if (ret_val) {
e_dbg("Error while waiting for "
"autoneg to complete\n");
return ret_val;
}
}
hw->mac.get_link_status = 1;
return ret_val;
}
/**
* e1000e_setup_copper_link - Configure copper link settings
* @hw: pointer to the HW structure
*
* Calls the appropriate function to configure the link for auto-neg or forced
* speed and duplex. Then we check for link, once link is established calls
* to configure collision distance and flow control are called. If link is
* not established, we return -E1000_ERR_PHY (-2).
**/
s32 e1000e_setup_copper_link(struct e1000_hw *hw)
{
s32 ret_val;
bool link;
if (hw->mac.autoneg) {
/*
* Setup autoneg and flow control advertisement and perform
* autonegotiation.
*/
ret_val = e1000_copper_link_autoneg(hw);
if (ret_val)
return ret_val;
} else {
/*
* PHY will be set to 10H, 10F, 100H or 100F
* depending on user settings.
*/
e_dbg("Forcing Speed and Duplex\n");
ret_val = e1000_phy_force_speed_duplex(hw);
if (ret_val) {
e_dbg("Error Forcing Speed and Duplex\n");
return ret_val;
}
}
/*
* Check link status. Wait up to 100 microseconds for link to become
* valid.
*/
ret_val = e1000e_phy_has_link_generic(hw,
COPPER_LINK_UP_LIMIT,
10,
&link);
if (ret_val)
return ret_val;
if (link) {
e_dbg("Valid link established!!!\n");
e1000e_config_collision_dist(hw);
ret_val = e1000e_config_fc_after_link_up(hw);
} else {
e_dbg("Unable to establish link!!!\n");
}
return ret_val;
}
/**
* e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
* @hw: pointer to the HW structure
*
* Calls the PHY setup function to force speed and duplex. Clears the
* auto-crossover to force MDI manually. Waits for link and returns
* successful if link up is successful, else -E1000_ERR_PHY (-2).
**/
s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 phy_data;
bool link;
ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
if (ret_val)
return ret_val;
e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
if (ret_val)
return ret_val;
/*
* Clear Auto-Crossover to force MDI manually. IGP requires MDI
* forced whenever speed and duplex are forced.
*/
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
if (ret_val)
return ret_val;
phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
if (ret_val)
return ret_val;
e_dbg("IGP PSCR: %X\n", phy_data);
udelay(1);
if (phy->autoneg_wait_to_complete) {
e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
ret_val = e1000e_phy_has_link_generic(hw,
PHY_FORCE_LIMIT,
100000,
&link);
if (ret_val)
return ret_val;
if (!link)
e_dbg("Link taking longer than expected.\n");
/* Try once more */
ret_val = e1000e_phy_has_link_generic(hw,
PHY_FORCE_LIMIT,
100000,
&link);
if (ret_val)
return ret_val;
}
return ret_val;
}
/**
* e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
* @hw: pointer to the HW structure
*
* Calls the PHY setup function to force speed and duplex. Clears the
* auto-crossover to force MDI manually. Resets the PHY to commit the
* changes. If time expires while waiting for link up, we reset the DSP.
* After reset, TX_CLK and CRS on Tx must be set. Return successful upon
* successful completion, else return corresponding error code.
**/
s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 phy_data;
bool link;
/*
* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
* forced whenever speed and duplex are forced.
*/
ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
if (ret_val)
return ret_val;
phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
if (ret_val)
return ret_val;
e_dbg("M88E1000 PSCR: %X\n", phy_data);
ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
if (ret_val)
return ret_val;
e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
if (ret_val)
return ret_val;
/* Reset the phy to commit changes. */
ret_val = e1000e_commit_phy(hw);
if (ret_val)
return ret_val;
if (phy->autoneg_wait_to_complete) {
e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
100000, &link);
if (ret_val)
return ret_val;
if (!link) {
if (hw->phy.type != e1000_phy_m88) {
e_dbg("Link taking longer than expected.\n");
} else {
/*
* We didn't get link.
* Reset the DSP and cross our fingers.
*/
ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
0x001d);
if (ret_val)
return ret_val;
ret_val = e1000e_phy_reset_dsp(hw);
if (ret_val)
return ret_val;
}
}
/* Try once more */
ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
100000, &link);
if (ret_val)
return ret_val;
}
if (hw->phy.type != e1000_phy_m88)
return 0;
ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
if (ret_val)
return ret_val;
/*
* Resetting the phy means we need to re-force TX_CLK in the
* Extended PHY Specific Control Register to 25MHz clock from
* the reset value of 2.5MHz.
*/
phy_data |= M88E1000_EPSCR_TX_CLK_25;
ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
if (ret_val)
return ret_val;
/*
* In addition, we must re-enable CRS on Tx for both half and full
* duplex.
*/
ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
if (ret_val)
return ret_val;
phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
return ret_val;
}
/**
* e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
* @hw: pointer to the HW structure
*
* Forces the speed and duplex settings of the PHY.
* This is a function pointer entry point only called by
* PHY setup routines.
**/
s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 data;
bool link;
ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
if (ret_val)
goto out;
e1000e_phy_force_speed_duplex_setup(hw, &data);
ret_val = e1e_wphy(hw, PHY_CONTROL, data);
if (ret_val)
goto out;
/* Disable MDI-X support for 10/100 */
ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
if (ret_val)
goto out;
data &= ~IFE_PMC_AUTO_MDIX;
data &= ~IFE_PMC_FORCE_MDIX;
ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
if (ret_val)
goto out;
e_dbg("IFE PMC: %X\n", data);
udelay(1);
if (phy->autoneg_wait_to_complete) {
e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
ret_val = e1000e_phy_has_link_generic(hw,
PHY_FORCE_LIMIT,
100000,
&link);
if (ret_val)
goto out;
if (!link)
e_dbg("Link taking longer than expected.\n");
/* Try once more */
ret_val = e1000e_phy_has_link_generic(hw,
PHY_FORCE_LIMIT,
100000,
&link);
if (ret_val)
goto out;
}
out:
return ret_val;
}
/**
* e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
* @hw: pointer to the HW structure
* @phy_ctrl: pointer to current value of PHY_CONTROL
*
* Forces speed and duplex on the PHY by doing the following: disable flow
* control, force speed/duplex on the MAC, disable auto speed detection,
* disable auto-negotiation, configure duplex, configure speed, configure
* the collision distance, write configuration to CTRL register. The
* caller must write to the PHY_CONTROL register for these settings to
* take affect.
**/
void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
{
struct e1000_mac_info *mac = &hw->mac;
u32 ctrl;
/* Turn off flow control when forcing speed/duplex */
hw->fc.current_mode = e1000_fc_none;
/* Force speed/duplex on the mac */
ctrl = er32(CTRL);
ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
ctrl &= ~E1000_CTRL_SPD_SEL;
/* Disable Auto Speed Detection */
ctrl &= ~E1000_CTRL_ASDE;
/* Disable autoneg on the phy */
*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
/* Forcing Full or Half Duplex? */
if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
ctrl &= ~E1000_CTRL_FD;
*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
e_dbg("Half Duplex\n");
} else {
ctrl |= E1000_CTRL_FD;
*phy_ctrl |= MII_CR_FULL_DUPLEX;
e_dbg("Full Duplex\n");
}
/* Forcing 10mb or 100mb? */
if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
ctrl |= E1000_CTRL_SPD_100;
*phy_ctrl |= MII_CR_SPEED_100;
*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
e_dbg("Forcing 100mb\n");
} else {
ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
*phy_ctrl |= MII_CR_SPEED_10;
*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
e_dbg("Forcing 10mb\n");
}
e1000e_config_collision_dist(hw);
ew32(CTRL, ctrl);
}
/**
* e1000e_set_d3_lplu_state - Sets low power link up state for D3
* @hw: pointer to the HW structure
* @active: boolean used to enable/disable lplu
*
* Success returns 0, Failure returns 1
*
* The low power link up (lplu) state is set to the power management level D3
* and SmartSpeed is disabled when active is true, else clear lplu for D3
* and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
* is used during Dx states where the power conservation is most important.
* During driver activity, SmartSpeed should be enabled so performance is
* maintained.
**/
s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 data;
ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
if (ret_val)
return ret_val;
if (!active) {
data &= ~IGP02E1000_PM_D3_LPLU;
ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
if (ret_val)
return ret_val;
/*
* LPLU and SmartSpeed are mutually exclusive. LPLU is used
* during Dx states where the power conservation is most
* important. During driver activity we should enable
* SmartSpeed, so performance is maintained.
*/
if (phy->smart_speed == e1000_smart_speed_on) {
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
&data);
if (ret_val)
return ret_val;
data |= IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
data);
if (ret_val)
return ret_val;
} else if (phy->smart_speed == e1000_smart_speed_off) {
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
&data);
if (ret_val)
return ret_val;
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
data);
if (ret_val)
return ret_val;
}
} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
(phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
(phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
data |= IGP02E1000_PM_D3_LPLU;
ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
if (ret_val)
return ret_val;
/* When LPLU is enabled, we should disable SmartSpeed */
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
if (ret_val)
return ret_val;
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
}
return ret_val;
}
/**
* e1000e_check_downshift - Checks whether a downshift in speed occurred
* @hw: pointer to the HW structure
*
* Success returns 0, Failure returns 1
*
* A downshift is detected by querying the PHY link health.
**/
s32 e1000e_check_downshift(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 phy_data, offset, mask;
switch (phy->type) {
case e1000_phy_m88:
case e1000_phy_gg82563:
case e1000_phy_bm:
case e1000_phy_82578:
offset = M88E1000_PHY_SPEC_STATUS;
mask = M88E1000_PSSR_DOWNSHIFT;
break;
case e1000_phy_igp_2:
case e1000_phy_igp_3:
offset = IGP01E1000_PHY_LINK_HEALTH;
mask = IGP01E1000_PLHR_SS_DOWNGRADE;
break;
default:
/* speed downshift not supported */
phy->speed_downgraded = false;
return 0;
}
ret_val = e1e_rphy(hw, offset, &phy_data);
if (!ret_val)
phy->speed_downgraded = (phy_data & mask);
return ret_val;
}
/**
* e1000_check_polarity_m88 - Checks the polarity.
* @hw: pointer to the HW structure
*
* Success returns 0, Failure returns -E1000_ERR_PHY (-2)
*
* Polarity is determined based on the PHY specific status register.
**/
s32 e1000_check_polarity_m88(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 data;
ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
if (!ret_val)
phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
? e1000_rev_polarity_reversed
: e1000_rev_polarity_normal;
return ret_val;
}
/**
* e1000_check_polarity_igp - Checks the polarity.
* @hw: pointer to the HW structure
*
* Success returns 0, Failure returns -E1000_ERR_PHY (-2)
*
* Polarity is determined based on the PHY port status register, and the
* current speed (since there is no polarity at 100Mbps).
**/
s32 e1000_check_polarity_igp(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 data, offset, mask;
/*
* Polarity is determined based on the speed of
* our connection.
*/
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
if (ret_val)
return ret_val;
if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
IGP01E1000_PSSR_SPEED_1000MBPS) {
offset = IGP01E1000_PHY_PCS_INIT_REG;
mask = IGP01E1000_PHY_POLARITY_MASK;
} else {
/*
* This really only applies to 10Mbps since
* there is no polarity for 100Mbps (always 0).
*/
offset = IGP01E1000_PHY_PORT_STATUS;
mask = IGP01E1000_PSSR_POLARITY_REVERSED;
}
ret_val = e1e_rphy(hw, offset, &data);
if (!ret_val)
phy->cable_polarity = (data & mask)
? e1000_rev_polarity_reversed
: e1000_rev_polarity_normal;
return ret_val;
}
/**
* e1000_check_polarity_ife - Check cable polarity for IFE PHY
* @hw: pointer to the HW structure
*
* Polarity is determined on the polarity reversal feature being enabled.
**/
s32 e1000_check_polarity_ife(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 phy_data, offset, mask;
/*
* Polarity is determined based on the reversal feature being enabled.
*/
if (phy->polarity_correction) {
offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
mask = IFE_PESC_POLARITY_REVERSED;
} else {
offset = IFE_PHY_SPECIAL_CONTROL;
mask = IFE_PSC_FORCE_POLARITY;
}
ret_val = e1e_rphy(hw, offset, &phy_data);
if (!ret_val)
phy->cable_polarity = (phy_data & mask)
? e1000_rev_polarity_reversed
: e1000_rev_polarity_normal;
return ret_val;
}
/**
* e1000_wait_autoneg - Wait for auto-neg completion
* @hw: pointer to the HW structure
*
* Waits for auto-negotiation to complete or for the auto-negotiation time
* limit to expire, which ever happens first.
**/
static s32 e1000_wait_autoneg(struct e1000_hw *hw)
{
s32 ret_val = 0;
u16 i, phy_status;
/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
if (ret_val)
break;
ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
if (ret_val)
break;
if (phy_status & MII_SR_AUTONEG_COMPLETE)
break;
msleep(100);
}
/*
* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
* has completed.
*/
return ret_val;
}
/**
* e1000e_phy_has_link_generic - Polls PHY for link
* @hw: pointer to the HW structure
* @iterations: number of times to poll for link
* @usec_interval: delay between polling attempts
* @success: pointer to whether polling was successful or not
*
* Polls the PHY status register for link, 'iterations' number of times.
**/
s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
u32 usec_interval, bool *success)
{
s32 ret_val = 0;
u16 i, phy_status;
for (i = 0; i < iterations; i++) {
/*
* Some PHYs require the PHY_STATUS register to be read
* twice due to the link bit being sticky. No harm doing
* it across the board.
*/
ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
if (ret_val)
/*
* If the first read fails, another entity may have
* ownership of the resources, wait and try again to
* see if they have relinquished the resources yet.
*/
udelay(usec_interval);
ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
if (ret_val)
break;
if (phy_status & MII_SR_LINK_STATUS)
break;
if (usec_interval >= 1000)
mdelay(usec_interval/1000);
else
udelay(usec_interval);
}
*success = (i < iterations);
return ret_val;
}
/**
* e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
* @hw: pointer to the HW structure
*
* Reads the PHY specific status register to retrieve the cable length
* information. The cable length is determined by averaging the minimum and
* maximum values to get the "average" cable length. The m88 PHY has four
* possible cable length values, which are:
* Register Value Cable Length
* 0 < 50 meters
* 1 50 - 80 meters
* 2 80 - 110 meters
* 3 110 - 140 meters
* 4 > 140 meters
**/
s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 phy_data, index;
ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
if (ret_val)
goto out;
index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
M88E1000_PSSR_CABLE_LENGTH_SHIFT;
if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) {
ret_val = -E1000_ERR_PHY;
goto out;
}
phy->min_cable_length = e1000_m88_cable_length_table[index];
phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
out:
return ret_val;
}
/**
* e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
* @hw: pointer to the HW structure
*
* The automatic gain control (agc) normalizes the amplitude of the
* received signal, adjusting for the attenuation produced by the
* cable. By reading the AGC registers, which represent the
* combination of coarse and fine gain value, the value can be put
* into a lookup table to obtain the approximate cable length
* for each channel.
**/
s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 phy_data, i, agc_value = 0;
u16 cur_agc_index, max_agc_index = 0;
u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
IGP02E1000_PHY_AGC_A,
IGP02E1000_PHY_AGC_B,
IGP02E1000_PHY_AGC_C,
IGP02E1000_PHY_AGC_D
};
/* Read the AGC registers for all channels */
for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
if (ret_val)
return ret_val;
/*
* Getting bits 15:9, which represent the combination of
* coarse and fine gain values. The result is a number
* that can be put into the lookup table to obtain the
* approximate cable length.
*/
cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
IGP02E1000_AGC_LENGTH_MASK;
/* Array index bound check. */
if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
(cur_agc_index == 0))
return -E1000_ERR_PHY;
/* Remove min & max AGC values from calculation. */
if (e1000_igp_2_cable_length_table[min_agc_index] >
e1000_igp_2_cable_length_table[cur_agc_index])
min_agc_index = cur_agc_index;
if (e1000_igp_2_cable_length_table[max_agc_index] <
e1000_igp_2_cable_length_table[cur_agc_index])
max_agc_index = cur_agc_index;
agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
}
agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
e1000_igp_2_cable_length_table[max_agc_index]);
agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
/* Calculate cable length with the error range of +/- 10 meters. */
phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
(agc_value - IGP02E1000_AGC_RANGE) : 0;
phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
return ret_val;
}
/**
* e1000e_get_phy_info_m88 - Retrieve PHY information
* @hw: pointer to the HW structure
*
* Valid for only copper links. Read the PHY status register (sticky read)
* to verify that link is up. Read the PHY special control register to
* determine the polarity and 10base-T extended distance. Read the PHY
* special status register to determine MDI/MDIx and current speed. If
* speed is 1000, then determine cable length, local and remote receiver.
**/
s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 phy_data;
bool link;
if (phy->media_type != e1000_media_type_copper) {
e_dbg("Phy info is only valid for copper media\n");
return -E1000_ERR_CONFIG;
}
ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
if (ret_val)
return ret_val;
if (!link) {
e_dbg("Phy info is only valid if link is up\n");
return -E1000_ERR_CONFIG;
}
ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
if (ret_val)
return ret_val;
phy->polarity_correction = (phy_data &
M88E1000_PSCR_POLARITY_REVERSAL);
ret_val = e1000_check_polarity_m88(hw);
if (ret_val)
return ret_val;
ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
if (ret_val)
return ret_val;
phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX);
if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
ret_val = e1000_get_cable_length(hw);
if (ret_val)
return ret_val;
ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
if (ret_val)
return ret_val;
phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
? e1000_1000t_rx_status_ok
: e1000_1000t_rx_status_not_ok;
phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
? e1000_1000t_rx_status_ok
: e1000_1000t_rx_status_not_ok;
} else {
/* Set values to "undefined" */
phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
phy->local_rx = e1000_1000t_rx_status_undefined;
phy->remote_rx = e1000_1000t_rx_status_undefined;
}
return ret_val;
}
/**
* e1000e_get_phy_info_igp - Retrieve igp PHY information
* @hw: pointer to the HW structure
*
* Read PHY status to determine if link is up. If link is up, then
* set/determine 10base-T extended distance and polarity correction. Read
* PHY port status to determine MDI/MDIx and speed. Based on the speed,
* determine on the cable length, local and remote receiver.
**/
s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 data;
bool link;
ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
if (ret_val)
return ret_val;
if (!link) {
e_dbg("Phy info is only valid if link is up\n");
return -E1000_ERR_CONFIG;
}
phy->polarity_correction = true;
ret_val = e1000_check_polarity_igp(hw);
if (ret_val)
return ret_val;
ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
if (ret_val)
return ret_val;
phy->is_mdix = (data & IGP01E1000_PSSR_MDIX);
if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
IGP01E1000_PSSR_SPEED_1000MBPS) {
ret_val = e1000_get_cable_length(hw);
if (ret_val)
return ret_val;
ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
if (ret_val)
return ret_val;
phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
? e1000_1000t_rx_status_ok
: e1000_1000t_rx_status_not_ok;
phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
? e1000_1000t_rx_status_ok
: e1000_1000t_rx_status_not_ok;
} else {
phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
phy->local_rx = e1000_1000t_rx_status_undefined;
phy->remote_rx = e1000_1000t_rx_status_undefined;
}
return ret_val;
}
/**
* e1000_get_phy_info_ife - Retrieves various IFE PHY states
* @hw: pointer to the HW structure
*
* Populates "phy" structure with various feature states.
**/
s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 data;
bool link;
ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
if (ret_val)
goto out;
if (!link) {
e_dbg("Phy info is only valid if link is up\n");
ret_val = -E1000_ERR_CONFIG;
goto out;
}
ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
if (ret_val)
goto out;
phy->polarity_correction = (data & IFE_PSC_AUTO_POLARITY_DISABLE)
? false : true;
if (phy->polarity_correction) {
ret_val = e1000_check_polarity_ife(hw);
if (ret_val)
goto out;
} else {
/* Polarity is forced */
phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
? e1000_rev_polarity_reversed
: e1000_rev_polarity_normal;
}
ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
if (ret_val)
goto out;
phy->is_mdix = (data & IFE_PMC_MDIX_STATUS) ? true : false;
/* The following parameters are undefined for 10/100 operation. */
phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
phy->local_rx = e1000_1000t_rx_status_undefined;
phy->remote_rx = e1000_1000t_rx_status_undefined;
out:
return ret_val;
}
/**
* e1000e_phy_sw_reset - PHY software reset
* @hw: pointer to the HW structure
*
* Does a software reset of the PHY by reading the PHY control register and
* setting/write the control register reset bit to the PHY.
**/
s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
{
s32 ret_val;
u16 phy_ctrl;
ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
if (ret_val)
return ret_val;
phy_ctrl |= MII_CR_RESET;
ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
if (ret_val)
return ret_val;
udelay(1);
return ret_val;
}
/**
* e1000e_phy_hw_reset_generic - PHY hardware reset
* @hw: pointer to the HW structure
*
* Verify the reset block is not blocking us from resetting. Acquire
* semaphore (if necessary) and read/set/write the device control reset
* bit in the PHY. Wait the appropriate delay time for the device to
* reset and release the semaphore (if necessary).
**/
s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u32 ctrl;
ret_val = e1000_check_reset_block(hw);
if (ret_val)
return 0;
ret_val = phy->ops.acquire(hw);
if (ret_val)
return ret_val;
ctrl = er32(CTRL);
ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
e1e_flush();
udelay(phy->reset_delay_us);
ew32(CTRL, ctrl);
e1e_flush();
udelay(150);
phy->ops.release(hw);
return e1000_get_phy_cfg_done(hw);
}
/**
* e1000e_get_cfg_done - Generic configuration done
* @hw: pointer to the HW structure
*
* Generic function to wait 10 milli-seconds for configuration to complete
* and return success.
**/
s32 e1000e_get_cfg_done(struct e1000_hw *hw)
{
mdelay(10);
return 0;
}
/**
* e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
* @hw: pointer to the HW structure
*
* Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
**/
s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
{
e_dbg("Running IGP 3 PHY init script\n");
/* PHY init IGP 3 */
/* Enable rise/fall, 10-mode work in class-A */
e1e_wphy(hw, 0x2F5B, 0x9018);
/* Remove all caps from Replica path filter */
e1e_wphy(hw, 0x2F52, 0x0000);
/* Bias trimming for ADC, AFE and Driver (Default) */
e1e_wphy(hw, 0x2FB1, 0x8B24);
/* Increase Hybrid poly bias */
e1e_wphy(hw, 0x2FB2, 0xF8F0);
/* Add 4% to Tx amplitude in Gig mode */
e1e_wphy(hw, 0x2010, 0x10B0);
/* Disable trimming (TTT) */
e1e_wphy(hw, 0x2011, 0x0000);
/* Poly DC correction to 94.6% + 2% for all channels */
e1e_wphy(hw, 0x20DD, 0x249A);
/* ABS DC correction to 95.9% */
e1e_wphy(hw, 0x20DE, 0x00D3);
/* BG temp curve trim */
e1e_wphy(hw, 0x28B4, 0x04CE);
/* Increasing ADC OPAMP stage 1 currents to max */
e1e_wphy(hw, 0x2F70, 0x29E4);
/* Force 1000 ( required for enabling PHY regs configuration) */
e1e_wphy(hw, 0x0000, 0x0140);
/* Set upd_freq to 6 */
e1e_wphy(hw, 0x1F30, 0x1606);
/* Disable NPDFE */
e1e_wphy(hw, 0x1F31, 0xB814);
/* Disable adaptive fixed FFE (Default) */
e1e_wphy(hw, 0x1F35, 0x002A);
/* Enable FFE hysteresis */
e1e_wphy(hw, 0x1F3E, 0x0067);
/* Fixed FFE for short cable lengths */
e1e_wphy(hw, 0x1F54, 0x0065);
/* Fixed FFE for medium cable lengths */
e1e_wphy(hw, 0x1F55, 0x002A);
/* Fixed FFE for long cable lengths */
e1e_wphy(hw, 0x1F56, 0x002A);
/* Enable Adaptive Clip Threshold */
e1e_wphy(hw, 0x1F72, 0x3FB0);
/* AHT reset limit to 1 */
e1e_wphy(hw, 0x1F76, 0xC0FF);
/* Set AHT master delay to 127 msec */
e1e_wphy(hw, 0x1F77, 0x1DEC);
/* Set scan bits for AHT */
e1e_wphy(hw, 0x1F78, 0xF9EF);
/* Set AHT Preset bits */
e1e_wphy(hw, 0x1F79, 0x0210);
/* Change integ_factor of channel A to 3 */
e1e_wphy(hw, 0x1895, 0x0003);
/* Change prop_factor of channels BCD to 8 */
e1e_wphy(hw, 0x1796, 0x0008);
/* Change cg_icount + enable integbp for channels BCD */
e1e_wphy(hw, 0x1798, 0xD008);
/*
* Change cg_icount + enable integbp + change prop_factor_master
* to 8 for channel A
*/
e1e_wphy(hw, 0x1898, 0xD918);
/* Disable AHT in Slave mode on channel A */
e1e_wphy(hw, 0x187A, 0x0800);
/*
* Enable LPLU and disable AN to 1000 in non-D0a states,
* Enable SPD+B2B
*/
e1e_wphy(hw, 0x0019, 0x008D);
/* Enable restart AN on an1000_dis change */
e1e_wphy(hw, 0x001B, 0x2080);
/* Enable wh_fifo read clock in 10/100 modes */
e1e_wphy(hw, 0x0014, 0x0045);
/* Restart AN, Speed selection is 1000 */
e1e_wphy(hw, 0x0000, 0x1340);
return 0;
}
/* Internal function pointers */
/**
* e1000_get_phy_cfg_done - Generic PHY configuration done
* @hw: pointer to the HW structure
*
* Return success if silicon family did not implement a family specific
* get_cfg_done function.
**/
static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
{
if (hw->phy.ops.get_cfg_done)
return hw->phy.ops.get_cfg_done(hw);
return 0;
}
/**
* e1000_phy_force_speed_duplex - Generic force PHY speed/duplex
* @hw: pointer to the HW structure
*
* When the silicon family has not implemented a forced speed/duplex
* function for the PHY, simply return 0.
**/
static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
{
if (hw->phy.ops.force_speed_duplex)
return hw->phy.ops.force_speed_duplex(hw);
return 0;
}
/**
* e1000e_get_phy_type_from_id - Get PHY type from id
* @phy_id: phy_id read from the phy
*
* Returns the phy type from the id.
**/
enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
{
enum e1000_phy_type phy_type = e1000_phy_unknown;
switch (phy_id) {
case M88E1000_I_PHY_ID:
case M88E1000_E_PHY_ID:
case M88E1111_I_PHY_ID:
case M88E1011_I_PHY_ID:
phy_type = e1000_phy_m88;
break;
case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
phy_type = e1000_phy_igp_2;
break;
case GG82563_E_PHY_ID:
phy_type = e1000_phy_gg82563;
break;
case IGP03E1000_E_PHY_ID:
phy_type = e1000_phy_igp_3;
break;
case IFE_E_PHY_ID:
case IFE_PLUS_E_PHY_ID:
case IFE_C_E_PHY_ID:
phy_type = e1000_phy_ife;
break;
case BME1000_E_PHY_ID:
case BME1000_E_PHY_ID_R2:
phy_type = e1000_phy_bm;
break;
case I82578_E_PHY_ID:
phy_type = e1000_phy_82578;
break;
case I82577_E_PHY_ID:
phy_type = e1000_phy_82577;
break;
case I82579_E_PHY_ID:
phy_type = e1000_phy_82579;
break;
default:
phy_type = e1000_phy_unknown;
break;
}
return phy_type;
}
/**
* e1000e_determine_phy_address - Determines PHY address.
* @hw: pointer to the HW structure
*
* This uses a trial and error method to loop through possible PHY
* addresses. It tests each by reading the PHY ID registers and
* checking for a match.
**/
s32 e1000e_determine_phy_address(struct e1000_hw *hw)
{
s32 ret_val = -E1000_ERR_PHY_TYPE;
u32 phy_addr = 0;
u32 i;
enum e1000_phy_type phy_type = e1000_phy_unknown;
hw->phy.id = phy_type;
for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
hw->phy.addr = phy_addr;
i = 0;
do {
e1000e_get_phy_id(hw);
phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
/*
* If phy_type is valid, break - we found our
* PHY address
*/
if (phy_type != e1000_phy_unknown) {
ret_val = 0;
goto out;
}
usleep_range(1000, 2000);
i++;
} while (i < 10);
}
out:
return ret_val;
}
/**
* e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
* @page: page to access
*
* Returns the phy address for the page requested.
**/
static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
{
u32 phy_addr = 2;
if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
phy_addr = 1;
return phy_addr;
}
/**
* e1000e_write_phy_reg_bm - Write BM PHY register
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write at register offset
*
* Acquires semaphore, if necessary, then writes the data to PHY register
* at the offset. Release any acquired semaphores before exiting.
**/
s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
{
s32 ret_val;
u32 page = offset >> IGP_PAGE_SHIFT;
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return ret_val;
/* Page 800 works differently than the rest so it has its own func */
if (page == BM_WUC_PAGE) {
ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
false, false);
goto out;
}
hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
if (offset > MAX_PHY_MULTI_PAGE_REG) {
u32 page_shift, page_select;
/*
* Page select is register 31 for phy address 1 and 22 for
* phy address 2 and 3. Page select is shifted only for
* phy address 1.
*/
if (hw->phy.addr == 1) {
page_shift = IGP_PAGE_SHIFT;
page_select = IGP01E1000_PHY_PAGE_SELECT;
} else {
page_shift = 0;
page_select = BM_PHY_PAGE_SELECT;
}
/* Page is shifted left, PHY expects (page x 32) */
ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
(page << page_shift));
if (ret_val)
goto out;
}
ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
data);
out:
hw->phy.ops.release(hw);
return ret_val;
}
/**
* e1000e_read_phy_reg_bm - Read BM PHY register
* @hw: pointer to the HW structure
* @offset: register offset to be read
* @data: pointer to the read data
*
* Acquires semaphore, if necessary, then reads the PHY register at offset
* and storing the retrieved information in data. Release any acquired
* semaphores before exiting.
**/
s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
{
s32 ret_val;
u32 page = offset >> IGP_PAGE_SHIFT;
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return ret_val;
/* Page 800 works differently than the rest so it has its own func */
if (page == BM_WUC_PAGE) {
ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
true, false);
goto out;
}
hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
if (offset > MAX_PHY_MULTI_PAGE_REG) {
u32 page_shift, page_select;
/*
* Page select is register 31 for phy address 1 and 22 for
* phy address 2 and 3. Page select is shifted only for
* phy address 1.
*/
if (hw->phy.addr == 1) {
page_shift = IGP_PAGE_SHIFT;
page_select = IGP01E1000_PHY_PAGE_SELECT;
} else {
page_shift = 0;
page_select = BM_PHY_PAGE_SELECT;
}
/* Page is shifted left, PHY expects (page x 32) */
ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
(page << page_shift));
if (ret_val)
goto out;
}
ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
data);
out:
hw->phy.ops.release(hw);
return ret_val;
}
/**
* e1000e_read_phy_reg_bm2 - Read BM PHY register
* @hw: pointer to the HW structure
* @offset: register offset to be read
* @data: pointer to the read data
*
* Acquires semaphore, if necessary, then reads the PHY register at offset
* and storing the retrieved information in data. Release any acquired
* semaphores before exiting.
**/
s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
{
s32 ret_val;
u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return ret_val;
/* Page 800 works differently than the rest so it has its own func */
if (page == BM_WUC_PAGE) {
ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
true, false);
goto out;
}
hw->phy.addr = 1;
if (offset > MAX_PHY_MULTI_PAGE_REG) {
/* Page is shifted left, PHY expects (page x 32) */
ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
page);
if (ret_val)
goto out;
}
ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
data);
out:
hw->phy.ops.release(hw);
return ret_val;
}
/**
* e1000e_write_phy_reg_bm2 - Write BM PHY register
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write at register offset
*
* Acquires semaphore, if necessary, then writes the data to PHY register
* at the offset. Release any acquired semaphores before exiting.
**/
s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
{
s32 ret_val;
u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return ret_val;
/* Page 800 works differently than the rest so it has its own func */
if (page == BM_WUC_PAGE) {
ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
false, false);
goto out;
}
hw->phy.addr = 1;
if (offset > MAX_PHY_MULTI_PAGE_REG) {
/* Page is shifted left, PHY expects (page x 32) */
ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
page);
if (ret_val)
goto out;
}
ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
data);
out:
hw->phy.ops.release(hw);
return ret_val;
}
/**
* e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
* @hw: pointer to the HW structure
* @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
*
* Assumes semaphore already acquired and phy_reg points to a valid memory
* address to store contents of the BM_WUC_ENABLE_REG register.
**/
s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
{
s32 ret_val;
u16 temp;
/* All page select, port ctrl and wakeup registers use phy address 1 */
hw->phy.addr = 1;
/* Select Port Control Registers page */
ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
if (ret_val) {
e_dbg("Could not set Port Control page\n");
goto out;
}
ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
if (ret_val) {
e_dbg("Could not read PHY register %d.%d\n",
BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
goto out;
}
/*
* Enable both PHY wakeup mode and Wakeup register page writes.
* Prevent a power state change by disabling ME and Host PHY wakeup.
*/
temp = *phy_reg;
temp |= BM_WUC_ENABLE_BIT;
temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
if (ret_val) {
e_dbg("Could not write PHY register %d.%d\n",
BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
goto out;
}
/* Select Host Wakeup Registers page */
ret_val = e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
/* caller now able to write registers on the Wakeup registers page */
out:
return ret_val;
}
/**
* e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
* @hw: pointer to the HW structure
* @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
*
* Restore BM_WUC_ENABLE_REG to its original value.
*
* Assumes semaphore already acquired and *phy_reg is the contents of the
* BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
* caller.
**/
s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
{
s32 ret_val = 0;
/* Select Port Control Registers page */
ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
if (ret_val) {
e_dbg("Could not set Port Control page\n");
goto out;
}
/* Restore 769.17 to its original value */
ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
if (ret_val)
e_dbg("Could not restore PHY register %d.%d\n",
BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
out:
return ret_val;
}
/**
* e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
* @hw: pointer to the HW structure
* @offset: register offset to be read or written
* @data: pointer to the data to read or write
* @read: determines if operation is read or write
* @page_set: BM_WUC_PAGE already set and access enabled
*
* Read the PHY register at offset and store the retrieved information in
* data, or write data to PHY register at offset. Note the procedure to
* access the PHY wakeup registers is different than reading the other PHY
* registers. It works as such:
* 1) Set 769.17.2 (page 769, register 17, bit 2) = 1
* 2) Set page to 800 for host (801 if we were manageability)
* 3) Write the address using the address opcode (0x11)
* 4) Read or write the data using the data opcode (0x12)
* 5) Restore 769.17.2 to its original value
*
* Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
* step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
*
* Assumes semaphore is already acquired. When page_set==true, assumes
* the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
* is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
**/
static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
u16 *data, bool read, bool page_set)
{
s32 ret_val;
u16 reg = BM_PHY_REG_NUM(offset);
u16 page = BM_PHY_REG_PAGE(offset);
u16 phy_reg = 0;
/* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
if ((hw->mac.type == e1000_pchlan) &&
(!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
e_dbg("Attempting to access page %d while gig enabled.\n",
page);
if (!page_set) {
/* Enable access to PHY wakeup registers */
ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
if (ret_val) {
e_dbg("Could not enable PHY wakeup reg access\n");
goto out;
}
}
e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg);
/* Write the Wakeup register page offset value using opcode 0x11 */
ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
if (ret_val) {
e_dbg("Could not write address opcode to page %d\n", page);
goto out;
}
if (read) {
/* Read the Wakeup register page value using opcode 0x12 */
ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
data);
} else {
/* Write the Wakeup register page value using opcode 0x12 */
ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
*data);
}
if (ret_val) {
e_dbg("Could not access PHY reg %d.%d\n", page, reg);
goto out;
}
if (!page_set)
ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
out:
return ret_val;
}
/**
* e1000_power_up_phy_copper - Restore copper link in case of PHY power down
* @hw: pointer to the HW structure
*
* In the case of a PHY power down to save power, or to turn off link during a
* driver unload, or wake on lan is not enabled, restore the link to previous
* settings.
**/
void e1000_power_up_phy_copper(struct e1000_hw *hw)
{
u16 mii_reg = 0;
/* The PHY will retain its settings across a power down/up cycle */
e1e_rphy(hw, PHY_CONTROL, &mii_reg);
mii_reg &= ~MII_CR_POWER_DOWN;
e1e_wphy(hw, PHY_CONTROL, mii_reg);
}
/**
* e1000_power_down_phy_copper - Restore copper link in case of PHY power down
* @hw: pointer to the HW structure
*
* In the case of a PHY power down to save power, or to turn off link during a
* driver unload, or wake on lan is not enabled, restore the link to previous
* settings.
**/
void e1000_power_down_phy_copper(struct e1000_hw *hw)
{
u16 mii_reg = 0;
/* The PHY will retain its settings across a power down/up cycle */
e1e_rphy(hw, PHY_CONTROL, &mii_reg);
mii_reg |= MII_CR_POWER_DOWN;
e1e_wphy(hw, PHY_CONTROL, mii_reg);
usleep_range(1000, 2000);
}
/**
* e1000e_commit_phy - Soft PHY reset
* @hw: pointer to the HW structure
*
* Performs a soft PHY reset on those that apply. This is a function pointer
* entry point called by drivers.
**/
s32 e1000e_commit_phy(struct e1000_hw *hw)
{
if (hw->phy.ops.commit)
return hw->phy.ops.commit(hw);
return 0;
}
/**
* e1000_set_d0_lplu_state - Sets low power link up state for D0
* @hw: pointer to the HW structure
* @active: boolean used to enable/disable lplu
*
* Success returns 0, Failure returns 1
*
* The low power link up (lplu) state is set to the power management level D0
* and SmartSpeed is disabled when active is true, else clear lplu for D0
* and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
* is used during Dx states where the power conservation is most important.
* During driver activity, SmartSpeed should be enabled so performance is
* maintained. This is a function pointer entry point called by drivers.
**/
static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
{
if (hw->phy.ops.set_d0_lplu_state)
return hw->phy.ops.set_d0_lplu_state(hw, active);
return 0;
}
/**
* __e1000_read_phy_reg_hv - Read HV PHY register
* @hw: pointer to the HW structure
* @offset: register offset to be read
* @data: pointer to the read data
* @locked: semaphore has already been acquired or not
*
* Acquires semaphore, if necessary, then reads the PHY register at offset
* and stores the retrieved information in data. Release any acquired
* semaphore before exiting.
**/
static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
bool locked, bool page_set)
{
s32 ret_val;
u16 page = BM_PHY_REG_PAGE(offset);
u16 reg = BM_PHY_REG_NUM(offset);
u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
if (!locked) {
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return ret_val;
}
/* Page 800 works differently than the rest so it has its own func */
if (page == BM_WUC_PAGE) {
ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
true, page_set);
goto out;
}
if (page > 0 && page < HV_INTC_FC_PAGE_START) {
ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
data, true);
goto out;
}
if (!page_set) {
if (page == HV_INTC_FC_PAGE_START)
page = 0;
if (reg > MAX_PHY_MULTI_PAGE_REG) {
/* Page is shifted left, PHY expects (page x 32) */
ret_val = e1000_set_page_igp(hw,
(page << IGP_PAGE_SHIFT));
hw->phy.addr = phy_addr;
if (ret_val)
goto out;
}
}
e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
page << IGP_PAGE_SHIFT, reg);
ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
data);
out:
if (!locked)
hw->phy.ops.release(hw);
return ret_val;
}
/**
* e1000_read_phy_reg_hv - Read HV PHY register
* @hw: pointer to the HW structure
* @offset: register offset to be read
* @data: pointer to the read data
*
* Acquires semaphore then reads the PHY register at offset and stores
* the retrieved information in data. Release the acquired semaphore
* before exiting.
**/
s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
{
return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
}
/**
* e1000_read_phy_reg_hv_locked - Read HV PHY register
* @hw: pointer to the HW structure
* @offset: register offset to be read
* @data: pointer to the read data
*
* Reads the PHY register at offset and stores the retrieved information
* in data. Assumes semaphore already acquired.
**/
s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
{
return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
}
/**
* e1000_read_phy_reg_page_hv - Read HV PHY register
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write at register offset
*
* Reads the PHY register at offset and stores the retrieved information
* in data. Assumes semaphore already acquired and page already set.
**/
s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
{
return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
}
/**
* __e1000_write_phy_reg_hv - Write HV PHY register
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write at register offset
* @locked: semaphore has already been acquired or not
*
* Acquires semaphore, if necessary, then writes the data to PHY register
* at the offset. Release any acquired semaphores before exiting.
**/
static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
bool locked, bool page_set)
{
s32 ret_val;
u16 page = BM_PHY_REG_PAGE(offset);
u16 reg = BM_PHY_REG_NUM(offset);
u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
if (!locked) {
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return ret_val;
}
/* Page 800 works differently than the rest so it has its own func */
if (page == BM_WUC_PAGE) {
ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
false, page_set);
goto out;
}
if (page > 0 && page < HV_INTC_FC_PAGE_START) {
ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
&data, false);
goto out;
}
if (!page_set) {
if (page == HV_INTC_FC_PAGE_START)
page = 0;
/*
* Workaround MDIO accesses being disabled after entering IEEE
* Power Down (when bit 11 of the PHY Control register is set)
*/
if ((hw->phy.type == e1000_phy_82578) &&
(hw->phy.revision >= 1) &&
(hw->phy.addr == 2) &&
((MAX_PHY_REG_ADDRESS & reg) == 0) && (data & (1 << 11))) {
u16 data2 = 0x7EFF;
ret_val = e1000_access_phy_debug_regs_hv(hw,
(1 << 6) | 0x3,
&data2, false);
if (ret_val)
goto out;
}
if (reg > MAX_PHY_MULTI_PAGE_REG) {
/* Page is shifted left, PHY expects (page x 32) */
ret_val = e1000_set_page_igp(hw,
(page << IGP_PAGE_SHIFT));
hw->phy.addr = phy_addr;
if (ret_val)
goto out;
}
}
e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
page << IGP_PAGE_SHIFT, reg);
ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
data);
out:
if (!locked)
hw->phy.ops.release(hw);
return ret_val;
}
/**
* e1000_write_phy_reg_hv - Write HV PHY register
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write at register offset
*
* Acquires semaphore then writes the data to PHY register at the offset.
* Release the acquired semaphores before exiting.
**/
s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
{
return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
}
/**
* e1000_write_phy_reg_hv_locked - Write HV PHY register
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write at register offset
*
* Writes the data to PHY register at the offset. Assumes semaphore
* already acquired.
**/
s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
{
return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
}
/**
* e1000_write_phy_reg_page_hv - Write HV PHY register
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write at register offset
*
* Writes the data to PHY register at the offset. Assumes semaphore
* already acquired and page already set.
**/
s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
{
return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
}
/**
* e1000_get_phy_addr_for_hv_page - Get PHY address based on page
* @page: page to be accessed
**/
static u32 e1000_get_phy_addr_for_hv_page(u32 page)
{
u32 phy_addr = 2;
if (page >= HV_INTC_FC_PAGE_START)
phy_addr = 1;
return phy_addr;
}
/**
* e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
* @hw: pointer to the HW structure
* @offset: register offset to be read or written
* @data: pointer to the data to be read or written
* @read: determines if operation is read or write
*
* Reads the PHY register at offset and stores the retreived information
* in data. Assumes semaphore already acquired. Note that the procedure
* to access these regs uses the address port and data port to read/write.
* These accesses done with PHY address 2 and without using pages.
**/
static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
u16 *data, bool read)
{
s32 ret_val;
u32 addr_reg = 0;
u32 data_reg = 0;
/* This takes care of the difference with desktop vs mobile phy */
addr_reg = (hw->phy.type == e1000_phy_82578) ?
I82578_ADDR_REG : I82577_ADDR_REG;
data_reg = addr_reg + 1;
/* All operations in this function are phy address 2 */
hw->phy.addr = 2;
/* masking with 0x3F to remove the page from offset */
ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
if (ret_val) {
e_dbg("Could not write the Address Offset port register\n");
goto out;
}
/* Read or write the data value next */
if (read)
ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
else
ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
if (ret_val) {
e_dbg("Could not access the Data port register\n");
goto out;
}
out:
return ret_val;
}
/**
* e1000_link_stall_workaround_hv - Si workaround
* @hw: pointer to the HW structure
*
* This function works around a Si bug where the link partner can get
* a link up indication before the PHY does. If small packets are sent
* by the link partner they can be placed in the packet buffer without
* being properly accounted for by the PHY and will stall preventing
* further packets from being received. The workaround is to clear the
* packet buffer after the PHY detects link up.
**/
s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
{
s32 ret_val = 0;
u16 data;
if (hw->phy.type != e1000_phy_82578)
goto out;
/* Do not apply workaround if in PHY loopback bit 14 set */
e1e_rphy(hw, PHY_CONTROL, &data);
if (data & PHY_CONTROL_LB)
goto out;
/* check if link is up and at 1Gbps */
ret_val = e1e_rphy(hw, BM_CS_STATUS, &data);
if (ret_val)
goto out;
data &= BM_CS_STATUS_LINK_UP |
BM_CS_STATUS_RESOLVED |
BM_CS_STATUS_SPEED_MASK;
if (data != (BM_CS_STATUS_LINK_UP |
BM_CS_STATUS_RESOLVED |
BM_CS_STATUS_SPEED_1000))
goto out;
mdelay(200);
/* flush the packets in the fifo buffer */
ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC |
HV_MUX_DATA_CTRL_FORCE_SPEED);
if (ret_val)
goto out;
ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC);
out:
return ret_val;
}
/**
* e1000_check_polarity_82577 - Checks the polarity.
* @hw: pointer to the HW structure
*
* Success returns 0, Failure returns -E1000_ERR_PHY (-2)
*
* Polarity is determined based on the PHY specific status register.
**/
s32 e1000_check_polarity_82577(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 data;
ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
if (!ret_val)
phy->cable_polarity = (data & I82577_PHY_STATUS2_REV_POLARITY)
? e1000_rev_polarity_reversed
: e1000_rev_polarity_normal;
return ret_val;
}
/**
* e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
* @hw: pointer to the HW structure
*
* Calls the PHY setup function to force speed and duplex.
**/
s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 phy_data;
bool link;
ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
if (ret_val)
goto out;
e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
if (ret_val)
goto out;
udelay(1);
if (phy->autoneg_wait_to_complete) {
e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
ret_val = e1000e_phy_has_link_generic(hw,
PHY_FORCE_LIMIT,
100000,
&link);
if (ret_val)
goto out;
if (!link)
e_dbg("Link taking longer than expected.\n");
/* Try once more */
ret_val = e1000e_phy_has_link_generic(hw,
PHY_FORCE_LIMIT,
100000,
&link);
if (ret_val)
goto out;
}
out:
return ret_val;
}
/**
* e1000_get_phy_info_82577 - Retrieve I82577 PHY information
* @hw: pointer to the HW structure
*
* Read PHY status to determine if link is up. If link is up, then
* set/determine 10base-T extended distance and polarity correction. Read
* PHY port status to determine MDI/MDIx and speed. Based on the speed,
* determine on the cable length, local and remote receiver.
**/
s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 data;
bool link;
ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
if (ret_val)
goto out;
if (!link) {
e_dbg("Phy info is only valid if link is up\n");
ret_val = -E1000_ERR_CONFIG;
goto out;
}
phy->polarity_correction = true;
ret_val = e1000_check_polarity_82577(hw);
if (ret_val)
goto out;
ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
if (ret_val)
goto out;
phy->is_mdix = (data & I82577_PHY_STATUS2_MDIX) ? true : false;
if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
I82577_PHY_STATUS2_SPEED_1000MBPS) {
ret_val = hw->phy.ops.get_cable_length(hw);
if (ret_val)
goto out;
ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
if (ret_val)
goto out;
phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
? e1000_1000t_rx_status_ok
: e1000_1000t_rx_status_not_ok;
phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
? e1000_1000t_rx_status_ok
: e1000_1000t_rx_status_not_ok;
} else {
phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
phy->local_rx = e1000_1000t_rx_status_undefined;
phy->remote_rx = e1000_1000t_rx_status_undefined;
}
out:
return ret_val;
}
/**
* e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
* @hw: pointer to the HW structure
*
* Reads the diagnostic status register and verifies result is valid before
* placing it in the phy_cable_length field.
**/
s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 phy_data, length;
ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data);
if (ret_val)
goto out;
length = (phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
I82577_DSTATUS_CABLE_LENGTH_SHIFT;
if (length == E1000_CABLE_LENGTH_UNDEFINED)
ret_val = -E1000_ERR_PHY;
phy->cable_length = length;
out:
return ret_val;
}
-------------- n?chster Teil --------------
/*******************************************************************************
Intel PRO/1000 Linux driver
Copyright(c) 1999 - 2011 Intel Corporation.
This program is free software; you can redistribute it and/or modify it
under the terms and conditions of the GNU General Public License,
version 2, as published by the Free Software Foundation.
This program is distributed in the hope it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
The full GNU General Public License is included in this distribution in
the file called "COPYING".
Contact Information:
Linux NICS <linux.nics at intel.com>
e1000-devel Mailing List <e1000-devel at lists.sourceforge.net>
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*******************************************************************************/
#include <linux/netdevice.h>
#include <linux/module.h>
#include <linux/pci.h>
#include "e1000-3.2.0-ethercat.h"
/*
* This is the only thing that needs to be changed to adjust the
* maximum number of ports that the driver can manage.
*/
#define E1000_MAX_NIC 32
#define OPTION_UNSET -1
#define OPTION_DISABLED 0
#define OPTION_ENABLED 1
#define COPYBREAK_DEFAULT 256
unsigned int copybreak = COPYBREAK_DEFAULT;
module_param(copybreak, uint, 0644);
MODULE_PARM_DESC(copybreak,
"Maximum size of packet that is copied to a new buffer on receive");
/*
* All parameters are treated the same, as an integer array of values.
* This macro just reduces the need to repeat the same declaration code
* over and over (plus this helps to avoid typo bugs).
*/
#define E1000_PARAM_INIT { [0 ... E1000_MAX_NIC] = OPTION_UNSET }
#define E1000_PARAM(X, desc) \
static int __devinitdata X[E1000_MAX_NIC+1] \
= E1000_PARAM_INIT; \
static unsigned int num_##X; \
module_param_array_named(X, X, int, &num_##X, 0); \
MODULE_PARM_DESC(X, desc);
/*
* Transmit Interrupt Delay in units of 1.024 microseconds
* Tx interrupt delay needs to typically be set to something non-zero
*
* Valid Range: 0-65535
*/
E1000_PARAM(TxIntDelay, "Transmit Interrupt Delay");
#define DEFAULT_TIDV 8
#define MAX_TXDELAY 0xFFFF
#define MIN_TXDELAY 0
/*
* Transmit Absolute Interrupt Delay in units of 1.024 microseconds
*
* Valid Range: 0-65535
*/
E1000_PARAM(TxAbsIntDelay, "Transmit Absolute Interrupt Delay");
#define DEFAULT_TADV 32
#define MAX_TXABSDELAY 0xFFFF
#define MIN_TXABSDELAY 0
/*
* Receive Interrupt Delay in units of 1.024 microseconds
* hardware will likely hang if you set this to anything but zero.
*
* Valid Range: 0-65535
*/
E1000_PARAM(RxIntDelay, "Receive Interrupt Delay");
#define MAX_RXDELAY 0xFFFF
#define MIN_RXDELAY 0
/*
* Receive Absolute Interrupt Delay in units of 1.024 microseconds
*
* Valid Range: 0-65535
*/
E1000_PARAM(RxAbsIntDelay, "Receive Absolute Interrupt Delay");
#define MAX_RXABSDELAY 0xFFFF
#define MIN_RXABSDELAY 0
/*
* Interrupt Throttle Rate (interrupts/sec)
*
* Valid Range: 100-100000 (0=off, 1=dynamic, 3=dynamic conservative)
*/
E1000_PARAM(InterruptThrottleRate, "Interrupt Throttling Rate");
#define DEFAULT_ITR 3
#define MAX_ITR 100000
#define MIN_ITR 100
/* IntMode (Interrupt Mode)
*
* Valid Range: 0 - 2
*
* Default Value: 2 (MSI-X)
*/
E1000_PARAM(IntMode, "Interrupt Mode");
#define MAX_INTMODE 2
#define MIN_INTMODE 0
/*
* Enable Smart Power Down of the PHY
*
* Valid Range: 0, 1
*
* Default Value: 0 (disabled)
*/
E1000_PARAM(SmartPowerDownEnable, "Enable PHY smart power down");
/*
* Enable Kumeran Lock Loss workaround
*
* Valid Range: 0, 1
*
* Default Value: 1 (enabled)
*/
E1000_PARAM(KumeranLockLoss, "Enable Kumeran lock loss workaround");
/*
* Write Protect NVM
*
* Valid Range: 0, 1
*
* Default Value: 1 (enabled)
*/
E1000_PARAM(WriteProtectNVM, "Write-protect NVM [WARNING: disabling this can lead to corrupted NVM]");
/*
* Enable CRC Stripping
*
* Valid Range: 0, 1
*
* Default Value: 1 (enabled)
*/
E1000_PARAM(CrcStripping, "Enable CRC Stripping, disable if your BMC needs " \
"the CRC");
struct e1000_option {
enum { enable_option, range_option, list_option } type;
const char *name;
const char *err;
int def;
union {
struct { /* range_option info */
int min;
int max;
} r;
struct { /* list_option info */
int nr;
struct e1000_opt_list { int i; char *str; } *p;
} l;
} arg;
};
static int __devinit e1000_validate_option(unsigned int *value,
const struct e1000_option *opt,
struct e1000_adapter *adapter)
{
if (*value == OPTION_UNSET) {
*value = opt->def;
return 0;
}
switch (opt->type) {
case enable_option:
switch (*value) {
case OPTION_ENABLED:
e_info("%s Enabled\n", opt->name);
return 0;
case OPTION_DISABLED:
e_info("%s Disabled\n", opt->name);
return 0;
}
break;
case range_option:
if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
e_info("%s set to %i\n", opt->name, *value);
return 0;
}
break;
case list_option: {
int i;
struct e1000_opt_list *ent;
for (i = 0; i < opt->arg.l.nr; i++) {
ent = &opt->arg.l.p[i];
if (*value == ent->i) {
if (ent->str[0] != '\0')
e_info("%s\n", ent->str);
return 0;
}
}
}
break;
default:
BUG();
}
e_info("Invalid %s value specified (%i) %s\n", opt->name, *value,
opt->err);
*value = opt->def;
return -1;
}
/**
* e1000e_check_options - Range Checking for Command Line Parameters
* @adapter: board private structure
*
* This routine checks all command line parameters for valid user
* input. If an invalid value is given, or if no user specified
* value exists, a default value is used. The final value is stored
* in a variable in the adapter structure.
**/
void __devinit e1000e_check_options(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
int bd = adapter->bd_number;
if (bd >= E1000_MAX_NIC) {
e_notice("Warning: no configuration for board #%i\n", bd);
e_notice("Using defaults for all values\n");
}
{ /* Transmit Interrupt Delay */
static const struct e1000_option opt = {
.type = range_option,
.name = "Transmit Interrupt Delay",
.err = "using default of "
__MODULE_STRING(DEFAULT_TIDV),
.def = DEFAULT_TIDV,
.arg = { .r = { .min = MIN_TXDELAY,
.max = MAX_TXDELAY } }
};
if (num_TxIntDelay > bd) {
adapter->tx_int_delay = TxIntDelay[bd];
e1000_validate_option(&adapter->tx_int_delay, &opt,
adapter);
} else {
adapter->tx_int_delay = opt.def;
}
}
{ /* Transmit Absolute Interrupt Delay */
static const struct e1000_option opt = {
.type = range_option,
.name = "Transmit Absolute Interrupt Delay",
.err = "using default of "
__MODULE_STRING(DEFAULT_TADV),
.def = DEFAULT_TADV,
.arg = { .r = { .min = MIN_TXABSDELAY,
.max = MAX_TXABSDELAY } }
};
if (num_TxAbsIntDelay > bd) {
adapter->tx_abs_int_delay = TxAbsIntDelay[bd];
e1000_validate_option(&adapter->tx_abs_int_delay, &opt,
adapter);
} else {
adapter->tx_abs_int_delay = opt.def;
}
}
{ /* Receive Interrupt Delay */
static struct e1000_option opt = {
.type = range_option,
.name = "Receive Interrupt Delay",
.err = "using default of "
__MODULE_STRING(DEFAULT_RDTR),
.def = DEFAULT_RDTR,
.arg = { .r = { .min = MIN_RXDELAY,
.max = MAX_RXDELAY } }
};
if (num_RxIntDelay > bd) {
adapter->rx_int_delay = RxIntDelay[bd];
e1000_validate_option(&adapter->rx_int_delay, &opt,
adapter);
} else {
adapter->rx_int_delay = opt.def;
}
}
{ /* Receive Absolute Interrupt Delay */
static const struct e1000_option opt = {
.type = range_option,
.name = "Receive Absolute Interrupt Delay",
.err = "using default of "
__MODULE_STRING(DEFAULT_RADV),
.def = DEFAULT_RADV,
.arg = { .r = { .min = MIN_RXABSDELAY,
.max = MAX_RXABSDELAY } }
};
if (num_RxAbsIntDelay > bd) {
adapter->rx_abs_int_delay = RxAbsIntDelay[bd];
e1000_validate_option(&adapter->rx_abs_int_delay, &opt,
adapter);
} else {
adapter->rx_abs_int_delay = opt.def;
}
}
{ /* Interrupt Throttling Rate */
static const struct e1000_option opt = {
.type = range_option,
.name = "Interrupt Throttling Rate (ints/sec)",
.err = "using default of "
__MODULE_STRING(DEFAULT_ITR),
.def = DEFAULT_ITR,
.arg = { .r = { .min = MIN_ITR,
.max = MAX_ITR } }
};
if (num_InterruptThrottleRate > bd) {
adapter->itr = InterruptThrottleRate[bd];
switch (adapter->itr) {
case 0:
e_info("%s turned off\n", opt.name);
break;
case 1:
e_info("%s set to dynamic mode\n", opt.name);
adapter->itr_setting = adapter->itr;
adapter->itr = 20000;
break;
case 3:
e_info("%s set to dynamic conservative mode\n",
opt.name);
adapter->itr_setting = adapter->itr;
adapter->itr = 20000;
break;
case 4:
e_info("%s set to simplified (2000-8000 ints) "
"mode\n", opt.name);
adapter->itr_setting = 4;
break;
default:
/*
* Save the setting, because the dynamic bits
* change itr.
*/
if (e1000_validate_option(&adapter->itr, &opt,
adapter) &&
(adapter->itr == 3)) {
/*
* In case of invalid user value,
* default to conservative mode.
*/
adapter->itr_setting = adapter->itr;
adapter->itr = 20000;
} else {
/*
* Clear the lower two bits because
* they are used as control.
*/
adapter->itr_setting =
adapter->itr & ~3;
}
break;
}
} else {
adapter->itr_setting = opt.def;
adapter->itr = 20000;
}
}
{ /* Interrupt Mode */
static struct e1000_option opt = {
.type = range_option,
.name = "Interrupt Mode",
.err = "defaulting to 2 (MSI-X)",
.def = E1000E_INT_MODE_MSIX,
.arg = { .r = { .min = MIN_INTMODE,
.max = MAX_INTMODE } }
};
if (num_IntMode > bd) {
unsigned int int_mode = IntMode[bd];
e1000_validate_option(&int_mode, &opt, adapter);
adapter->int_mode = int_mode;
} else {
adapter->int_mode = opt.def;
}
}
{ /* Smart Power Down */
static const struct e1000_option opt = {
.type = enable_option,
.name = "PHY Smart Power Down",
.err = "defaulting to Disabled",
.def = OPTION_DISABLED
};
if (num_SmartPowerDownEnable > bd) {
unsigned int spd = SmartPowerDownEnable[bd];
e1000_validate_option(&spd, &opt, adapter);
if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN)
&& spd)
adapter->flags |= FLAG_SMART_POWER_DOWN;
}
}
{ /* CRC Stripping */
static const struct e1000_option opt = {
.type = enable_option,
.name = "CRC Stripping",
.err = "defaulting to Enabled",
.def = OPTION_ENABLED
};
if (num_CrcStripping > bd) {
unsigned int crc_stripping = CrcStripping[bd];
e1000_validate_option(&crc_stripping, &opt, adapter);
if (crc_stripping == OPTION_ENABLED)
adapter->flags2 |= FLAG2_CRC_STRIPPING;
} else {
adapter->flags2 |= FLAG2_CRC_STRIPPING;
}
}
{ /* Kumeran Lock Loss Workaround */
static const struct e1000_option opt = {
.type = enable_option,
.name = "Kumeran Lock Loss Workaround",
.err = "defaulting to Enabled",
.def = OPTION_ENABLED
};
if (num_KumeranLockLoss > bd) {
unsigned int kmrn_lock_loss = KumeranLockLoss[bd];
e1000_validate_option(&kmrn_lock_loss, &opt, adapter);
if (hw->mac.type == e1000_ich8lan)
e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw,
kmrn_lock_loss);
} else {
if (hw->mac.type == e1000_ich8lan)
e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw,
opt.def);
}
}
{ /* Write-protect NVM */
static const struct e1000_option opt = {
.type = enable_option,
.name = "Write-protect NVM",
.err = "defaulting to Enabled",
.def = OPTION_ENABLED
};
if (adapter->flags & FLAG_IS_ICH) {
if (num_WriteProtectNVM > bd) {
unsigned int write_protect_nvm = WriteProtectNVM[bd];
e1000_validate_option(&write_protect_nvm, &opt,
adapter);
if (write_protect_nvm)
adapter->flags |= FLAG_READ_ONLY_NVM;
} else {
if (opt.def)
adapter->flags |= FLAG_READ_ONLY_NVM;
}
}
}
}
-------------- n?chster Teil --------------
/*******************************************************************************
Intel PRO/1000 Linux driver
Copyright(c) 1999 - 2011 Intel Corporation.
This program is free software; you can redistribute it and/or modify it
under the terms and conditions of the GNU General Public License,
version 2, as published by the Free Software Foundation.
This program is distributed in the hope it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
The full GNU General Public License is included in this distribution in
the file called "COPYING".
Contact Information:
Linux NICS <linux.nics at intel.com>
e1000-devel Mailing List <e1000-devel at lists.sourceforge.net>
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*******************************************************************************/
#include "e1000-3.2.0-ethercat.h"
enum e1000_mng_mode {
e1000_mng_mode_none = 0,
e1000_mng_mode_asf,
e1000_mng_mode_pt,
e1000_mng_mode_ipmi,
e1000_mng_mode_host_if_only
};
#define E1000_FACTPS_MNGCG 0x20000000
/* Intel(R) Active Management Technology signature */
#define E1000_IAMT_SIGNATURE 0x544D4149
/**
* e1000e_get_bus_info_pcie - Get PCIe bus information
* @hw: pointer to the HW structure
*
* Determines and stores the system bus information for a particular
* network interface. The following bus information is determined and stored:
* bus speed, bus width, type (PCIe), and PCIe function.
**/
s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
struct e1000_bus_info *bus = &hw->bus;
struct e1000_adapter *adapter = hw->adapter;
u16 pcie_link_status, cap_offset;
cap_offset = adapter->pdev->pcie_cap;
if (!cap_offset) {
bus->width = e1000_bus_width_unknown;
} else {
pci_read_config_word(adapter->pdev,
cap_offset + PCIE_LINK_STATUS,
&pcie_link_status);
bus->width = (enum e1000_bus_width)((pcie_link_status &
PCIE_LINK_WIDTH_MASK) >>
PCIE_LINK_WIDTH_SHIFT);
}
mac->ops.set_lan_id(hw);
return 0;
}
/**
* e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
*
* @hw: pointer to the HW structure
*
* Determines the LAN function id by reading memory-mapped registers
* and swaps the port value if requested.
**/
void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
{
struct e1000_bus_info *bus = &hw->bus;
u32 reg;
/*
* The status register reports the correct function number
* for the device regardless of function swap state.
*/
reg = er32(STATUS);
bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
}
/**
* e1000_set_lan_id_single_port - Set LAN id for a single port device
* @hw: pointer to the HW structure
*
* Sets the LAN function id to zero for a single port device.
**/
void e1000_set_lan_id_single_port(struct e1000_hw *hw)
{
struct e1000_bus_info *bus = &hw->bus;
bus->func = 0;
}
/**
* e1000_clear_vfta_generic - Clear VLAN filter table
* @hw: pointer to the HW structure
*
* Clears the register array which contains the VLAN filter table by
* setting all the values to 0.
**/
void e1000_clear_vfta_generic(struct e1000_hw *hw)
{
u32 offset;
for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
e1e_flush();
}
}
/**
* e1000_write_vfta_generic - Write value to VLAN filter table
* @hw: pointer to the HW structure
* @offset: register offset in VLAN filter table
* @value: register value written to VLAN filter table
*
* Writes value at the given offset in the register array which stores
* the VLAN filter table.
**/
void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
{
E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
e1e_flush();
}
/**
* e1000e_init_rx_addrs - Initialize receive address's
* @hw: pointer to the HW structure
* @rar_count: receive address registers
*
* Setup the receive address registers by setting the base receive address
* register to the devices MAC address and clearing all the other receive
* address registers to 0.
**/
void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
{
u32 i;
u8 mac_addr[ETH_ALEN] = {0};
/* Setup the receive address */
e_dbg("Programming MAC Address into RAR[0]\n");
e1000e_rar_set(hw, hw->mac.addr, 0);
/* Zero out the other (rar_entry_count - 1) receive addresses */
e_dbg("Clearing RAR[1-%u]\n", rar_count-1);
for (i = 1; i < rar_count; i++)
e1000e_rar_set(hw, mac_addr, i);
}
/**
* e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
* @hw: pointer to the HW structure
*
* Checks the nvm for an alternate MAC address. An alternate MAC address
* can be setup by pre-boot software and must be treated like a permanent
* address and must override the actual permanent MAC address. If an
* alternate MAC address is found it is programmed into RAR0, replacing
* the permanent address that was installed into RAR0 by the Si on reset.
* This function will return SUCCESS unless it encounters an error while
* reading the EEPROM.
**/
s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
{
u32 i;
s32 ret_val = 0;
u16 offset, nvm_alt_mac_addr_offset, nvm_data;
u8 alt_mac_addr[ETH_ALEN];
ret_val = e1000_read_nvm(hw, NVM_COMPAT, 1, &nvm_data);
if (ret_val)
goto out;
/* Check for LOM (vs. NIC) or one of two valid mezzanine cards */
if (!((nvm_data & NVM_COMPAT_LOM) ||
(hw->adapter->pdev->device == E1000_DEV_ID_82571EB_SERDES_DUAL) ||
(hw->adapter->pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD) ||
(hw->adapter->pdev->device == E1000_DEV_ID_82571EB_SERDES)))
goto out;
ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
&nvm_alt_mac_addr_offset);
if (ret_val) {
e_dbg("NVM Read Error\n");
goto out;
}
if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
(nvm_alt_mac_addr_offset == 0x0000))
/* There is no Alternate MAC Address */
goto out;
if (hw->bus.func == E1000_FUNC_1)
nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
for (i = 0; i < ETH_ALEN; i += 2) {
offset = nvm_alt_mac_addr_offset + (i >> 1);
ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
if (ret_val) {
e_dbg("NVM Read Error\n");
goto out;
}
alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
}
/* if multicast bit is set, the alternate address will not be used */
if (is_multicast_ether_addr(alt_mac_addr)) {
e_dbg("Ignoring Alternate Mac Address with MC bit set\n");
goto out;
}
/*
* We have a valid alternate MAC address, and we want to treat it the
* same as the normal permanent MAC address stored by the HW into the
* RAR. Do this by mapping this address into RAR0.
*/
e1000e_rar_set(hw, alt_mac_addr, 0);
out:
return ret_val;
}
/**
* e1000e_rar_set - Set receive address register
* @hw: pointer to the HW structure
* @addr: pointer to the receive address
* @index: receive address array register
*
* Sets the receive address array register at index to the address passed
* in by addr.
**/
void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
{
u32 rar_low, rar_high;
/*
* HW expects these in little endian so we reverse the byte order
* from network order (big endian) to little endian
*/
rar_low = ((u32) addr[0] |
((u32) addr[1] << 8) |
((u32) addr[2] << 16) | ((u32) addr[3] << 24));
rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
/* If MAC address zero, no need to set the AV bit */
if (rar_low || rar_high)
rar_high |= E1000_RAH_AV;
/*
* Some bridges will combine consecutive 32-bit writes into
* a single burst write, which will malfunction on some parts.
* The flushes avoid this.
*/
ew32(RAL(index), rar_low);
e1e_flush();
ew32(RAH(index), rar_high);
e1e_flush();
}
/**
* e1000_hash_mc_addr - Generate a multicast hash value
* @hw: pointer to the HW structure
* @mc_addr: pointer to a multicast address
*
* Generates a multicast address hash value which is used to determine
* the multicast filter table array address and new table value. See
* e1000_mta_set_generic()
**/
static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
{
u32 hash_value, hash_mask;
u8 bit_shift = 0;
/* Register count multiplied by bits per register */
hash_mask = (hw->mac.mta_reg_count * 32) - 1;
/*
* For a mc_filter_type of 0, bit_shift is the number of left-shifts
* where 0xFF would still fall within the hash mask.
*/
while (hash_mask >> bit_shift != 0xFF)
bit_shift++;
/*
* The portion of the address that is used for the hash table
* is determined by the mc_filter_type setting.
* The algorithm is such that there is a total of 8 bits of shifting.
* The bit_shift for a mc_filter_type of 0 represents the number of
* left-shifts where the MSB of mc_addr[5] would still fall within
* the hash_mask. Case 0 does this exactly. Since there are a total
* of 8 bits of shifting, then mc_addr[4] will shift right the
* remaining number of bits. Thus 8 - bit_shift. The rest of the
* cases are a variation of this algorithm...essentially raising the
* number of bits to shift mc_addr[5] left, while still keeping the
* 8-bit shifting total.
*
* For example, given the following Destination MAC Address and an
* mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
* we can see that the bit_shift for case 0 is 4. These are the hash
* values resulting from each mc_filter_type...
* [0] [1] [2] [3] [4] [5]
* 01 AA 00 12 34 56
* LSB MSB
*
* case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
* case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
* case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
* case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
*/
switch (hw->mac.mc_filter_type) {
default:
case 0:
break;
case 1:
bit_shift += 1;
break;
case 2:
bit_shift += 2;
break;
case 3:
bit_shift += 4;
break;
}
hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
(((u16) mc_addr[5]) << bit_shift)));
return hash_value;
}
/**
* e1000e_update_mc_addr_list_generic - Update Multicast addresses
* @hw: pointer to the HW structure
* @mc_addr_list: array of multicast addresses to program
* @mc_addr_count: number of multicast addresses to program
*
* Updates entire Multicast Table Array.
* The caller must have a packed mc_addr_list of multicast addresses.
**/
void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw,
u8 *mc_addr_list, u32 mc_addr_count)
{
u32 hash_value, hash_bit, hash_reg;
int i;
/* clear mta_shadow */
memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
/* update mta_shadow from mc_addr_list */
for (i = 0; (u32) i < mc_addr_count; i++) {
hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
hash_bit = hash_value & 0x1F;
hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
mc_addr_list += (ETH_ALEN);
}
/* replace the entire MTA table */
for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
e1e_flush();
}
/**
* e1000e_clear_hw_cntrs_base - Clear base hardware counters
* @hw: pointer to the HW structure
*
* Clears the base hardware counters by reading the counter registers.
**/
void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw)
{
er32(CRCERRS);
er32(SYMERRS);
er32(MPC);
er32(SCC);
er32(ECOL);
er32(MCC);
er32(LATECOL);
er32(COLC);
er32(DC);
er32(SEC);
er32(RLEC);
er32(XONRXC);
er32(XONTXC);
er32(XOFFRXC);
er32(XOFFTXC);
er32(FCRUC);
er32(GPRC);
er32(BPRC);
er32(MPRC);
er32(GPTC);
er32(GORCL);
er32(GORCH);
er32(GOTCL);
er32(GOTCH);
er32(RNBC);
er32(RUC);
er32(RFC);
er32(ROC);
er32(RJC);
er32(TORL);
er32(TORH);
er32(TOTL);
er32(TOTH);
er32(TPR);
er32(TPT);
er32(MPTC);
er32(BPTC);
}
/**
* e1000e_check_for_copper_link - Check for link (Copper)
* @hw: pointer to the HW structure
*
* Checks to see of the link status of the hardware has changed. If a
* change in link status has been detected, then we read the PHY registers
* to get the current speed/duplex if link exists.
**/
s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
s32 ret_val;
bool link;
/*
* We only want to go out to the PHY registers to see if Auto-Neg
* has completed and/or if our link status has changed. The
* get_link_status flag is set upon receiving a Link Status
* Change or Rx Sequence Error interrupt.
*/
if (!mac->get_link_status)
return 0;
/*
* First we want to see if the MII Status Register reports
* link. If so, then we want to get the current speed/duplex
* of the PHY.
*/
ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
if (ret_val)
return ret_val;
if (!link)
return ret_val; /* No link detected */
mac->get_link_status = false;
/*
* Check if there was DownShift, must be checked
* immediately after link-up
*/
e1000e_check_downshift(hw);
/*
* If we are forcing speed/duplex, then we simply return since
* we have already determined whether we have link or not.
*/
if (!mac->autoneg) {
ret_val = -E1000_ERR_CONFIG;
return ret_val;
}
/*
* Auto-Neg is enabled. Auto Speed Detection takes care
* of MAC speed/duplex configuration. So we only need to
* configure Collision Distance in the MAC.
*/
e1000e_config_collision_dist(hw);
/*
* Configure Flow Control now that Auto-Neg has completed.
* First, we need to restore the desired flow control
* settings because we may have had to re-autoneg with a
* different link partner.
*/
ret_val = e1000e_config_fc_after_link_up(hw);
if (ret_val)
e_dbg("Error configuring flow control\n");
return ret_val;
}
/**
* e1000e_check_for_fiber_link - Check for link (Fiber)
* @hw: pointer to the HW structure
*
* Checks for link up on the hardware. If link is not up and we have
* a signal, then we need to force link up.
**/
s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
u32 rxcw;
u32 ctrl;
u32 status;
s32 ret_val;
ctrl = er32(CTRL);
status = er32(STATUS);
rxcw = er32(RXCW);
/*
* If we don't have link (auto-negotiation failed or link partner
* cannot auto-negotiate), the cable is plugged in (we have signal),
* and our link partner is not trying to auto-negotiate with us (we
* are receiving idles or data), we need to force link up. We also
* need to give auto-negotiation time to complete, in case the cable
* was just plugged in. The autoneg_failed flag does this.
*/
/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
if ((ctrl & E1000_CTRL_SWDPIN1) && (!(status & E1000_STATUS_LU)) &&
(!(rxcw & E1000_RXCW_C))) {
if (mac->autoneg_failed == 0) {
mac->autoneg_failed = 1;
return 0;
}
e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
/* Disable auto-negotiation in the TXCW register */
ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
/* Force link-up and also force full-duplex. */
ctrl = er32(CTRL);
ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
ew32(CTRL, ctrl);
/* Configure Flow Control after forcing link up. */
ret_val = e1000e_config_fc_after_link_up(hw);
if (ret_val) {
e_dbg("Error configuring flow control\n");
return ret_val;
}
} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
/*
* If we are forcing link and we are receiving /C/ ordered
* sets, re-enable auto-negotiation in the TXCW register
* and disable forced link in the Device Control register
* in an attempt to auto-negotiate with our link partner.
*/
e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
ew32(TXCW, mac->txcw);
ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
mac->serdes_has_link = true;
}
return 0;
}
/**
* e1000e_check_for_serdes_link - Check for link (Serdes)
* @hw: pointer to the HW structure
*
* Checks for link up on the hardware. If link is not up and we have
* a signal, then we need to force link up.
**/
s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
u32 rxcw;
u32 ctrl;
u32 status;
s32 ret_val;
ctrl = er32(CTRL);
status = er32(STATUS);
rxcw = er32(RXCW);
/*
* If we don't have link (auto-negotiation failed or link partner
* cannot auto-negotiate), and our link partner is not trying to
* auto-negotiate with us (we are receiving idles or data),
* we need to force link up. We also need to give auto-negotiation
* time to complete.
*/
/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
if (mac->autoneg_failed == 0) {
mac->autoneg_failed = 1;
return 0;
}
e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
/* Disable auto-negotiation in the TXCW register */
ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
/* Force link-up and also force full-duplex. */
ctrl = er32(CTRL);
ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
ew32(CTRL, ctrl);
/* Configure Flow Control after forcing link up. */
ret_val = e1000e_config_fc_after_link_up(hw);
if (ret_val) {
e_dbg("Error configuring flow control\n");
return ret_val;
}
} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
/*
* If we are forcing link and we are receiving /C/ ordered
* sets, re-enable auto-negotiation in the TXCW register
* and disable forced link in the Device Control register
* in an attempt to auto-negotiate with our link partner.
*/
e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
ew32(TXCW, mac->txcw);
ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
mac->serdes_has_link = true;
} else if (!(E1000_TXCW_ANE & er32(TXCW))) {
/*
* If we force link for non-auto-negotiation switch, check
* link status based on MAC synchronization for internal
* serdes media type.
*/
/* SYNCH bit and IV bit are sticky. */
udelay(10);
rxcw = er32(RXCW);
if (rxcw & E1000_RXCW_SYNCH) {
if (!(rxcw & E1000_RXCW_IV)) {
mac->serdes_has_link = true;
e_dbg("SERDES: Link up - forced.\n");
}
} else {
mac->serdes_has_link = false;
e_dbg("SERDES: Link down - force failed.\n");
}
}
if (E1000_TXCW_ANE & er32(TXCW)) {
status = er32(STATUS);
if (status & E1000_STATUS_LU) {
/* SYNCH bit and IV bit are sticky, so reread rxcw. */
udelay(10);
rxcw = er32(RXCW);
if (rxcw & E1000_RXCW_SYNCH) {
if (!(rxcw & E1000_RXCW_IV)) {
mac->serdes_has_link = true;
e_dbg("SERDES: Link up - autoneg "
"completed successfully.\n");
} else {
mac->serdes_has_link = false;
e_dbg("SERDES: Link down - invalid"
"codewords detected in autoneg.\n");
}
} else {
mac->serdes_has_link = false;
e_dbg("SERDES: Link down - no sync.\n");
}
} else {
mac->serdes_has_link = false;
e_dbg("SERDES: Link down - autoneg failed\n");
}
}
return 0;
}
/**
* e1000_set_default_fc_generic - Set flow control default values
* @hw: pointer to the HW structure
*
* Read the EEPROM for the default values for flow control and store the
* values.
**/
static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
{
s32 ret_val;
u16 nvm_data;
/*
* Read and store word 0x0F of the EEPROM. This word contains bits
* that determine the hardware's default PAUSE (flow control) mode,
* a bit that determines whether the HW defaults to enabling or
* disabling auto-negotiation, and the direction of the
* SW defined pins. If there is no SW over-ride of the flow
* control setting, then the variable hw->fc will
* be initialized based on a value in the EEPROM.
*/
ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
if (ret_val) {
e_dbg("NVM Read Error\n");
return ret_val;
}
if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
hw->fc.requested_mode = e1000_fc_none;
else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
NVM_WORD0F_ASM_DIR)
hw->fc.requested_mode = e1000_fc_tx_pause;
else
hw->fc.requested_mode = e1000_fc_full;
return 0;
}
/**
* e1000e_setup_link - Setup flow control and link settings
* @hw: pointer to the HW structure
*
* Determines which flow control settings to use, then configures flow
* control. Calls the appropriate media-specific link configuration
* function. Assuming the adapter has a valid link partner, a valid link
* should be established. Assumes the hardware has previously been reset
* and the transmitter and receiver are not enabled.
**/
s32 e1000e_setup_link(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
s32 ret_val;
/*
* In the case of the phy reset being blocked, we already have a link.
* We do not need to set it up again.
*/
if (e1000_check_reset_block(hw))
return 0;
/*
* If requested flow control is set to default, set flow control
* based on the EEPROM flow control settings.
*/
if (hw->fc.requested_mode == e1000_fc_default) {
ret_val = e1000_set_default_fc_generic(hw);
if (ret_val)
return ret_val;
}
/*
* Save off the requested flow control mode for use later. Depending
* on the link partner's capabilities, we may or may not use this mode.
*/
hw->fc.current_mode = hw->fc.requested_mode;
e_dbg("After fix-ups FlowControl is now = %x\n",
hw->fc.current_mode);
/* Call the necessary media_type subroutine to configure the link. */
ret_val = mac->ops.setup_physical_interface(hw);
if (ret_val)
return ret_val;
/*
* Initialize the flow control address, type, and PAUSE timer
* registers to their default values. This is done even if flow
* control is disabled, because it does not hurt anything to
* initialize these registers.
*/
e_dbg("Initializing the Flow Control address, type and timer regs\n");
ew32(FCT, FLOW_CONTROL_TYPE);
ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
ew32(FCTTV, hw->fc.pause_time);
return e1000e_set_fc_watermarks(hw);
}
/**
* e1000_commit_fc_settings_generic - Configure flow control
* @hw: pointer to the HW structure
*
* Write the flow control settings to the Transmit Config Word Register (TXCW)
* base on the flow control settings in e1000_mac_info.
**/
static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
u32 txcw;
/*
* Check for a software override of the flow control settings, and
* setup the device accordingly. If auto-negotiation is enabled, then
* software will have to set the "PAUSE" bits to the correct value in
* the Transmit Config Word Register (TXCW) and re-start auto-
* negotiation. However, if auto-negotiation is disabled, then
* software will have to manually configure the two flow control enable
* bits in the CTRL register.
*
* The possible values of the "fc" parameter are:
* 0: Flow control is completely disabled
* 1: Rx flow control is enabled (we can receive pause frames,
* but not send pause frames).
* 2: Tx flow control is enabled (we can send pause frames but we
* do not support receiving pause frames).
* 3: Both Rx and Tx flow control (symmetric) are enabled.
*/
switch (hw->fc.current_mode) {
case e1000_fc_none:
/* Flow control completely disabled by a software over-ride. */
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
break;
case e1000_fc_rx_pause:
/*
* Rx Flow control is enabled and Tx Flow control is disabled
* by a software over-ride. Since there really isn't a way to
* advertise that we are capable of Rx Pause ONLY, we will
* advertise that we support both symmetric and asymmetric Rx
* PAUSE. Later, we will disable the adapter's ability to send
* PAUSE frames.
*/
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
break;
case e1000_fc_tx_pause:
/*
* Tx Flow control is enabled, and Rx Flow control is disabled,
* by a software over-ride.
*/
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
break;
case e1000_fc_full:
/*
* Flow control (both Rx and Tx) is enabled by a software
* over-ride.
*/
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
break;
default:
e_dbg("Flow control param set incorrectly\n");
return -E1000_ERR_CONFIG;
break;
}
ew32(TXCW, txcw);
mac->txcw = txcw;
return 0;
}
/**
* e1000_poll_fiber_serdes_link_generic - Poll for link up
* @hw: pointer to the HW structure
*
* Polls for link up by reading the status register, if link fails to come
* up with auto-negotiation, then the link is forced if a signal is detected.
**/
static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
u32 i, status;
s32 ret_val;
/*
* If we have a signal (the cable is plugged in, or assumed true for
* serdes media) then poll for a "Link-Up" indication in the Device
* Status Register. Time-out if a link isn't seen in 500 milliseconds
* seconds (Auto-negotiation should complete in less than 500
* milliseconds even if the other end is doing it in SW).
*/
for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
usleep_range(10000, 20000);
status = er32(STATUS);
if (status & E1000_STATUS_LU)
break;
}
if (i == FIBER_LINK_UP_LIMIT) {
e_dbg("Never got a valid link from auto-neg!!!\n");
mac->autoneg_failed = 1;
/*
* AutoNeg failed to achieve a link, so we'll call
* mac->check_for_link. This routine will force the
* link up if we detect a signal. This will allow us to
* communicate with non-autonegotiating link partners.
*/
ret_val = mac->ops.check_for_link(hw);
if (ret_val) {
e_dbg("Error while checking for link\n");
return ret_val;
}
mac->autoneg_failed = 0;
} else {
mac->autoneg_failed = 0;
e_dbg("Valid Link Found\n");
}
return 0;
}
/**
* e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
* @hw: pointer to the HW structure
*
* Configures collision distance and flow control for fiber and serdes
* links. Upon successful setup, poll for link.
**/
s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
{
u32 ctrl;
s32 ret_val;
ctrl = er32(CTRL);
/* Take the link out of reset */
ctrl &= ~E1000_CTRL_LRST;
e1000e_config_collision_dist(hw);
ret_val = e1000_commit_fc_settings_generic(hw);
if (ret_val)
return ret_val;
/*
* Since auto-negotiation is enabled, take the link out of reset (the
* link will be in reset, because we previously reset the chip). This
* will restart auto-negotiation. If auto-negotiation is successful
* then the link-up status bit will be set and the flow control enable
* bits (RFCE and TFCE) will be set according to their negotiated value.
*/
e_dbg("Auto-negotiation enabled\n");
ew32(CTRL, ctrl);
e1e_flush();
usleep_range(1000, 2000);
/*
* For these adapters, the SW definable pin 1 is set when the optics
* detect a signal. If we have a signal, then poll for a "Link-Up"
* indication.
*/
if (hw->phy.media_type == e1000_media_type_internal_serdes ||
(er32(CTRL) & E1000_CTRL_SWDPIN1)) {
ret_val = e1000_poll_fiber_serdes_link_generic(hw);
} else {
e_dbg("No signal detected\n");
}
return 0;
}
/**
* e1000e_config_collision_dist - Configure collision distance
* @hw: pointer to the HW structure
*
* Configures the collision distance to the default value and is used
* during link setup. Currently no func pointer exists and all
* implementations are handled in the generic version of this function.
**/
void e1000e_config_collision_dist(struct e1000_hw *hw)
{
u32 tctl;
tctl = er32(TCTL);
tctl &= ~E1000_TCTL_COLD;
tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
ew32(TCTL, tctl);
e1e_flush();
}
/**
* e1000e_set_fc_watermarks - Set flow control high/low watermarks
* @hw: pointer to the HW structure
*
* Sets the flow control high/low threshold (watermark) registers. If
* flow control XON frame transmission is enabled, then set XON frame
* transmission as well.
**/
s32 e1000e_set_fc_watermarks(struct e1000_hw *hw)
{
u32 fcrtl = 0, fcrth = 0;
/*
* Set the flow control receive threshold registers. Normally,
* these registers will be set to a default threshold that may be
* adjusted later by the driver's runtime code. However, if the
* ability to transmit pause frames is not enabled, then these
* registers will be set to 0.
*/
if (hw->fc.current_mode & e1000_fc_tx_pause) {
/*
* We need to set up the Receive Threshold high and low water
* marks as well as (optionally) enabling the transmission of
* XON frames.
*/
fcrtl = hw->fc.low_water;
fcrtl |= E1000_FCRTL_XONE;
fcrth = hw->fc.high_water;
}
ew32(FCRTL, fcrtl);
ew32(FCRTH, fcrth);
return 0;
}
/**
* e1000e_force_mac_fc - Force the MAC's flow control settings
* @hw: pointer to the HW structure
*
* Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
* device control register to reflect the adapter settings. TFCE and RFCE
* need to be explicitly set by software when a copper PHY is used because
* autonegotiation is managed by the PHY rather than the MAC. Software must
* also configure these bits when link is forced on a fiber connection.
**/
s32 e1000e_force_mac_fc(struct e1000_hw *hw)
{
u32 ctrl;
ctrl = er32(CTRL);
/*
* Because we didn't get link via the internal auto-negotiation
* mechanism (we either forced link or we got link via PHY
* auto-neg), we have to manually enable/disable transmit an
* receive flow control.
*
* The "Case" statement below enables/disable flow control
* according to the "hw->fc.current_mode" parameter.
*
* The possible values of the "fc" parameter are:
* 0: Flow control is completely disabled
* 1: Rx flow control is enabled (we can receive pause
* frames but not send pause frames).
* 2: Tx flow control is enabled (we can send pause frames
* frames but we do not receive pause frames).
* 3: Both Rx and Tx flow control (symmetric) is enabled.
* other: No other values should be possible at this point.
*/
e_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
switch (hw->fc.current_mode) {
case e1000_fc_none:
ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
break;
case e1000_fc_rx_pause:
ctrl &= (~E1000_CTRL_TFCE);
ctrl |= E1000_CTRL_RFCE;
break;
case e1000_fc_tx_pause:
ctrl &= (~E1000_CTRL_RFCE);
ctrl |= E1000_CTRL_TFCE;
break;
case e1000_fc_full:
ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
break;
default:
e_dbg("Flow control param set incorrectly\n");
return -E1000_ERR_CONFIG;
}
ew32(CTRL, ctrl);
return 0;
}
/**
* e1000e_config_fc_after_link_up - Configures flow control after link
* @hw: pointer to the HW structure
*
* Checks the status of auto-negotiation after link up to ensure that the
* speed and duplex were not forced. If the link needed to be forced, then
* flow control needs to be forced also. If auto-negotiation is enabled
* and did not fail, then we configure flow control based on our link
* partner.
**/
s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
s32 ret_val = 0;
u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
u16 speed, duplex;
/*
* Check for the case where we have fiber media and auto-neg failed
* so we had to force link. In this case, we need to force the
* configuration of the MAC to match the "fc" parameter.
*/
if (mac->autoneg_failed) {
if (hw->phy.media_type == e1000_media_type_fiber ||
hw->phy.media_type == e1000_media_type_internal_serdes)
ret_val = e1000e_force_mac_fc(hw);
} else {
if (hw->phy.media_type == e1000_media_type_copper)
ret_val = e1000e_force_mac_fc(hw);
}
if (ret_val) {
e_dbg("Error forcing flow control settings\n");
return ret_val;
}
/*
* Check for the case where we have copper media and auto-neg is
* enabled. In this case, we need to check and see if Auto-Neg
* has completed, and if so, how the PHY and link partner has
* flow control configured.
*/
if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
/*
* Read the MII Status Register and check to see if AutoNeg
* has completed. We read this twice because this reg has
* some "sticky" (latched) bits.
*/
ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
if (ret_val)
return ret_val;
ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
if (ret_val)
return ret_val;
if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
e_dbg("Copper PHY and Auto Neg "
"has not completed.\n");
return ret_val;
}
/*
* The AutoNeg process has completed, so we now need to
* read both the Auto Negotiation Advertisement
* Register (Address 4) and the Auto_Negotiation Base
* Page Ability Register (Address 5) to determine how
* flow control was negotiated.
*/
ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg);
if (ret_val)
return ret_val;
ret_val =
e1e_rphy(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg);
if (ret_val)
return ret_val;
/*
* Two bits in the Auto Negotiation Advertisement Register
* (Address 4) and two bits in the Auto Negotiation Base
* Page Ability Register (Address 5) determine flow control
* for both the PHY and the link partner. The following
* table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
* 1999, describes these PAUSE resolution bits and how flow
* control is determined based upon these settings.
* NOTE: DC = Don't Care
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
*-------|---------|-------|---------|--------------------
* 0 | 0 | DC | DC | e1000_fc_none
* 0 | 1 | 0 | DC | e1000_fc_none
* 0 | 1 | 1 | 0 | e1000_fc_none
* 0 | 1 | 1 | 1 | e1000_fc_tx_pause
* 1 | 0 | 0 | DC | e1000_fc_none
* 1 | DC | 1 | DC | e1000_fc_full
* 1 | 1 | 0 | 0 | e1000_fc_none
* 1 | 1 | 0 | 1 | e1000_fc_rx_pause
*
* Are both PAUSE bits set to 1? If so, this implies
* Symmetric Flow Control is enabled at both ends. The
* ASM_DIR bits are irrelevant per the spec.
*
* For Symmetric Flow Control:
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
*-------|---------|-------|---------|--------------------
* 1 | DC | 1 | DC | E1000_fc_full
*
*/
if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
/*
* Now we need to check if the user selected Rx ONLY
* of pause frames. In this case, we had to advertise
* FULL flow control because we could not advertise Rx
* ONLY. Hence, we must now check to see if we need to
* turn OFF the TRANSMISSION of PAUSE frames.
*/
if (hw->fc.requested_mode == e1000_fc_full) {
hw->fc.current_mode = e1000_fc_full;
e_dbg("Flow Control = FULL.\r\n");
} else {
hw->fc.current_mode = e1000_fc_rx_pause;
e_dbg("Flow Control = "
"Rx PAUSE frames only.\r\n");
}
}
/*
* For receiving PAUSE frames ONLY.
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
*-------|---------|-------|---------|--------------------
* 0 | 1 | 1 | 1 | e1000_fc_tx_pause
*/
else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
(mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
hw->fc.current_mode = e1000_fc_tx_pause;
e_dbg("Flow Control = Tx PAUSE frames only.\r\n");
}
/*
* For transmitting PAUSE frames ONLY.
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
*-------|---------|-------|---------|--------------------
* 1 | 1 | 0 | 1 | e1000_fc_rx_pause
*/
else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
(mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
!(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
hw->fc.current_mode = e1000_fc_rx_pause;
e_dbg("Flow Control = Rx PAUSE frames only.\r\n");
} else {
/*
* Per the IEEE spec, at this point flow control
* should be disabled.
*/
hw->fc.current_mode = e1000_fc_none;
e_dbg("Flow Control = NONE.\r\n");
}
/*
* Now we need to do one last check... If we auto-
* negotiated to HALF DUPLEX, flow control should not be
* enabled per IEEE 802.3 spec.
*/
ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
if (ret_val) {
e_dbg("Error getting link speed and duplex\n");
return ret_val;
}
if (duplex == HALF_DUPLEX)
hw->fc.current_mode = e1000_fc_none;
/*
* Now we call a subroutine to actually force the MAC
* controller to use the correct flow control settings.
*/
ret_val = e1000e_force_mac_fc(hw);
if (ret_val) {
e_dbg("Error forcing flow control settings\n");
return ret_val;
}
}
return 0;
}
/**
* e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex
* @hw: pointer to the HW structure
* @speed: stores the current speed
* @duplex: stores the current duplex
*
* Read the status register for the current speed/duplex and store the current
* speed and duplex for copper connections.
**/
s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, u16 *duplex)
{
u32 status;
status = er32(STATUS);
if (status & E1000_STATUS_SPEED_1000)
*speed = SPEED_1000;
else if (status & E1000_STATUS_SPEED_100)
*speed = SPEED_100;
else
*speed = SPEED_10;
if (status & E1000_STATUS_FD)
*duplex = FULL_DUPLEX;
else
*duplex = HALF_DUPLEX;
e_dbg("%u Mbps, %s Duplex\n",
*speed == SPEED_1000 ? 1000 : *speed == SPEED_100 ? 100 : 10,
*duplex == FULL_DUPLEX ? "Full" : "Half");
return 0;
}
/**
* e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex
* @hw: pointer to the HW structure
* @speed: stores the current speed
* @duplex: stores the current duplex
*
* Sets the speed and duplex to gigabit full duplex (the only possible option)
* for fiber/serdes links.
**/
s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed, u16 *duplex)
{
*speed = SPEED_1000;
*duplex = FULL_DUPLEX;
return 0;
}
/**
* e1000e_get_hw_semaphore - Acquire hardware semaphore
* @hw: pointer to the HW structure
*
* Acquire the HW semaphore to access the PHY or NVM
**/
s32 e1000e_get_hw_semaphore(struct e1000_hw *hw)
{
u32 swsm;
s32 timeout = hw->nvm.word_size + 1;
s32 i = 0;
/* Get the SW semaphore */
while (i < timeout) {
swsm = er32(SWSM);
if (!(swsm & E1000_SWSM_SMBI))
break;
udelay(50);
i++;
}
if (i == timeout) {
e_dbg("Driver can't access device - SMBI bit is set.\n");
return -E1000_ERR_NVM;
}
/* Get the FW semaphore. */
for (i = 0; i < timeout; i++) {
swsm = er32(SWSM);
ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
/* Semaphore acquired if bit latched */
if (er32(SWSM) & E1000_SWSM_SWESMBI)
break;
udelay(50);
}
if (i == timeout) {
/* Release semaphores */
e1000e_put_hw_semaphore(hw);
e_dbg("Driver can't access the NVM\n");
return -E1000_ERR_NVM;
}
return 0;
}
/**
* e1000e_put_hw_semaphore - Release hardware semaphore
* @hw: pointer to the HW structure
*
* Release hardware semaphore used to access the PHY or NVM
**/
void e1000e_put_hw_semaphore(struct e1000_hw *hw)
{
u32 swsm;
swsm = er32(SWSM);
swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
ew32(SWSM, swsm);
}
/**
* e1000e_get_auto_rd_done - Check for auto read completion
* @hw: pointer to the HW structure
*
* Check EEPROM for Auto Read done bit.
**/
s32 e1000e_get_auto_rd_done(struct e1000_hw *hw)
{
s32 i = 0;
while (i < AUTO_READ_DONE_TIMEOUT) {
if (er32(EECD) & E1000_EECD_AUTO_RD)
break;
usleep_range(1000, 2000);
i++;
}
if (i == AUTO_READ_DONE_TIMEOUT) {
e_dbg("Auto read by HW from NVM has not completed.\n");
return -E1000_ERR_RESET;
}
return 0;
}
/**
* e1000e_valid_led_default - Verify a valid default LED config
* @hw: pointer to the HW structure
* @data: pointer to the NVM (EEPROM)
*
* Read the EEPROM for the current default LED configuration. If the
* LED configuration is not valid, set to a valid LED configuration.
**/
s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data)
{
s32 ret_val;
ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
if (ret_val) {
e_dbg("NVM Read Error\n");
return ret_val;
}
if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
*data = ID_LED_DEFAULT;
return 0;
}
/**
* e1000e_id_led_init -
* @hw: pointer to the HW structure
*
**/
s32 e1000e_id_led_init(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
s32 ret_val;
const u32 ledctl_mask = 0x000000FF;
const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
u16 data, i, temp;
const u16 led_mask = 0x0F;
ret_val = hw->nvm.ops.valid_led_default(hw, &data);
if (ret_val)
return ret_val;
mac->ledctl_default = er32(LEDCTL);
mac->ledctl_mode1 = mac->ledctl_default;
mac->ledctl_mode2 = mac->ledctl_default;
for (i = 0; i < 4; i++) {
temp = (data >> (i << 2)) & led_mask;
switch (temp) {
case ID_LED_ON1_DEF2:
case ID_LED_ON1_ON2:
case ID_LED_ON1_OFF2:
mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
mac->ledctl_mode1 |= ledctl_on << (i << 3);
break;
case ID_LED_OFF1_DEF2:
case ID_LED_OFF1_ON2:
case ID_LED_OFF1_OFF2:
mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
mac->ledctl_mode1 |= ledctl_off << (i << 3);
break;
default:
/* Do nothing */
break;
}
switch (temp) {
case ID_LED_DEF1_ON2:
case ID_LED_ON1_ON2:
case ID_LED_OFF1_ON2:
mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
mac->ledctl_mode2 |= ledctl_on << (i << 3);
break;
case ID_LED_DEF1_OFF2:
case ID_LED_ON1_OFF2:
case ID_LED_OFF1_OFF2:
mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
mac->ledctl_mode2 |= ledctl_off << (i << 3);
break;
default:
/* Do nothing */
break;
}
}
return 0;
}
/**
* e1000e_setup_led_generic - Configures SW controllable LED
* @hw: pointer to the HW structure
*
* This prepares the SW controllable LED for use and saves the current state
* of the LED so it can be later restored.
**/
s32 e1000e_setup_led_generic(struct e1000_hw *hw)
{
u32 ledctl;
if (hw->mac.ops.setup_led != e1000e_setup_led_generic)
return -E1000_ERR_CONFIG;
if (hw->phy.media_type == e1000_media_type_fiber) {
ledctl = er32(LEDCTL);
hw->mac.ledctl_default = ledctl;
/* Turn off LED0 */
ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
E1000_LEDCTL_LED0_BLINK |
E1000_LEDCTL_LED0_MODE_MASK);
ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
E1000_LEDCTL_LED0_MODE_SHIFT);
ew32(LEDCTL, ledctl);
} else if (hw->phy.media_type == e1000_media_type_copper) {
ew32(LEDCTL, hw->mac.ledctl_mode1);
}
return 0;
}
/**
* e1000e_cleanup_led_generic - Set LED config to default operation
* @hw: pointer to the HW structure
*
* Remove the current LED configuration and set the LED configuration
* to the default value, saved from the EEPROM.
**/
s32 e1000e_cleanup_led_generic(struct e1000_hw *hw)
{
ew32(LEDCTL, hw->mac.ledctl_default);
return 0;
}
/**
* e1000e_blink_led_generic - Blink LED
* @hw: pointer to the HW structure
*
* Blink the LEDs which are set to be on.
**/
s32 e1000e_blink_led_generic(struct e1000_hw *hw)
{
u32 ledctl_blink = 0;
u32 i;
if (hw->phy.media_type == e1000_media_type_fiber) {
/* always blink LED0 for PCI-E fiber */
ledctl_blink = E1000_LEDCTL_LED0_BLINK |
(E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
} else {
/*
* set the blink bit for each LED that's "on" (0x0E)
* in ledctl_mode2
*/
ledctl_blink = hw->mac.ledctl_mode2;
for (i = 0; i < 4; i++)
if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
E1000_LEDCTL_MODE_LED_ON)
ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
(i * 8));
}
ew32(LEDCTL, ledctl_blink);
return 0;
}
/**
* e1000e_led_on_generic - Turn LED on
* @hw: pointer to the HW structure
*
* Turn LED on.
**/
s32 e1000e_led_on_generic(struct e1000_hw *hw)
{
u32 ctrl;
switch (hw->phy.media_type) {
case e1000_media_type_fiber:
ctrl = er32(CTRL);
ctrl &= ~E1000_CTRL_SWDPIN0;
ctrl |= E1000_CTRL_SWDPIO0;
ew32(CTRL, ctrl);
break;
case e1000_media_type_copper:
ew32(LEDCTL, hw->mac.ledctl_mode2);
break;
default:
break;
}
return 0;
}
/**
* e1000e_led_off_generic - Turn LED off
* @hw: pointer to the HW structure
*
* Turn LED off.
**/
s32 e1000e_led_off_generic(struct e1000_hw *hw)
{
u32 ctrl;
switch (hw->phy.media_type) {
case e1000_media_type_fiber:
ctrl = er32(CTRL);
ctrl |= E1000_CTRL_SWDPIN0;
ctrl |= E1000_CTRL_SWDPIO0;
ew32(CTRL, ctrl);
break;
case e1000_media_type_copper:
ew32(LEDCTL, hw->mac.ledctl_mode1);
break;
default:
break;
}
return 0;
}
/**
* e1000e_set_pcie_no_snoop - Set PCI-express capabilities
* @hw: pointer to the HW structure
* @no_snoop: bitmap of snoop events
*
* Set the PCI-express register to snoop for events enabled in 'no_snoop'.
**/
void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
{
u32 gcr;
if (no_snoop) {
gcr = er32(GCR);
gcr &= ~(PCIE_NO_SNOOP_ALL);
gcr |= no_snoop;
ew32(GCR, gcr);
}
}
/**
* e1000e_disable_pcie_master - Disables PCI-express master access
* @hw: pointer to the HW structure
*
* Returns 0 if successful, else returns -10
* (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
* the master requests to be disabled.
*
* Disables PCI-Express master access and verifies there are no pending
* requests.
**/
s32 e1000e_disable_pcie_master(struct e1000_hw *hw)
{
u32 ctrl;
s32 timeout = MASTER_DISABLE_TIMEOUT;
ctrl = er32(CTRL);
ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
ew32(CTRL, ctrl);
while (timeout) {
if (!(er32(STATUS) &
E1000_STATUS_GIO_MASTER_ENABLE))
break;
udelay(100);
timeout--;
}
if (!timeout) {
e_dbg("Master requests are pending.\n");
return -E1000_ERR_MASTER_REQUESTS_PENDING;
}
return 0;
}
/**
* e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
* @hw: pointer to the HW structure
*
* Reset the Adaptive Interframe Spacing throttle to default values.
**/
void e1000e_reset_adaptive(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
if (!mac->adaptive_ifs) {
e_dbg("Not in Adaptive IFS mode!\n");
goto out;
}
mac->current_ifs_val = 0;
mac->ifs_min_val = IFS_MIN;
mac->ifs_max_val = IFS_MAX;
mac->ifs_step_size = IFS_STEP;
mac->ifs_ratio = IFS_RATIO;
mac->in_ifs_mode = false;
ew32(AIT, 0);
out:
return;
}
/**
* e1000e_update_adaptive - Update Adaptive Interframe Spacing
* @hw: pointer to the HW structure
*
* Update the Adaptive Interframe Spacing Throttle value based on the
* time between transmitted packets and time between collisions.
**/
void e1000e_update_adaptive(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
if (!mac->adaptive_ifs) {
e_dbg("Not in Adaptive IFS mode!\n");
goto out;
}
if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
if (mac->tx_packet_delta > MIN_NUM_XMITS) {
mac->in_ifs_mode = true;
if (mac->current_ifs_val < mac->ifs_max_val) {
if (!mac->current_ifs_val)
mac->current_ifs_val = mac->ifs_min_val;
else
mac->current_ifs_val +=
mac->ifs_step_size;
ew32(AIT, mac->current_ifs_val);
}
}
} else {
if (mac->in_ifs_mode &&
(mac->tx_packet_delta <= MIN_NUM_XMITS)) {
mac->current_ifs_val = 0;
mac->in_ifs_mode = false;
ew32(AIT, 0);
}
}
out:
return;
}
/**
* e1000_raise_eec_clk - Raise EEPROM clock
* @hw: pointer to the HW structure
* @eecd: pointer to the EEPROM
*
* Enable/Raise the EEPROM clock bit.
**/
static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
{
*eecd = *eecd | E1000_EECD_SK;
ew32(EECD, *eecd);
e1e_flush();
udelay(hw->nvm.delay_usec);
}
/**
* e1000_lower_eec_clk - Lower EEPROM clock
* @hw: pointer to the HW structure
* @eecd: pointer to the EEPROM
*
* Clear/Lower the EEPROM clock bit.
**/
static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
{
*eecd = *eecd & ~E1000_EECD_SK;
ew32(EECD, *eecd);
e1e_flush();
udelay(hw->nvm.delay_usec);
}
/**
* e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
* @hw: pointer to the HW structure
* @data: data to send to the EEPROM
* @count: number of bits to shift out
*
* We need to shift 'count' bits out to the EEPROM. So, the value in the
* "data" parameter will be shifted out to the EEPROM one bit at a time.
* In order to do this, "data" must be broken down into bits.
**/
static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
{
struct e1000_nvm_info *nvm = &hw->nvm;
u32 eecd = er32(EECD);
u32 mask;
mask = 0x01 << (count - 1);
if (nvm->type == e1000_nvm_eeprom_spi)
eecd |= E1000_EECD_DO;
do {
eecd &= ~E1000_EECD_DI;
if (data & mask)
eecd |= E1000_EECD_DI;
ew32(EECD, eecd);
e1e_flush();
udelay(nvm->delay_usec);
e1000_raise_eec_clk(hw, &eecd);
e1000_lower_eec_clk(hw, &eecd);
mask >>= 1;
} while (mask);
eecd &= ~E1000_EECD_DI;
ew32(EECD, eecd);
}
/**
* e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
* @hw: pointer to the HW structure
* @count: number of bits to shift in
*
* In order to read a register from the EEPROM, we need to shift 'count' bits
* in from the EEPROM. Bits are "shifted in" by raising the clock input to
* the EEPROM (setting the SK bit), and then reading the value of the data out
* "DO" bit. During this "shifting in" process the data in "DI" bit should
* always be clear.
**/
static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
{
u32 eecd;
u32 i;
u16 data;
eecd = er32(EECD);
eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
data = 0;
for (i = 0; i < count; i++) {
data <<= 1;
e1000_raise_eec_clk(hw, &eecd);
eecd = er32(EECD);
eecd &= ~E1000_EECD_DI;
if (eecd & E1000_EECD_DO)
data |= 1;
e1000_lower_eec_clk(hw, &eecd);
}
return data;
}
/**
* e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion
* @hw: pointer to the HW structure
* @ee_reg: EEPROM flag for polling
*
* Polls the EEPROM status bit for either read or write completion based
* upon the value of 'ee_reg'.
**/
s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
{
u32 attempts = 100000;
u32 i, reg = 0;
for (i = 0; i < attempts; i++) {
if (ee_reg == E1000_NVM_POLL_READ)
reg = er32(EERD);
else
reg = er32(EEWR);
if (reg & E1000_NVM_RW_REG_DONE)
return 0;
udelay(5);
}
return -E1000_ERR_NVM;
}
/**
* e1000e_acquire_nvm - Generic request for access to EEPROM
* @hw: pointer to the HW structure
*
* Set the EEPROM access request bit and wait for EEPROM access grant bit.
* Return successful if access grant bit set, else clear the request for
* EEPROM access and return -E1000_ERR_NVM (-1).
**/
s32 e1000e_acquire_nvm(struct e1000_hw *hw)
{
u32 eecd = er32(EECD);
s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
ew32(EECD, eecd | E1000_EECD_REQ);
eecd = er32(EECD);
while (timeout) {
if (eecd & E1000_EECD_GNT)
break;
udelay(5);
eecd = er32(EECD);
timeout--;
}
if (!timeout) {
eecd &= ~E1000_EECD_REQ;
ew32(EECD, eecd);
e_dbg("Could not acquire NVM grant\n");
return -E1000_ERR_NVM;
}
return 0;
}
/**
* e1000_standby_nvm - Return EEPROM to standby state
* @hw: pointer to the HW structure
*
* Return the EEPROM to a standby state.
**/
static void e1000_standby_nvm(struct e1000_hw *hw)
{
struct e1000_nvm_info *nvm = &hw->nvm;
u32 eecd = er32(EECD);
if (nvm->type == e1000_nvm_eeprom_spi) {
/* Toggle CS to flush commands */
eecd |= E1000_EECD_CS;
ew32(EECD, eecd);
e1e_flush();
udelay(nvm->delay_usec);
eecd &= ~E1000_EECD_CS;
ew32(EECD, eecd);
e1e_flush();
udelay(nvm->delay_usec);
}
}
/**
* e1000_stop_nvm - Terminate EEPROM command
* @hw: pointer to the HW structure
*
* Terminates the current command by inverting the EEPROM's chip select pin.
**/
static void e1000_stop_nvm(struct e1000_hw *hw)
{
u32 eecd;
eecd = er32(EECD);
if (hw->nvm.type == e1000_nvm_eeprom_spi) {
/* Pull CS high */
eecd |= E1000_EECD_CS;
e1000_lower_eec_clk(hw, &eecd);
}
}
/**
* e1000e_release_nvm - Release exclusive access to EEPROM
* @hw: pointer to the HW structure
*
* Stop any current commands to the EEPROM and clear the EEPROM request bit.
**/
void e1000e_release_nvm(struct e1000_hw *hw)
{
u32 eecd;
e1000_stop_nvm(hw);
eecd = er32(EECD);
eecd &= ~E1000_EECD_REQ;
ew32(EECD, eecd);
}
/**
* e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
* @hw: pointer to the HW structure
*
* Setups the EEPROM for reading and writing.
**/
static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
{
struct e1000_nvm_info *nvm = &hw->nvm;
u32 eecd = er32(EECD);
u8 spi_stat_reg;
if (nvm->type == e1000_nvm_eeprom_spi) {
u16 timeout = NVM_MAX_RETRY_SPI;
/* Clear SK and CS */
eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
ew32(EECD, eecd);
e1e_flush();
udelay(1);
/*
* Read "Status Register" repeatedly until the LSB is cleared.
* The EEPROM will signal that the command has been completed
* by clearing bit 0 of the internal status register. If it's
* not cleared within 'timeout', then error out.
*/
while (timeout) {
e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
hw->nvm.opcode_bits);
spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
break;
udelay(5);
e1000_standby_nvm(hw);
timeout--;
}
if (!timeout) {
e_dbg("SPI NVM Status error\n");
return -E1000_ERR_NVM;
}
}
return 0;
}
/**
* e1000e_read_nvm_eerd - Reads EEPROM using EERD register
* @hw: pointer to the HW structure
* @offset: offset of word in the EEPROM to read
* @words: number of words to read
* @data: word read from the EEPROM
*
* Reads a 16 bit word from the EEPROM using the EERD register.
**/
s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
{
struct e1000_nvm_info *nvm = &hw->nvm;
u32 i, eerd = 0;
s32 ret_val = 0;
/*
* A check for invalid values: offset too large, too many words,
* too many words for the offset, and not enough words.
*/
if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
(words == 0)) {
e_dbg("nvm parameter(s) out of bounds\n");
return -E1000_ERR_NVM;
}
for (i = 0; i < words; i++) {
eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
E1000_NVM_RW_REG_START;
ew32(EERD, eerd);
ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
if (ret_val)
break;
data[i] = (er32(EERD) >> E1000_NVM_RW_REG_DATA);
}
return ret_val;
}
/**
* e1000e_write_nvm_spi - Write to EEPROM using SPI
* @hw: pointer to the HW structure
* @offset: offset within the EEPROM to be written to
* @words: number of words to write
* @data: 16 bit word(s) to be written to the EEPROM
*
* Writes data to EEPROM at offset using SPI interface.
*
* If e1000e_update_nvm_checksum is not called after this function , the
* EEPROM will most likely contain an invalid checksum.
**/
s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
{
struct e1000_nvm_info *nvm = &hw->nvm;
s32 ret_val;
u16 widx = 0;
/*
* A check for invalid values: offset too large, too many words,
* and not enough words.
*/
if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
(words == 0)) {
e_dbg("nvm parameter(s) out of bounds\n");
return -E1000_ERR_NVM;
}
ret_val = nvm->ops.acquire(hw);
if (ret_val)
return ret_val;
while (widx < words) {
u8 write_opcode = NVM_WRITE_OPCODE_SPI;
ret_val = e1000_ready_nvm_eeprom(hw);
if (ret_val) {
nvm->ops.release(hw);
return ret_val;
}
e1000_standby_nvm(hw);
/* Send the WRITE ENABLE command (8 bit opcode) */
e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
nvm->opcode_bits);
e1000_standby_nvm(hw);
/*
* Some SPI eeproms use the 8th address bit embedded in the
* opcode
*/
if ((nvm->address_bits == 8) && (offset >= 128))
write_opcode |= NVM_A8_OPCODE_SPI;
/* Send the Write command (8-bit opcode + addr) */
e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
nvm->address_bits);
/* Loop to allow for up to whole page write of eeprom */
while (widx < words) {
u16 word_out = data[widx];
word_out = (word_out >> 8) | (word_out << 8);
e1000_shift_out_eec_bits(hw, word_out, 16);
widx++;
if ((((offset + widx) * 2) % nvm->page_size) == 0) {
e1000_standby_nvm(hw);
break;
}
}
}
usleep_range(10000, 20000);
nvm->ops.release(hw);
return 0;
}
/**
* e1000_read_pba_string_generic - Read device part number
* @hw: pointer to the HW structure
* @pba_num: pointer to device part number
* @pba_num_size: size of part number buffer
*
* Reads the product board assembly (PBA) number from the EEPROM and stores
* the value in pba_num.
**/
s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
u32 pba_num_size)
{
s32 ret_val;
u16 nvm_data;
u16 pba_ptr;
u16 offset;
u16 length;
if (pba_num == NULL) {
e_dbg("PBA string buffer was null\n");
ret_val = E1000_ERR_INVALID_ARGUMENT;
goto out;
}
ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
if (ret_val) {
e_dbg("NVM Read Error\n");
goto out;
}
ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
if (ret_val) {
e_dbg("NVM Read Error\n");
goto out;
}
/*
* if nvm_data is not ptr guard the PBA must be in legacy format which
* means pba_ptr is actually our second data word for the PBA number
* and we can decode it into an ascii string
*/
if (nvm_data != NVM_PBA_PTR_GUARD) {
e_dbg("NVM PBA number is not stored as string\n");
/* we will need 11 characters to store the PBA */
if (pba_num_size < 11) {
e_dbg("PBA string buffer too small\n");
return E1000_ERR_NO_SPACE;
}
/* extract hex string from data and pba_ptr */
pba_num[0] = (nvm_data >> 12) & 0xF;
pba_num[1] = (nvm_data >> 8) & 0xF;
pba_num[2] = (nvm_data >> 4) & 0xF;
pba_num[3] = nvm_data & 0xF;
pba_num[4] = (pba_ptr >> 12) & 0xF;
pba_num[5] = (pba_ptr >> 8) & 0xF;
pba_num[6] = '-';
pba_num[7] = 0;
pba_num[8] = (pba_ptr >> 4) & 0xF;
pba_num[9] = pba_ptr & 0xF;
/* put a null character on the end of our string */
pba_num[10] = '\0';
/* switch all the data but the '-' to hex char */
for (offset = 0; offset < 10; offset++) {
if (pba_num[offset] < 0xA)
pba_num[offset] += '0';
else if (pba_num[offset] < 0x10)
pba_num[offset] += 'A' - 0xA;
}
goto out;
}
ret_val = e1000_read_nvm(hw, pba_ptr, 1, &length);
if (ret_val) {
e_dbg("NVM Read Error\n");
goto out;
}
if (length == 0xFFFF || length == 0) {
e_dbg("NVM PBA number section invalid length\n");
ret_val = E1000_ERR_NVM_PBA_SECTION;
goto out;
}
/* check if pba_num buffer is big enough */
if (pba_num_size < (((u32)length * 2) - 1)) {
e_dbg("PBA string buffer too small\n");
ret_val = E1000_ERR_NO_SPACE;
goto out;
}
/* trim pba length from start of string */
pba_ptr++;
length--;
for (offset = 0; offset < length; offset++) {
ret_val = e1000_read_nvm(hw, pba_ptr + offset, 1, &nvm_data);
if (ret_val) {
e_dbg("NVM Read Error\n");
goto out;
}
pba_num[offset * 2] = (u8)(nvm_data >> 8);
pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
}
pba_num[offset * 2] = '\0';
out:
return ret_val;
}
/**
* e1000_read_mac_addr_generic - Read device MAC address
* @hw: pointer to the HW structure
*
* Reads the device MAC address from the EEPROM and stores the value.
* Since devices with two ports use the same EEPROM, we increment the
* last bit in the MAC address for the second port.
**/
s32 e1000_read_mac_addr_generic(struct e1000_hw *hw)
{
u32 rar_high;
u32 rar_low;
u16 i;
rar_high = er32(RAH(0));
rar_low = er32(RAL(0));
for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8));
for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8));
for (i = 0; i < ETH_ALEN; i++)
hw->mac.addr[i] = hw->mac.perm_addr[i];
return 0;
}
/**
* e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum
* @hw: pointer to the HW structure
*
* Calculates the EEPROM checksum by reading/adding each word of the EEPROM
* and then verifies that the sum of the EEPROM is equal to 0xBABA.
**/
s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw)
{
s32 ret_val;
u16 checksum = 0;
u16 i, nvm_data;
for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
if (ret_val) {
e_dbg("NVM Read Error\n");
return ret_val;
}
checksum += nvm_data;
}
if (checksum != (u16) NVM_SUM) {
e_dbg("NVM Checksum Invalid\n");
return -E1000_ERR_NVM;
}
return 0;
}
/**
* e1000e_update_nvm_checksum_generic - Update EEPROM checksum
* @hw: pointer to the HW structure
*
* Updates the EEPROM checksum by reading/adding each word of the EEPROM
* up to the checksum. Then calculates the EEPROM checksum and writes the
* value to the EEPROM.
**/
s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw)
{
s32 ret_val;
u16 checksum = 0;
u16 i, nvm_data;
for (i = 0; i < NVM_CHECKSUM_REG; i++) {
ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
if (ret_val) {
e_dbg("NVM Read Error while updating checksum.\n");
return ret_val;
}
checksum += nvm_data;
}
checksum = (u16) NVM_SUM - checksum;
ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum);
if (ret_val)
e_dbg("NVM Write Error while updating checksum.\n");
return ret_val;
}
/**
* e1000e_reload_nvm - Reloads EEPROM
* @hw: pointer to the HW structure
*
* Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
* extended control register.
**/
void e1000e_reload_nvm(struct e1000_hw *hw)
{
u32 ctrl_ext;
udelay(10);
ctrl_ext = er32(CTRL_EXT);
ctrl_ext |= E1000_CTRL_EXT_EE_RST;
ew32(CTRL_EXT, ctrl_ext);
e1e_flush();
}
/**
* e1000_calculate_checksum - Calculate checksum for buffer
* @buffer: pointer to EEPROM
* @length: size of EEPROM to calculate a checksum for
*
* Calculates the checksum for some buffer on a specified length. The
* checksum calculated is returned.
**/
static u8 e1000_calculate_checksum(u8 *buffer, u32 length)
{
u32 i;
u8 sum = 0;
if (!buffer)
return 0;
for (i = 0; i < length; i++)
sum += buffer[i];
return (u8) (0 - sum);
}
/**
* e1000_mng_enable_host_if - Checks host interface is enabled
* @hw: pointer to the HW structure
*
* Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
*
* This function checks whether the HOST IF is enabled for command operation
* and also checks whether the previous command is completed. It busy waits
* in case of previous command is not completed.
**/
static s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
{
u32 hicr;
u8 i;
if (!(hw->mac.arc_subsystem_valid)) {
e_dbg("ARC subsystem not valid.\n");
return -E1000_ERR_HOST_INTERFACE_COMMAND;
}
/* Check that the host interface is enabled. */
hicr = er32(HICR);
if ((hicr & E1000_HICR_EN) == 0) {
e_dbg("E1000_HOST_EN bit disabled.\n");
return -E1000_ERR_HOST_INTERFACE_COMMAND;
}
/* check the previous command is completed */
for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
hicr = er32(HICR);
if (!(hicr & E1000_HICR_C))
break;
mdelay(1);
}
if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
e_dbg("Previous command timeout failed .\n");
return -E1000_ERR_HOST_INTERFACE_COMMAND;
}
return 0;
}
/**
* e1000e_check_mng_mode_generic - check management mode
* @hw: pointer to the HW structure
*
* Reads the firmware semaphore register and returns true (>0) if
* manageability is enabled, else false (0).
**/
bool e1000e_check_mng_mode_generic(struct e1000_hw *hw)
{
u32 fwsm = er32(FWSM);
return (fwsm & E1000_FWSM_MODE_MASK) ==
(E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
}
/**
* e1000e_enable_tx_pkt_filtering - Enable packet filtering on Tx
* @hw: pointer to the HW structure
*
* Enables packet filtering on transmit packets if manageability is enabled
* and host interface is enabled.
**/
bool e1000e_enable_tx_pkt_filtering(struct e1000_hw *hw)
{
struct e1000_host_mng_dhcp_cookie *hdr = &hw->mng_cookie;
u32 *buffer = (u32 *)&hw->mng_cookie;
u32 offset;
s32 ret_val, hdr_csum, csum;
u8 i, len;
hw->mac.tx_pkt_filtering = true;
/* No manageability, no filtering */
if (!e1000e_check_mng_mode(hw)) {
hw->mac.tx_pkt_filtering = false;
goto out;
}
/*
* If we can't read from the host interface for whatever
* reason, disable filtering.
*/
ret_val = e1000_mng_enable_host_if(hw);
if (ret_val) {
hw->mac.tx_pkt_filtering = false;
goto out;
}
/* Read in the header. Length and offset are in dwords. */
len = E1000_MNG_DHCP_COOKIE_LENGTH >> 2;
offset = E1000_MNG_DHCP_COOKIE_OFFSET >> 2;
for (i = 0; i < len; i++)
*(buffer + i) = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset + i);
hdr_csum = hdr->checksum;
hdr->checksum = 0;
csum = e1000_calculate_checksum((u8 *)hdr,
E1000_MNG_DHCP_COOKIE_LENGTH);
/*
* If either the checksums or signature don't match, then
* the cookie area isn't considered valid, in which case we
* take the safe route of assuming Tx filtering is enabled.
*/
if ((hdr_csum != csum) || (hdr->signature != E1000_IAMT_SIGNATURE)) {
hw->mac.tx_pkt_filtering = true;
goto out;
}
/* Cookie area is valid, make the final check for filtering. */
if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING)) {
hw->mac.tx_pkt_filtering = false;
goto out;
}
out:
return hw->mac.tx_pkt_filtering;
}
/**
* e1000_mng_write_cmd_header - Writes manageability command header
* @hw: pointer to the HW structure
* @hdr: pointer to the host interface command header
*
* Writes the command header after does the checksum calculation.
**/
static s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
struct e1000_host_mng_command_header *hdr)
{
u16 i, length = sizeof(struct e1000_host_mng_command_header);
/* Write the whole command header structure with new checksum. */
hdr->checksum = e1000_calculate_checksum((u8 *)hdr, length);
length >>= 2;
/* Write the relevant command block into the ram area. */
for (i = 0; i < length; i++) {
E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, i,
*((u32 *) hdr + i));
e1e_flush();
}
return 0;
}
/**
* e1000_mng_host_if_write - Write to the manageability host interface
* @hw: pointer to the HW structure
* @buffer: pointer to the host interface buffer
* @length: size of the buffer
* @offset: location in the buffer to write to
* @sum: sum of the data (not checksum)
*
* This function writes the buffer content at the offset given on the host if.
* It also does alignment considerations to do the writes in most efficient
* way. Also fills up the sum of the buffer in *buffer parameter.
**/
static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer,
u16 length, u16 offset, u8 *sum)
{
u8 *tmp;
u8 *bufptr = buffer;
u32 data = 0;
u16 remaining, i, j, prev_bytes;
/* sum = only sum of the data and it is not checksum */
if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH)
return -E1000_ERR_PARAM;
tmp = (u8 *)&data;
prev_bytes = offset & 0x3;
offset >>= 2;
if (prev_bytes) {
data = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset);
for (j = prev_bytes; j < sizeof(u32); j++) {
*(tmp + j) = *bufptr++;
*sum += *(tmp + j);
}
E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset, data);
length -= j - prev_bytes;
offset++;
}
remaining = length & 0x3;
length -= remaining;
/* Calculate length in DWORDs */
length >>= 2;
/*
* The device driver writes the relevant command block into the
* ram area.
*/
for (i = 0; i < length; i++) {
for (j = 0; j < sizeof(u32); j++) {
*(tmp + j) = *bufptr++;
*sum += *(tmp + j);
}
E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data);
}
if (remaining) {
for (j = 0; j < sizeof(u32); j++) {
if (j < remaining)
*(tmp + j) = *bufptr++;
else
*(tmp + j) = 0;
*sum += *(tmp + j);
}
E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data);
}
return 0;
}
/**
* e1000e_mng_write_dhcp_info - Writes DHCP info to host interface
* @hw: pointer to the HW structure
* @buffer: pointer to the host interface
* @length: size of the buffer
*
* Writes the DHCP information to the host interface.
**/
s32 e1000e_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
{
struct e1000_host_mng_command_header hdr;
s32 ret_val;
u32 hicr;
hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
hdr.command_length = length;
hdr.reserved1 = 0;
hdr.reserved2 = 0;
hdr.checksum = 0;
/* Enable the host interface */
ret_val = e1000_mng_enable_host_if(hw);
if (ret_val)
return ret_val;
/* Populate the host interface with the contents of "buffer". */
ret_val = e1000_mng_host_if_write(hw, buffer, length,
sizeof(hdr), &(hdr.checksum));
if (ret_val)
return ret_val;
/* Write the manageability command header */
ret_val = e1000_mng_write_cmd_header(hw, &hdr);
if (ret_val)
return ret_val;
/* Tell the ARC a new command is pending. */
hicr = er32(HICR);
ew32(HICR, hicr | E1000_HICR_C);
return 0;
}
/**
* e1000e_enable_mng_pass_thru - Check if management passthrough is needed
* @hw: pointer to the HW structure
*
* Verifies the hardware needs to leave interface enabled so that frames can
* be directed to and from the management interface.
**/
bool e1000e_enable_mng_pass_thru(struct e1000_hw *hw)
{
u32 manc;
u32 fwsm, factps;
bool ret_val = false;
manc = er32(MANC);
if (!(manc & E1000_MANC_RCV_TCO_EN))
goto out;
if (hw->mac.has_fwsm) {
fwsm = er32(FWSM);
factps = er32(FACTPS);
if (!(factps & E1000_FACTPS_MNGCG) &&
((fwsm & E1000_FWSM_MODE_MASK) ==
(e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
ret_val = true;
goto out;
}
} else if ((hw->mac.type == e1000_82574) ||
(hw->mac.type == e1000_82583)) {
u16 data;
factps = er32(FACTPS);
e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
if (!(factps & E1000_FACTPS_MNGCG) &&
((data & E1000_NVM_INIT_CTRL2_MNGM) ==
(e1000_mng_mode_pt << 13))) {
ret_val = true;
goto out;
}
} else if ((manc & E1000_MANC_SMBUS_EN) &&
!(manc & E1000_MANC_ASF_EN)) {
ret_val = true;
goto out;
}
out:
return ret_val;
}
-------------- n?chster Teil --------------
/*******************************************************************************
Intel PRO/1000 Linux driver
Copyright(c) 1999 - 2011 Intel Corporation.
This program is free software; you can redistribute it and/or modify it
under the terms and conditions of the GNU General Public License,
version 2, as published by the Free Software Foundation.
This program is distributed in the hope it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
The full GNU General Public License is included in this distribution in
the file called "COPYING".
Contact Information:
Linux NICS <linux.nics at intel.com>
e1000-devel Mailing List <e1000-devel at lists.sourceforge.net>
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*******************************************************************************/
/* ethtool support for e1000 */
#include <linux/netdevice.h>
#include <linux/interrupt.h>
#include <linux/ethtool.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include "e1000-3.2.0-ethercat.h"
enum {NETDEV_STATS, E1000_STATS};
struct e1000_stats {
char stat_string[ETH_GSTRING_LEN];
int type;
int sizeof_stat;
int stat_offset;
};
#define E1000_STAT(str, m) { \
.stat_string = str, \
.type = E1000_STATS, \
.sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
.stat_offset = offsetof(struct e1000_adapter, m) }
#define E1000_NETDEV_STAT(str, m) { \
.stat_string = str, \
.type = NETDEV_STATS, \
.sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
.stat_offset = offsetof(struct rtnl_link_stats64, m) }
static const struct e1000_stats e1000_gstrings_stats[] = {
E1000_STAT("rx_packets", stats.gprc),
E1000_STAT("tx_packets", stats.gptc),
E1000_STAT("rx_bytes", stats.gorc),
E1000_STAT("tx_bytes", stats.gotc),
E1000_STAT("rx_broadcast", stats.bprc),
E1000_STAT("tx_broadcast", stats.bptc),
E1000_STAT("rx_multicast", stats.mprc),
E1000_STAT("tx_multicast", stats.mptc),
E1000_NETDEV_STAT("rx_errors", rx_errors),
E1000_NETDEV_STAT("tx_errors", tx_errors),
E1000_NETDEV_STAT("tx_dropped", tx_dropped),
E1000_STAT("multicast", stats.mprc),
E1000_STAT("collisions", stats.colc),
E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
E1000_STAT("rx_crc_errors", stats.crcerrs),
E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
E1000_STAT("rx_no_buffer_count", stats.rnbc),
E1000_STAT("rx_missed_errors", stats.mpc),
E1000_STAT("tx_aborted_errors", stats.ecol),
E1000_STAT("tx_carrier_errors", stats.tncrs),
E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
E1000_STAT("tx_window_errors", stats.latecol),
E1000_STAT("tx_abort_late_coll", stats.latecol),
E1000_STAT("tx_deferred_ok", stats.dc),
E1000_STAT("tx_single_coll_ok", stats.scc),
E1000_STAT("tx_multi_coll_ok", stats.mcc),
E1000_STAT("tx_timeout_count", tx_timeout_count),
E1000_STAT("tx_restart_queue", restart_queue),
E1000_STAT("rx_long_length_errors", stats.roc),
E1000_STAT("rx_short_length_errors", stats.ruc),
E1000_STAT("rx_align_errors", stats.algnerrc),
E1000_STAT("tx_tcp_seg_good", stats.tsctc),
E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
E1000_STAT("rx_flow_control_xon", stats.xonrxc),
E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
E1000_STAT("tx_flow_control_xon", stats.xontxc),
E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
E1000_STAT("rx_long_byte_count", stats.gorc),
E1000_STAT("rx_csum_offload_good", hw_csum_good),
E1000_STAT("rx_csum_offload_errors", hw_csum_err),
E1000_STAT("rx_header_split", rx_hdr_split),
E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
E1000_STAT("tx_smbus", stats.mgptc),
E1000_STAT("rx_smbus", stats.mgprc),
E1000_STAT("dropped_smbus", stats.mgpdc),
E1000_STAT("rx_dma_failed", rx_dma_failed),
E1000_STAT("tx_dma_failed", tx_dma_failed),
};
#define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
"Register test (offline)", "Eeprom test (offline)",
"Interrupt test (offline)", "Loopback test (offline)",
"Link test (on/offline)"
};
#define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
static int e1000_get_settings(struct net_device *netdev,
struct ethtool_cmd *ecmd)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 speed;
if (hw->phy.media_type == e1000_media_type_copper) {
ecmd->supported = (SUPPORTED_10baseT_Half |
SUPPORTED_10baseT_Full |
SUPPORTED_100baseT_Half |
SUPPORTED_100baseT_Full |
SUPPORTED_1000baseT_Full |
SUPPORTED_Autoneg |
SUPPORTED_TP);
if (hw->phy.type == e1000_phy_ife)
ecmd->supported &= ~SUPPORTED_1000baseT_Full;
ecmd->advertising = ADVERTISED_TP;
if (hw->mac.autoneg == 1) {
ecmd->advertising |= ADVERTISED_Autoneg;
/* the e1000 autoneg seems to match ethtool nicely */
ecmd->advertising |= hw->phy.autoneg_advertised;
}
ecmd->port = PORT_TP;
ecmd->phy_address = hw->phy.addr;
ecmd->transceiver = XCVR_INTERNAL;
} else {
ecmd->supported = (SUPPORTED_1000baseT_Full |
SUPPORTED_FIBRE |
SUPPORTED_Autoneg);
ecmd->advertising = (ADVERTISED_1000baseT_Full |
ADVERTISED_FIBRE |
ADVERTISED_Autoneg);
ecmd->port = PORT_FIBRE;
ecmd->transceiver = XCVR_EXTERNAL;
}
speed = -1;
ecmd->duplex = -1;
if (netif_running(netdev)) {
if (netif_carrier_ok(netdev)) {
speed = adapter->link_speed;
ecmd->duplex = adapter->link_duplex - 1;
}
} else {
u32 status = er32(STATUS);
if (status & E1000_STATUS_LU) {
if (status & E1000_STATUS_SPEED_1000)
speed = SPEED_1000;
else if (status & E1000_STATUS_SPEED_100)
speed = SPEED_100;
else
speed = SPEED_10;
if (status & E1000_STATUS_FD)
ecmd->duplex = DUPLEX_FULL;
else
ecmd->duplex = DUPLEX_HALF;
}
}
ethtool_cmd_speed_set(ecmd, speed);
ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
/* MDI-X => 2; MDI =>1; Invalid =>0 */
if ((hw->phy.media_type == e1000_media_type_copper) &&
netif_carrier_ok(netdev))
ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
ETH_TP_MDI;
else
ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
return 0;
}
static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
{
struct e1000_mac_info *mac = &adapter->hw.mac;
mac->autoneg = 0;
/* Make sure dplx is at most 1 bit and lsb of speed is not set
* for the switch() below to work */
if ((spd & 1) || (dplx & ~1))
goto err_inval;
/* Fiber NICs only allow 1000 gbps Full duplex */
if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
spd != SPEED_1000 &&
dplx != DUPLEX_FULL) {
goto err_inval;
}
switch (spd + dplx) {
case SPEED_10 + DUPLEX_HALF:
mac->forced_speed_duplex = ADVERTISE_10_HALF;
break;
case SPEED_10 + DUPLEX_FULL:
mac->forced_speed_duplex = ADVERTISE_10_FULL;
break;
case SPEED_100 + DUPLEX_HALF:
mac->forced_speed_duplex = ADVERTISE_100_HALF;
break;
case SPEED_100 + DUPLEX_FULL:
mac->forced_speed_duplex = ADVERTISE_100_FULL;
break;
case SPEED_1000 + DUPLEX_FULL:
mac->autoneg = 1;
adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
break;
case SPEED_1000 + DUPLEX_HALF: /* not supported */
default:
goto err_inval;
}
return 0;
err_inval:
e_err("Unsupported Speed/Duplex configuration\n");
return -EINVAL;
}
static int e1000_set_settings(struct net_device *netdev,
struct ethtool_cmd *ecmd)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
/*
* When SoL/IDER sessions are active, autoneg/speed/duplex
* cannot be changed
*/
if (e1000_check_reset_block(hw)) {
e_err("Cannot change link characteristics when SoL/IDER is "
"active.\n");
return -EINVAL;
}
while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
usleep_range(1000, 2000);
if (ecmd->autoneg == AUTONEG_ENABLE) {
hw->mac.autoneg = 1;
if (hw->phy.media_type == e1000_media_type_fiber)
hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
ADVERTISED_FIBRE |
ADVERTISED_Autoneg;
else
hw->phy.autoneg_advertised = ecmd->advertising |
ADVERTISED_TP |
ADVERTISED_Autoneg;
ecmd->advertising = hw->phy.autoneg_advertised;
if (adapter->fc_autoneg)
hw->fc.requested_mode = e1000_fc_default;
} else {
u32 speed = ethtool_cmd_speed(ecmd);
if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
clear_bit(__E1000_RESETTING, &adapter->state);
return -EINVAL;
}
}
/* reset the link */
if (netif_running(adapter->netdev)) {
e1000e_down(adapter);
e1000e_up(adapter);
} else {
e1000e_reset(adapter);
}
clear_bit(__E1000_RESETTING, &adapter->state);
return 0;
}
static void e1000_get_pauseparam(struct net_device *netdev,
struct ethtool_pauseparam *pause)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
pause->autoneg =
(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
if (hw->fc.current_mode == e1000_fc_rx_pause) {
pause->rx_pause = 1;
} else if (hw->fc.current_mode == e1000_fc_tx_pause) {
pause->tx_pause = 1;
} else if (hw->fc.current_mode == e1000_fc_full) {
pause->rx_pause = 1;
pause->tx_pause = 1;
}
}
static int e1000_set_pauseparam(struct net_device *netdev,
struct ethtool_pauseparam *pause)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
int retval = 0;
adapter->fc_autoneg = pause->autoneg;
while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
usleep_range(1000, 2000);
if (adapter->fc_autoneg == AUTONEG_ENABLE) {
hw->fc.requested_mode = e1000_fc_default;
if (netif_running(adapter->netdev)) {
e1000e_down(adapter);
e1000e_up(adapter);
} else {
e1000e_reset(adapter);
}
} else {
if (pause->rx_pause && pause->tx_pause)
hw->fc.requested_mode = e1000_fc_full;
else if (pause->rx_pause && !pause->tx_pause)
hw->fc.requested_mode = e1000_fc_rx_pause;
else if (!pause->rx_pause && pause->tx_pause)
hw->fc.requested_mode = e1000_fc_tx_pause;
else if (!pause->rx_pause && !pause->tx_pause)
hw->fc.requested_mode = e1000_fc_none;
hw->fc.current_mode = hw->fc.requested_mode;
if (hw->phy.media_type == e1000_media_type_fiber) {
retval = hw->mac.ops.setup_link(hw);
/* implicit goto out */
} else {
retval = e1000e_force_mac_fc(hw);
if (retval)
goto out;
e1000e_set_fc_watermarks(hw);
}
}
out:
clear_bit(__E1000_RESETTING, &adapter->state);
return retval;
}
static u32 e1000_get_msglevel(struct net_device *netdev)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
return adapter->msg_enable;
}
static void e1000_set_msglevel(struct net_device *netdev, u32 data)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
adapter->msg_enable = data;
}
static int e1000_get_regs_len(struct net_device *netdev)
{
#define E1000_REGS_LEN 32 /* overestimate */
return E1000_REGS_LEN * sizeof(u32);
}
static void e1000_get_regs(struct net_device *netdev,
struct ethtool_regs *regs, void *p)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 *regs_buff = p;
u16 phy_data;
memset(p, 0, E1000_REGS_LEN * sizeof(u32));
regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
adapter->pdev->device;
regs_buff[0] = er32(CTRL);
regs_buff[1] = er32(STATUS);
regs_buff[2] = er32(RCTL);
regs_buff[3] = er32(RDLEN);
regs_buff[4] = er32(RDH);
regs_buff[5] = er32(RDT);
regs_buff[6] = er32(RDTR);
regs_buff[7] = er32(TCTL);
regs_buff[8] = er32(TDLEN);
regs_buff[9] = er32(TDH);
regs_buff[10] = er32(TDT);
regs_buff[11] = er32(TIDV);
regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */
/* ethtool doesn't use anything past this point, so all this
* code is likely legacy junk for apps that may or may not
* exist */
if (hw->phy.type == e1000_phy_m88) {
e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
regs_buff[13] = (u32)phy_data; /* cable length */
regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
regs_buff[18] = regs_buff[13]; /* cable polarity */
regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
regs_buff[20] = regs_buff[17]; /* polarity correction */
/* phy receive errors */
regs_buff[22] = adapter->phy_stats.receive_errors;
regs_buff[23] = regs_buff[13]; /* mdix mode */
}
regs_buff[21] = 0; /* was idle_errors */
e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
regs_buff[24] = (u32)phy_data; /* phy local receiver status */
regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
}
static int e1000_get_eeprom_len(struct net_device *netdev)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
return adapter->hw.nvm.word_size * 2;
}
static int e1000_get_eeprom(struct net_device *netdev,
struct ethtool_eeprom *eeprom, u8 *bytes)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u16 *eeprom_buff;
int first_word;
int last_word;
int ret_val = 0;
u16 i;
if (eeprom->len == 0)
return -EINVAL;
eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
first_word = eeprom->offset >> 1;
last_word = (eeprom->offset + eeprom->len - 1) >> 1;
eeprom_buff = kmalloc(sizeof(u16) *
(last_word - first_word + 1), GFP_KERNEL);
if (!eeprom_buff)
return -ENOMEM;
if (hw->nvm.type == e1000_nvm_eeprom_spi) {
ret_val = e1000_read_nvm(hw, first_word,
last_word - first_word + 1,
eeprom_buff);
} else {
for (i = 0; i < last_word - first_word + 1; i++) {
ret_val = e1000_read_nvm(hw, first_word + i, 1,
&eeprom_buff[i]);
if (ret_val)
break;
}
}
if (ret_val) {
/* a read error occurred, throw away the result */
memset(eeprom_buff, 0xff, sizeof(u16) *
(last_word - first_word + 1));
} else {
/* Device's eeprom is always little-endian, word addressable */
for (i = 0; i < last_word - first_word + 1; i++)
le16_to_cpus(&eeprom_buff[i]);
}
memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
kfree(eeprom_buff);
return ret_val;
}
static int e1000_set_eeprom(struct net_device *netdev,
struct ethtool_eeprom *eeprom, u8 *bytes)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u16 *eeprom_buff;
void *ptr;
int max_len;
int first_word;
int last_word;
int ret_val = 0;
u16 i;
if (eeprom->len == 0)
return -EOPNOTSUPP;
if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
return -EFAULT;
if (adapter->flags & FLAG_READ_ONLY_NVM)
return -EINVAL;
max_len = hw->nvm.word_size * 2;
first_word = eeprom->offset >> 1;
last_word = (eeprom->offset + eeprom->len - 1) >> 1;
eeprom_buff = kmalloc(max_len, GFP_KERNEL);
if (!eeprom_buff)
return -ENOMEM;
ptr = (void *)eeprom_buff;
if (eeprom->offset & 1) {
/* need read/modify/write of first changed EEPROM word */
/* only the second byte of the word is being modified */
ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
ptr++;
}
if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0))
/* need read/modify/write of last changed EEPROM word */
/* only the first byte of the word is being modified */
ret_val = e1000_read_nvm(hw, last_word, 1,
&eeprom_buff[last_word - first_word]);
if (ret_val)
goto out;
/* Device's eeprom is always little-endian, word addressable */
for (i = 0; i < last_word - first_word + 1; i++)
le16_to_cpus(&eeprom_buff[i]);
memcpy(ptr, bytes, eeprom->len);
for (i = 0; i < last_word - first_word + 1; i++)
eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
ret_val = e1000_write_nvm(hw, first_word,
last_word - first_word + 1, eeprom_buff);
if (ret_val)
goto out;
/*
* Update the checksum over the first part of the EEPROM if needed
* and flush shadow RAM for applicable controllers
*/
if ((first_word <= NVM_CHECKSUM_REG) ||
(hw->mac.type == e1000_82583) ||
(hw->mac.type == e1000_82574) ||
(hw->mac.type == e1000_82573))
ret_val = e1000e_update_nvm_checksum(hw);
out:
kfree(eeprom_buff);
return ret_val;
}
static void e1000_get_drvinfo(struct net_device *netdev,
struct ethtool_drvinfo *drvinfo)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
char firmware_version[32];
strncpy(drvinfo->driver, e1000e_driver_name,
sizeof(drvinfo->driver) - 1);
strncpy(drvinfo->version, e1000e_driver_version,
sizeof(drvinfo->version) - 1);
/*
* EEPROM image version # is reported as firmware version # for
* PCI-E controllers
*/
snprintf(firmware_version, sizeof(firmware_version), "%d.%d-%d",
(adapter->eeprom_vers & 0xF000) >> 12,
(adapter->eeprom_vers & 0x0FF0) >> 4,
(adapter->eeprom_vers & 0x000F));
strncpy(drvinfo->fw_version, firmware_version,
sizeof(drvinfo->fw_version) - 1);
strncpy(drvinfo->bus_info, pci_name(adapter->pdev),
sizeof(drvinfo->bus_info) - 1);
drvinfo->regdump_len = e1000_get_regs_len(netdev);
drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
}
static void e1000_get_ringparam(struct net_device *netdev,
struct ethtool_ringparam *ring)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_ring *tx_ring = adapter->tx_ring;
struct e1000_ring *rx_ring = adapter->rx_ring;
ring->rx_max_pending = E1000_MAX_RXD;
ring->tx_max_pending = E1000_MAX_TXD;
ring->rx_pending = rx_ring->count;
ring->tx_pending = tx_ring->count;
}
static int e1000_set_ringparam(struct net_device *netdev,
struct ethtool_ringparam *ring)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_ring *tx_ring, *tx_old;
struct e1000_ring *rx_ring, *rx_old;
int err;
if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
return -EINVAL;
while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
usleep_range(1000, 2000);
if (netif_running(adapter->netdev))
e1000e_down(adapter);
tx_old = adapter->tx_ring;
rx_old = adapter->rx_ring;
err = -ENOMEM;
tx_ring = kmemdup(tx_old, sizeof(struct e1000_ring), GFP_KERNEL);
if (!tx_ring)
goto err_alloc_tx;
rx_ring = kmemdup(rx_old, sizeof(struct e1000_ring), GFP_KERNEL);
if (!rx_ring)
goto err_alloc_rx;
adapter->tx_ring = tx_ring;
adapter->rx_ring = rx_ring;
rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD));
rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);
tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD));
tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);
if (netif_running(adapter->netdev)) {
/* Try to get new resources before deleting old */
err = e1000e_setup_rx_resources(adapter);
if (err)
goto err_setup_rx;
err = e1000e_setup_tx_resources(adapter);
if (err)
goto err_setup_tx;
/*
* restore the old in order to free it,
* then add in the new
*/
adapter->rx_ring = rx_old;
adapter->tx_ring = tx_old;
e1000e_free_rx_resources(adapter);
e1000e_free_tx_resources(adapter);
kfree(tx_old);
kfree(rx_old);
adapter->rx_ring = rx_ring;
adapter->tx_ring = tx_ring;
err = e1000e_up(adapter);
if (err)
goto err_setup;
}
clear_bit(__E1000_RESETTING, &adapter->state);
return 0;
err_setup_tx:
e1000e_free_rx_resources(adapter);
err_setup_rx:
adapter->rx_ring = rx_old;
adapter->tx_ring = tx_old;
kfree(rx_ring);
err_alloc_rx:
kfree(tx_ring);
err_alloc_tx:
e1000e_up(adapter);
err_setup:
clear_bit(__E1000_RESETTING, &adapter->state);
return err;
}
static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
int reg, int offset, u32 mask, u32 write)
{
u32 pat, val;
static const u32 test[] = {
0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
(test[pat] & write));
val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
if (val != (test[pat] & write & mask)) {
e_err("pattern test reg %04X failed: got 0x%08X "
"expected 0x%08X\n", reg + offset, val,
(test[pat] & write & mask));
*data = reg;
return 1;
}
}
return 0;
}
static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
int reg, u32 mask, u32 write)
{
u32 val;
__ew32(&adapter->hw, reg, write & mask);
val = __er32(&adapter->hw, reg);
if ((write & mask) != (val & mask)) {
e_err("set/check reg %04X test failed: got 0x%08X "
"expected 0x%08X\n", reg, (val & mask), (write & mask));
*data = reg;
return 1;
}
return 0;
}
#define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \
do { \
if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
return 1; \
} while (0)
#define REG_PATTERN_TEST(reg, mask, write) \
REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
#define REG_SET_AND_CHECK(reg, mask, write) \
do { \
if (reg_set_and_check(adapter, data, reg, mask, write)) \
return 1; \
} while (0)
static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
{
struct e1000_hw *hw = &adapter->hw;
struct e1000_mac_info *mac = &adapter->hw.mac;
u32 value;
u32 before;
u32 after;
u32 i;
u32 toggle;
u32 mask;
/*
* The status register is Read Only, so a write should fail.
* Some bits that get toggled are ignored.
*/
switch (mac->type) {
/* there are several bits on newer hardware that are r/w */
case e1000_82571:
case e1000_82572:
case e1000_80003es2lan:
toggle = 0x7FFFF3FF;
break;
default:
toggle = 0x7FFFF033;
break;
}
before = er32(STATUS);
value = (er32(STATUS) & toggle);
ew32(STATUS, toggle);
after = er32(STATUS) & toggle;
if (value != after) {
e_err("failed STATUS register test got: 0x%08X expected: "
"0x%08X\n", after, value);
*data = 1;
return 1;
}
/* restore previous status */
ew32(STATUS, before);
if (!(adapter->flags & FLAG_IS_ICH)) {
REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
}
REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);
REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
if (!(adapter->flags & FLAG_IS_ICH))
REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
mask = 0x8003FFFF;
switch (mac->type) {
case e1000_ich10lan:
case e1000_pchlan:
case e1000_pch2lan:
mask |= (1 << 18);
break;
default:
break;
}
for (i = 0; i < mac->rar_entry_count; i++)
REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
mask, 0xFFFFFFFF);
for (i = 0; i < mac->mta_reg_count; i++)
REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
*data = 0;
return 0;
}
static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
{
u16 temp;
u16 checksum = 0;
u16 i;
*data = 0;
/* Read and add up the contents of the EEPROM */
for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
*data = 1;
return *data;
}
checksum += temp;
}
/* If Checksum is not Correct return error else test passed */
if ((checksum != (u16) NVM_SUM) && !(*data))
*data = 2;
return *data;
}
static irqreturn_t e1000_test_intr(int irq, void *data)
{
struct net_device *netdev = (struct net_device *) data;
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
adapter->test_icr |= er32(ICR);
return IRQ_HANDLED;
}
static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
{
struct net_device *netdev = adapter->netdev;
struct e1000_hw *hw = &adapter->hw;
u32 mask;
u32 shared_int = 1;
u32 irq = adapter->pdev->irq;
int i;
int ret_val = 0;
int int_mode = E1000E_INT_MODE_LEGACY;
*data = 0;
/* NOTE: we don't test MSI/MSI-X interrupts here, yet */
if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
int_mode = adapter->int_mode;
e1000e_reset_interrupt_capability(adapter);
adapter->int_mode = E1000E_INT_MODE_LEGACY;
e1000e_set_interrupt_capability(adapter);
}
/* Hook up test interrupt handler just for this test */
if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
netdev)) {
shared_int = 0;
} else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
netdev->name, netdev)) {
*data = 1;
ret_val = -1;
goto out;
}
e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
/* Disable all the interrupts */
ew32(IMC, 0xFFFFFFFF);
e1e_flush();
usleep_range(10000, 20000);
/* Test each interrupt */
for (i = 0; i < 10; i++) {
/* Interrupt to test */
mask = 1 << i;
if (adapter->flags & FLAG_IS_ICH) {
switch (mask) {
case E1000_ICR_RXSEQ:
continue;
case 0x00000100:
if (adapter->hw.mac.type == e1000_ich8lan ||
adapter->hw.mac.type == e1000_ich9lan)
continue;
break;
default:
break;
}
}
if (!shared_int) {
/*
* Disable the interrupt to be reported in
* the cause register and then force the same
* interrupt and see if one gets posted. If
* an interrupt was posted to the bus, the
* test failed.
*/
adapter->test_icr = 0;
ew32(IMC, mask);
ew32(ICS, mask);
e1e_flush();
usleep_range(10000, 20000);
if (adapter->test_icr & mask) {
*data = 3;
break;
}
}
/*
* Enable the interrupt to be reported in
* the cause register and then force the same
* interrupt and see if one gets posted. If
* an interrupt was not posted to the bus, the
* test failed.
*/
adapter->test_icr = 0;
ew32(IMS, mask);
ew32(ICS, mask);
e1e_flush();
usleep_range(10000, 20000);
if (!(adapter->test_icr & mask)) {
*data = 4;
break;
}
if (!shared_int) {
/*
* Disable the other interrupts to be reported in
* the cause register and then force the other
* interrupts and see if any get posted. If
* an interrupt was posted to the bus, the
* test failed.
*/
adapter->test_icr = 0;
ew32(IMC, ~mask & 0x00007FFF);
ew32(ICS, ~mask & 0x00007FFF);
e1e_flush();
usleep_range(10000, 20000);
if (adapter->test_icr) {
*data = 5;
break;
}
}
}
/* Disable all the interrupts */
ew32(IMC, 0xFFFFFFFF);
e1e_flush();
usleep_range(10000, 20000);
/* Unhook test interrupt handler */
free_irq(irq, netdev);
out:
if (int_mode == E1000E_INT_MODE_MSIX) {
e1000e_reset_interrupt_capability(adapter);
adapter->int_mode = int_mode;
e1000e_set_interrupt_capability(adapter);
}
return ret_val;
}
static void e1000_free_desc_rings(struct e1000_adapter *adapter)
{
struct e1000_ring *tx_ring = &adapter->test_tx_ring;
struct e1000_ring *rx_ring = &adapter->test_rx_ring;
struct pci_dev *pdev = adapter->pdev;
int i;
if (tx_ring->desc && tx_ring->buffer_info) {
for (i = 0; i < tx_ring->count; i++) {
if (tx_ring->buffer_info[i].dma)
dma_unmap_single(&pdev->dev,
tx_ring->buffer_info[i].dma,
tx_ring->buffer_info[i].length,
DMA_TO_DEVICE);
if (tx_ring->buffer_info[i].skb)
dev_kfree_skb(tx_ring->buffer_info[i].skb);
}
}
if (rx_ring->desc && rx_ring->buffer_info) {
for (i = 0; i < rx_ring->count; i++) {
if (rx_ring->buffer_info[i].dma)
dma_unmap_single(&pdev->dev,
rx_ring->buffer_info[i].dma,
2048, DMA_FROM_DEVICE);
if (rx_ring->buffer_info[i].skb)
dev_kfree_skb(rx_ring->buffer_info[i].skb);
}
}
if (tx_ring->desc) {
dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
tx_ring->dma);
tx_ring->desc = NULL;
}
if (rx_ring->desc) {
dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
rx_ring->dma);
rx_ring->desc = NULL;
}
kfree(tx_ring->buffer_info);
tx_ring->buffer_info = NULL;
kfree(rx_ring->buffer_info);
rx_ring->buffer_info = NULL;
}
static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
{
struct e1000_ring *tx_ring = &adapter->test_tx_ring;
struct e1000_ring *rx_ring = &adapter->test_rx_ring;
struct pci_dev *pdev = adapter->pdev;
struct e1000_hw *hw = &adapter->hw;
u32 rctl;
int i;
int ret_val;
/* Setup Tx descriptor ring and Tx buffers */
if (!tx_ring->count)
tx_ring->count = E1000_DEFAULT_TXD;
tx_ring->buffer_info = kcalloc(tx_ring->count,
sizeof(struct e1000_buffer),
GFP_KERNEL);
if (!(tx_ring->buffer_info)) {
ret_val = 1;
goto err_nomem;
}
tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
tx_ring->size = ALIGN(tx_ring->size, 4096);
tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
&tx_ring->dma, GFP_KERNEL);
if (!tx_ring->desc) {
ret_val = 2;
goto err_nomem;
}
tx_ring->next_to_use = 0;
tx_ring->next_to_clean = 0;
ew32(TDBAL, ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
ew32(TDBAH, ((u64) tx_ring->dma >> 32));
ew32(TDLEN, tx_ring->count * sizeof(struct e1000_tx_desc));
ew32(TDH, 0);
ew32(TDT, 0);
ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
for (i = 0; i < tx_ring->count; i++) {
struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
struct sk_buff *skb;
unsigned int skb_size = 1024;
skb = alloc_skb(skb_size, GFP_KERNEL);
if (!skb) {
ret_val = 3;
goto err_nomem;
}
skb_put(skb, skb_size);
tx_ring->buffer_info[i].skb = skb;
tx_ring->buffer_info[i].length = skb->len;
tx_ring->buffer_info[i].dma =
dma_map_single(&pdev->dev, skb->data, skb->len,
DMA_TO_DEVICE);
if (dma_mapping_error(&pdev->dev,
tx_ring->buffer_info[i].dma)) {
ret_val = 4;
goto err_nomem;
}
tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
tx_desc->lower.data = cpu_to_le32(skb->len);
tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
E1000_TXD_CMD_IFCS |
E1000_TXD_CMD_RS);
tx_desc->upper.data = 0;
}
/* Setup Rx descriptor ring and Rx buffers */
if (!rx_ring->count)
rx_ring->count = E1000_DEFAULT_RXD;
rx_ring->buffer_info = kcalloc(rx_ring->count,
sizeof(struct e1000_buffer),
GFP_KERNEL);
if (!(rx_ring->buffer_info)) {
ret_val = 5;
goto err_nomem;
}
rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
&rx_ring->dma, GFP_KERNEL);
if (!rx_ring->desc) {
ret_val = 6;
goto err_nomem;
}
rx_ring->next_to_use = 0;
rx_ring->next_to_clean = 0;
rctl = er32(RCTL);
if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
ew32(RCTL, rctl & ~E1000_RCTL_EN);
ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
ew32(RDBAH, ((u64) rx_ring->dma >> 32));
ew32(RDLEN, rx_ring->size);
ew32(RDH, 0);
ew32(RDT, 0);
rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
E1000_RCTL_SBP | E1000_RCTL_SECRC |
E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
ew32(RCTL, rctl);
for (i = 0; i < rx_ring->count; i++) {
union e1000_rx_desc_extended *rx_desc;
struct sk_buff *skb;
skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
if (!skb) {
ret_val = 7;
goto err_nomem;
}
skb_reserve(skb, NET_IP_ALIGN);
rx_ring->buffer_info[i].skb = skb;
rx_ring->buffer_info[i].dma =
dma_map_single(&pdev->dev, skb->data, 2048,
DMA_FROM_DEVICE);
if (dma_mapping_error(&pdev->dev,
rx_ring->buffer_info[i].dma)) {
ret_val = 8;
goto err_nomem;
}
rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
rx_desc->read.buffer_addr =
cpu_to_le64(rx_ring->buffer_info[i].dma);
memset(skb->data, 0x00, skb->len);
}
return 0;
err_nomem:
e1000_free_desc_rings(adapter);
return ret_val;
}
static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
{
/* Write out to PHY registers 29 and 30 to disable the Receiver. */
e1e_wphy(&adapter->hw, 29, 0x001F);
e1e_wphy(&adapter->hw, 30, 0x8FFC);
e1e_wphy(&adapter->hw, 29, 0x001A);
e1e_wphy(&adapter->hw, 30, 0x8FF0);
}
static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 ctrl_reg = 0;
u16 phy_reg = 0;
s32 ret_val = 0;
hw->mac.autoneg = 0;
if (hw->phy.type == e1000_phy_ife) {
/* force 100, set loopback */
e1e_wphy(hw, PHY_CONTROL, 0x6100);
/* Now set up the MAC to the same speed/duplex as the PHY. */
ctrl_reg = er32(CTRL);
ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
E1000_CTRL_SPD_100 |/* Force Speed to 100 */
E1000_CTRL_FD); /* Force Duplex to FULL */
ew32(CTRL, ctrl_reg);
e1e_flush();
udelay(500);
return 0;
}
/* Specific PHY configuration for loopback */
switch (hw->phy.type) {
case e1000_phy_m88:
/* Auto-MDI/MDIX Off */
e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
/* reset to update Auto-MDI/MDIX */
e1e_wphy(hw, PHY_CONTROL, 0x9140);
/* autoneg off */
e1e_wphy(hw, PHY_CONTROL, 0x8140);
break;
case e1000_phy_gg82563:
e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
break;
case e1000_phy_bm:
/* Set Default MAC Interface speed to 1GB */
e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
phy_reg &= ~0x0007;
phy_reg |= 0x006;
e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
/* Assert SW reset for above settings to take effect */
e1000e_commit_phy(hw);
mdelay(1);
/* Force Full Duplex */
e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
/* Set Link Up (in force link) */
e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
/* Force Link */
e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
/* Set Early Link Enable */
e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
break;
case e1000_phy_82577:
case e1000_phy_82578:
/* Workaround: K1 must be disabled for stable 1Gbps operation */
ret_val = hw->phy.ops.acquire(hw);
if (ret_val) {
e_err("Cannot setup 1Gbps loopback.\n");
return ret_val;
}
e1000_configure_k1_ich8lan(hw, false);
hw->phy.ops.release(hw);
break;
case e1000_phy_82579:
/* Disable PHY energy detect power down */
e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3));
/* Disable full chip energy detect */
e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
/* Enable loopback on the PHY */
#define I82577_PHY_LBK_CTRL 19
e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
break;
default:
break;
}
/* force 1000, set loopback */
e1e_wphy(hw, PHY_CONTROL, 0x4140);
mdelay(250);
/* Now set up the MAC to the same speed/duplex as the PHY. */
ctrl_reg = er32(CTRL);
ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
E1000_CTRL_FD); /* Force Duplex to FULL */
if (adapter->flags & FLAG_IS_ICH)
ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */
if (hw->phy.media_type == e1000_media_type_copper &&
hw->phy.type == e1000_phy_m88) {
ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
} else {
/*
* Set the ILOS bit on the fiber Nic if half duplex link is
* detected.
*/
if ((er32(STATUS) & E1000_STATUS_FD) == 0)
ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
}
ew32(CTRL, ctrl_reg);
/*
* Disable the receiver on the PHY so when a cable is plugged in, the
* PHY does not begin to autoneg when a cable is reconnected to the NIC.
*/
if (hw->phy.type == e1000_phy_m88)
e1000_phy_disable_receiver(adapter);
udelay(500);
return 0;
}
static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 ctrl = er32(CTRL);
int link = 0;
/* special requirements for 82571/82572 fiber adapters */
/*
* jump through hoops to make sure link is up because serdes
* link is hardwired up
*/
ctrl |= E1000_CTRL_SLU;
ew32(CTRL, ctrl);
/* disable autoneg */
ctrl = er32(TXCW);
ctrl &= ~(1 << 31);
ew32(TXCW, ctrl);
link = (er32(STATUS) & E1000_STATUS_LU);
if (!link) {
/* set invert loss of signal */
ctrl = er32(CTRL);
ctrl |= E1000_CTRL_ILOS;
ew32(CTRL, ctrl);
}
/*
* special write to serdes control register to enable SerDes analog
* loopback
*/
#define E1000_SERDES_LB_ON 0x410
ew32(SCTL, E1000_SERDES_LB_ON);
e1e_flush();
usleep_range(10000, 20000);
return 0;
}
/* only call this for fiber/serdes connections to es2lan */
static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 ctrlext = er32(CTRL_EXT);
u32 ctrl = er32(CTRL);
/*
* save CTRL_EXT to restore later, reuse an empty variable (unused
* on mac_type 80003es2lan)
*/
adapter->tx_fifo_head = ctrlext;
/* clear the serdes mode bits, putting the device into mac loopback */
ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
ew32(CTRL_EXT, ctrlext);
/* force speed to 1000/FD, link up */
ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
ew32(CTRL, ctrl);
/* set mac loopback */
ctrl = er32(RCTL);
ctrl |= E1000_RCTL_LBM_MAC;
ew32(RCTL, ctrl);
/* set testing mode parameters (no need to reset later) */
#define KMRNCTRLSTA_OPMODE (0x1F << 16)
#define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
ew32(KMRNCTRLSTA,
(KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
return 0;
}
static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 rctl;
if (hw->phy.media_type == e1000_media_type_fiber ||
hw->phy.media_type == e1000_media_type_internal_serdes) {
switch (hw->mac.type) {
case e1000_80003es2lan:
return e1000_set_es2lan_mac_loopback(adapter);
break;
case e1000_82571:
case e1000_82572:
return e1000_set_82571_fiber_loopback(adapter);
break;
default:
rctl = er32(RCTL);
rctl |= E1000_RCTL_LBM_TCVR;
ew32(RCTL, rctl);
return 0;
}
} else if (hw->phy.media_type == e1000_media_type_copper) {
return e1000_integrated_phy_loopback(adapter);
}
return 7;
}
static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 rctl;
u16 phy_reg;
rctl = er32(RCTL);
rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
ew32(RCTL, rctl);
switch (hw->mac.type) {
case e1000_80003es2lan:
if (hw->phy.media_type == e1000_media_type_fiber ||
hw->phy.media_type == e1000_media_type_internal_serdes) {
/* restore CTRL_EXT, stealing space from tx_fifo_head */
ew32(CTRL_EXT, adapter->tx_fifo_head);
adapter->tx_fifo_head = 0;
}
/* fall through */
case e1000_82571:
case e1000_82572:
if (hw->phy.media_type == e1000_media_type_fiber ||
hw->phy.media_type == e1000_media_type_internal_serdes) {
#define E1000_SERDES_LB_OFF 0x400
ew32(SCTL, E1000_SERDES_LB_OFF);
e1e_flush();
usleep_range(10000, 20000);
break;
}
/* Fall Through */
default:
hw->mac.autoneg = 1;
if (hw->phy.type == e1000_phy_gg82563)
e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
e1e_rphy(hw, PHY_CONTROL, &phy_reg);
if (phy_reg & MII_CR_LOOPBACK) {
phy_reg &= ~MII_CR_LOOPBACK;
e1e_wphy(hw, PHY_CONTROL, phy_reg);
e1000e_commit_phy(hw);
}
break;
}
}
static void e1000_create_lbtest_frame(struct sk_buff *skb,
unsigned int frame_size)
{
memset(skb->data, 0xFF, frame_size);
frame_size &= ~1;
memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
}
static int e1000_check_lbtest_frame(struct sk_buff *skb,
unsigned int frame_size)
{
frame_size &= ~1;
if (*(skb->data + 3) == 0xFF)
if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
(*(skb->data + frame_size / 2 + 12) == 0xAF))
return 0;
return 13;
}
static int e1000_run_loopback_test(struct e1000_adapter *adapter)
{
struct e1000_ring *tx_ring = &adapter->test_tx_ring;
struct e1000_ring *rx_ring = &adapter->test_rx_ring;
struct pci_dev *pdev = adapter->pdev;
struct e1000_hw *hw = &adapter->hw;
int i, j, k, l;
int lc;
int good_cnt;
int ret_val = 0;
unsigned long time;
ew32(RDT, rx_ring->count - 1);
/*
* Calculate the loop count based on the largest descriptor ring
* The idea is to wrap the largest ring a number of times using 64
* send/receive pairs during each loop
*/
if (rx_ring->count <= tx_ring->count)
lc = ((tx_ring->count / 64) * 2) + 1;
else
lc = ((rx_ring->count / 64) * 2) + 1;
k = 0;
l = 0;
for (j = 0; j <= lc; j++) { /* loop count loop */
for (i = 0; i < 64; i++) { /* send the packets */
e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1024);
dma_sync_single_for_device(&pdev->dev,
tx_ring->buffer_info[k].dma,
tx_ring->buffer_info[k].length,
DMA_TO_DEVICE);
k++;
if (k == tx_ring->count)
k = 0;
}
ew32(TDT, k);
e1e_flush();
msleep(200);
time = jiffies; /* set the start time for the receive */
good_cnt = 0;
do { /* receive the sent packets */
dma_sync_single_for_cpu(&pdev->dev,
rx_ring->buffer_info[l].dma, 2048,
DMA_FROM_DEVICE);
ret_val = e1000_check_lbtest_frame(
rx_ring->buffer_info[l].skb, 1024);
if (!ret_val)
good_cnt++;
l++;
if (l == rx_ring->count)
l = 0;
/*
* time + 20 msecs (200 msecs on 2.4) is more than
* enough time to complete the receives, if it's
* exceeded, break and error off
*/
} while ((good_cnt < 64) && !time_after(jiffies, time + 20));
if (good_cnt != 64) {
ret_val = 13; /* ret_val is the same as mis-compare */
break;
}
if (jiffies >= (time + 20)) {
ret_val = 14; /* error code for time out error */
break;
}
} /* end loop count loop */
return ret_val;
}
static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
{
/*
* PHY loopback cannot be performed if SoL/IDER
* sessions are active
*/
if (e1000_check_reset_block(&adapter->hw)) {
e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
*data = 0;
goto out;
}
*data = e1000_setup_desc_rings(adapter);
if (*data)
goto out;
*data = e1000_setup_loopback_test(adapter);
if (*data)
goto err_loopback;
*data = e1000_run_loopback_test(adapter);
e1000_loopback_cleanup(adapter);
err_loopback:
e1000_free_desc_rings(adapter);
out:
return *data;
}
static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
{
struct e1000_hw *hw = &adapter->hw;
*data = 0;
if (hw->phy.media_type == e1000_media_type_internal_serdes) {
int i = 0;
hw->mac.serdes_has_link = false;
/*
* On some blade server designs, link establishment
* could take as long as 2-3 minutes
*/
do {
hw->mac.ops.check_for_link(hw);
if (hw->mac.serdes_has_link)
return *data;
msleep(20);
} while (i++ < 3750);
*data = 1;
} else {
hw->mac.ops.check_for_link(hw);
if (hw->mac.autoneg)
/*
* On some Phy/switch combinations, link establishment
* can take a few seconds more than expected.
*/
msleep(5000);
if (!(er32(STATUS) & E1000_STATUS_LU))
*data = 1;
}
return *data;
}
static int e1000e_get_sset_count(struct net_device *netdev, int sset)
{
switch (sset) {
case ETH_SS_TEST:
return E1000_TEST_LEN;
case ETH_SS_STATS:
return E1000_STATS_LEN;
default:
return -EOPNOTSUPP;
}
}
static void e1000_diag_test(struct net_device *netdev,
struct ethtool_test *eth_test, u64 *data)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
u16 autoneg_advertised;
u8 forced_speed_duplex;
u8 autoneg;
bool if_running = netif_running(netdev);
set_bit(__E1000_TESTING, &adapter->state);
if (!if_running) {
/* Get control of and reset hardware */
if (adapter->flags & FLAG_HAS_AMT)
e1000e_get_hw_control(adapter);
e1000e_power_up_phy(adapter);
adapter->hw.phy.autoneg_wait_to_complete = 1;
e1000e_reset(adapter);
adapter->hw.phy.autoneg_wait_to_complete = 0;
}
if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
/* Offline tests */
/* save speed, duplex, autoneg settings */
autoneg_advertised = adapter->hw.phy.autoneg_advertised;
forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
autoneg = adapter->hw.mac.autoneg;
e_info("offline testing starting\n");
if (if_running)
/* indicate we're in test mode */
dev_close(netdev);
if (e1000_reg_test(adapter, &data[0]))
eth_test->flags |= ETH_TEST_FL_FAILED;
e1000e_reset(adapter);
if (e1000_eeprom_test(adapter, &data[1]))
eth_test->flags |= ETH_TEST_FL_FAILED;
e1000e_reset(adapter);
if (e1000_intr_test(adapter, &data[2]))
eth_test->flags |= ETH_TEST_FL_FAILED;
e1000e_reset(adapter);
if (e1000_loopback_test(adapter, &data[3]))
eth_test->flags |= ETH_TEST_FL_FAILED;
/* force this routine to wait until autoneg complete/timeout */
adapter->hw.phy.autoneg_wait_to_complete = 1;
e1000e_reset(adapter);
adapter->hw.phy.autoneg_wait_to_complete = 0;
if (e1000_link_test(adapter, &data[4]))
eth_test->flags |= ETH_TEST_FL_FAILED;
/* restore speed, duplex, autoneg settings */
adapter->hw.phy.autoneg_advertised = autoneg_advertised;
adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
adapter->hw.mac.autoneg = autoneg;
e1000e_reset(adapter);
clear_bit(__E1000_TESTING, &adapter->state);
if (if_running)
dev_open(netdev);
} else {
/* Online tests */
e_info("online testing starting\n");
/* register, eeprom, intr and loopback tests not run online */
data[0] = 0;
data[1] = 0;
data[2] = 0;
data[3] = 0;
if (e1000_link_test(adapter, &data[4]))
eth_test->flags |= ETH_TEST_FL_FAILED;
clear_bit(__E1000_TESTING, &adapter->state);
}
if (!if_running) {
e1000e_reset(adapter);
if (adapter->flags & FLAG_HAS_AMT)
e1000e_release_hw_control(adapter);
}
msleep_interruptible(4 * 1000);
}
static void e1000_get_wol(struct net_device *netdev,
struct ethtool_wolinfo *wol)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
wol->supported = 0;
wol->wolopts = 0;
if (!(adapter->flags & FLAG_HAS_WOL) ||
!device_can_wakeup(&adapter->pdev->dev))
return;
wol->supported = WAKE_UCAST | WAKE_MCAST |
WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
/* apply any specific unsupported masks here */
if (adapter->flags & FLAG_NO_WAKE_UCAST) {
wol->supported &= ~WAKE_UCAST;
if (adapter->wol & E1000_WUFC_EX)
e_err("Interface does not support directed (unicast) "
"frame wake-up packets\n");
}
if (adapter->wol & E1000_WUFC_EX)
wol->wolopts |= WAKE_UCAST;
if (adapter->wol & E1000_WUFC_MC)
wol->wolopts |= WAKE_MCAST;
if (adapter->wol & E1000_WUFC_BC)
wol->wolopts |= WAKE_BCAST;
if (adapter->wol & E1000_WUFC_MAG)
wol->wolopts |= WAKE_MAGIC;
if (adapter->wol & E1000_WUFC_LNKC)
wol->wolopts |= WAKE_PHY;
}
static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
if (!(adapter->flags & FLAG_HAS_WOL) ||
!device_can_wakeup(&adapter->pdev->dev) ||
(wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
WAKE_MAGIC | WAKE_PHY)))
return -EOPNOTSUPP;
/* these settings will always override what we currently have */
adapter->wol = 0;
if (wol->wolopts & WAKE_UCAST)
adapter->wol |= E1000_WUFC_EX;
if (wol->wolopts & WAKE_MCAST)
adapter->wol |= E1000_WUFC_MC;
if (wol->wolopts & WAKE_BCAST)
adapter->wol |= E1000_WUFC_BC;
if (wol->wolopts & WAKE_MAGIC)
adapter->wol |= E1000_WUFC_MAG;
if (wol->wolopts & WAKE_PHY)
adapter->wol |= E1000_WUFC_LNKC;
device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
return 0;
}
static int e1000_set_phys_id(struct net_device *netdev,
enum ethtool_phys_id_state state)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
switch (state) {
case ETHTOOL_ID_ACTIVE:
if (!hw->mac.ops.blink_led)
return 2; /* cycle on/off twice per second */
hw->mac.ops.blink_led(hw);
break;
case ETHTOOL_ID_INACTIVE:
if (hw->phy.type == e1000_phy_ife)
e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
hw->mac.ops.led_off(hw);
hw->mac.ops.cleanup_led(hw);
break;
case ETHTOOL_ID_ON:
adapter->hw.mac.ops.led_on(&adapter->hw);
break;
case ETHTOOL_ID_OFF:
adapter->hw.mac.ops.led_off(&adapter->hw);
break;
}
return 0;
}
static int e1000_get_coalesce(struct net_device *netdev,
struct ethtool_coalesce *ec)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
if (adapter->itr_setting <= 4)
ec->rx_coalesce_usecs = adapter->itr_setting;
else
ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
return 0;
}
static int e1000_set_coalesce(struct net_device *netdev,
struct ethtool_coalesce *ec)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
((ec->rx_coalesce_usecs > 4) &&
(ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
(ec->rx_coalesce_usecs == 2))
return -EINVAL;
if (ec->rx_coalesce_usecs == 4) {
adapter->itr = adapter->itr_setting = 4;
} else if (ec->rx_coalesce_usecs <= 3) {
adapter->itr = 20000;
adapter->itr_setting = ec->rx_coalesce_usecs;
} else {
adapter->itr = (1000000 / ec->rx_coalesce_usecs);
adapter->itr_setting = adapter->itr & ~3;
}
if (adapter->itr_setting != 0)
ew32(ITR, 1000000000 / (adapter->itr * 256));
else
ew32(ITR, 0);
return 0;
}
static int e1000_nway_reset(struct net_device *netdev)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
if (!netif_running(netdev))
return -EAGAIN;
if (!adapter->hw.mac.autoneg)
return -EINVAL;
e1000e_reinit_locked(adapter);
return 0;
}
static void e1000_get_ethtool_stats(struct net_device *netdev,
struct ethtool_stats *stats,
u64 *data)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct rtnl_link_stats64 net_stats;
int i;
char *p = NULL;
e1000e_get_stats64(netdev, &net_stats);
for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
switch (e1000_gstrings_stats[i].type) {
case NETDEV_STATS:
p = (char *) &net_stats +
e1000_gstrings_stats[i].stat_offset;
break;
case E1000_STATS:
p = (char *) adapter +
e1000_gstrings_stats[i].stat_offset;
break;
default:
data[i] = 0;
continue;
}
data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
}
}
static void e1000_get_strings(struct net_device *netdev, u32 stringset,
u8 *data)
{
u8 *p = data;
int i;
switch (stringset) {
case ETH_SS_TEST:
memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
break;
case ETH_SS_STATS:
for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
memcpy(p, e1000_gstrings_stats[i].stat_string,
ETH_GSTRING_LEN);
p += ETH_GSTRING_LEN;
}
break;
}
}
static const struct ethtool_ops e1000_ethtool_ops = {
.get_settings = e1000_get_settings,
.set_settings = e1000_set_settings,
.get_drvinfo = e1000_get_drvinfo,
.get_regs_len = e1000_get_regs_len,
.get_regs = e1000_get_regs,
.get_wol = e1000_get_wol,
.set_wol = e1000_set_wol,
.get_msglevel = e1000_get_msglevel,
.set_msglevel = e1000_set_msglevel,
.nway_reset = e1000_nway_reset,
.get_link = ethtool_op_get_link,
.get_eeprom_len = e1000_get_eeprom_len,
.get_eeprom = e1000_get_eeprom,
.set_eeprom = e1000_set_eeprom,
.get_ringparam = e1000_get_ringparam,
.set_ringparam = e1000_set_ringparam,
.get_pauseparam = e1000_get_pauseparam,
.set_pauseparam = e1000_set_pauseparam,
.self_test = e1000_diag_test,
.get_strings = e1000_get_strings,
.set_phys_id = e1000_set_phys_id,
.get_ethtool_stats = e1000_get_ethtool_stats,
.get_sset_count = e1000e_get_sset_count,
.get_coalesce = e1000_get_coalesce,
.set_coalesce = e1000_set_coalesce,
};
void e1000e_set_ethtool_ops(struct net_device *netdev)
{
SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
}
-------------- n?chster Teil --------------
/*******************************************************************************
Intel PRO/1000 Linux driver
Copyright(c) 1999 - 2011 Intel Corporation.
This program is free software; you can redistribute it and/or modify it
under the terms and conditions of the GNU General Public License,
version 2, as published by the Free Software Foundation.
This program is distributed in the hope it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
The full GNU General Public License is included in this distribution in
the file called "COPYING".
Contact Information:
Linux NICS <linux.nics at intel.com>
e1000-devel Mailing List <e1000-devel at lists.sourceforge.net>
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*******************************************************************************/
/*
* 80003ES2LAN Gigabit Ethernet Controller (Copper)
* 80003ES2LAN Gigabit Ethernet Controller (Serdes)
*/
#include "e1000-3.2.0-ethercat.h"
#define E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL 0x00
#define E1000_KMRNCTRLSTA_OFFSET_INB_CTRL 0x02
#define E1000_KMRNCTRLSTA_OFFSET_HD_CTRL 0x10
#define E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE 0x1F
#define E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS 0x0008
#define E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS 0x0800
#define E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING 0x0010
#define E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT 0x0004
#define E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT 0x0000
#define E1000_KMRNCTRLSTA_OPMODE_E_IDLE 0x2000
#define E1000_KMRNCTRLSTA_OPMODE_MASK 0x000C
#define E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO 0x0004
#define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */
#define DEFAULT_TCTL_EXT_GCEX_80003ES2LAN 0x00010000
#define DEFAULT_TIPG_IPGT_1000_80003ES2LAN 0x8
#define DEFAULT_TIPG_IPGT_10_100_80003ES2LAN 0x9
/* GG82563 PHY Specific Status Register (Page 0, Register 16 */
#define GG82563_PSCR_POLARITY_REVERSAL_DISABLE 0x0002 /* 1=Reversal Disab. */
#define GG82563_PSCR_CROSSOVER_MODE_MASK 0x0060
#define GG82563_PSCR_CROSSOVER_MODE_MDI 0x0000 /* 00=Manual MDI */
#define GG82563_PSCR_CROSSOVER_MODE_MDIX 0x0020 /* 01=Manual MDIX */
#define GG82563_PSCR_CROSSOVER_MODE_AUTO 0x0060 /* 11=Auto crossover */
/* PHY Specific Control Register 2 (Page 0, Register 26) */
#define GG82563_PSCR2_REVERSE_AUTO_NEG 0x2000
/* 1=Reverse Auto-Negotiation */
/* MAC Specific Control Register (Page 2, Register 21) */
/* Tx clock speed for Link Down and 1000BASE-T for the following speeds */
#define GG82563_MSCR_TX_CLK_MASK 0x0007
#define GG82563_MSCR_TX_CLK_10MBPS_2_5 0x0004
#define GG82563_MSCR_TX_CLK_100MBPS_25 0x0005
#define GG82563_MSCR_TX_CLK_1000MBPS_25 0x0007
#define GG82563_MSCR_ASSERT_CRS_ON_TX 0x0010 /* 1=Assert */
/* DSP Distance Register (Page 5, Register 26) */
#define GG82563_DSPD_CABLE_LENGTH 0x0007 /* 0 = <50M
1 = 50-80M
2 = 80-110M
3 = 110-140M
4 = >140M */
/* Kumeran Mode Control Register (Page 193, Register 16) */
#define GG82563_KMCR_PASS_FALSE_CARRIER 0x0800
/* Max number of times Kumeran read/write should be validated */
#define GG82563_MAX_KMRN_RETRY 0x5
/* Power Management Control Register (Page 193, Register 20) */
#define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE 0x0001
/* 1=Enable SERDES Electrical Idle */
/* In-Band Control Register (Page 194, Register 18) */
#define GG82563_ICR_DIS_PADDING 0x0010 /* Disable Padding */
/*
* A table for the GG82563 cable length where the range is defined
* with a lower bound at "index" and the upper bound at
* "index + 5".
*/
static const u16 e1000_gg82563_cable_length_table[] = {
0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF };
#define GG82563_CABLE_LENGTH_TABLE_SIZE \
ARRAY_SIZE(e1000_gg82563_cable_length_table)
static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw);
static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
u16 *data);
static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
u16 data);
static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw);
/**
* e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
* @hw: pointer to the HW structure
**/
static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
if (hw->phy.media_type != e1000_media_type_copper) {
phy->type = e1000_phy_none;
return 0;
} else {
phy->ops.power_up = e1000_power_up_phy_copper;
phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan;
}
phy->addr = 1;
phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
phy->reset_delay_us = 100;
phy->type = e1000_phy_gg82563;
/* This can only be done after all function pointers are setup. */
ret_val = e1000e_get_phy_id(hw);
/* Verify phy id */
if (phy->id != GG82563_E_PHY_ID)
return -E1000_ERR_PHY;
return ret_val;
}
/**
* e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
* @hw: pointer to the HW structure
**/
static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
{
struct e1000_nvm_info *nvm = &hw->nvm;
u32 eecd = er32(EECD);
u16 size;
nvm->opcode_bits = 8;
nvm->delay_usec = 1;
switch (nvm->override) {
case e1000_nvm_override_spi_large:
nvm->page_size = 32;
nvm->address_bits = 16;
break;
case e1000_nvm_override_spi_small:
nvm->page_size = 8;
nvm->address_bits = 8;
break;
default:
nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
break;
}
nvm->type = e1000_nvm_eeprom_spi;
size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
E1000_EECD_SIZE_EX_SHIFT);
/*
* Added to a constant, "size" becomes the left-shift value
* for setting word_size.
*/
size += NVM_WORD_SIZE_BASE_SHIFT;
/* EEPROM access above 16k is unsupported */
if (size > 14)
size = 14;
nvm->word_size = 1 << size;
return 0;
}
/**
* e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
* @hw: pointer to the HW structure
**/
static s32 e1000_init_mac_params_80003es2lan(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
struct e1000_mac_info *mac = &hw->mac;
struct e1000_mac_operations *func = &mac->ops;
/* Set media type */
switch (adapter->pdev->device) {
case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
hw->phy.media_type = e1000_media_type_internal_serdes;
break;
default:
hw->phy.media_type = e1000_media_type_copper;
break;
}
/* Set mta register count */
mac->mta_reg_count = 128;
/* Set rar entry count */
mac->rar_entry_count = E1000_RAR_ENTRIES;
/* FWSM register */
mac->has_fwsm = true;
/* ARC supported; valid only if manageability features are enabled. */
mac->arc_subsystem_valid =
(er32(FWSM) & E1000_FWSM_MODE_MASK)
? true : false;
/* Adaptive IFS not supported */
mac->adaptive_ifs = false;
/* check for link */
switch (hw->phy.media_type) {
case e1000_media_type_copper:
func->setup_physical_interface = e1000_setup_copper_link_80003es2lan;
func->check_for_link = e1000e_check_for_copper_link;
break;
case e1000_media_type_fiber:
func->setup_physical_interface = e1000e_setup_fiber_serdes_link;
func->check_for_link = e1000e_check_for_fiber_link;
break;
case e1000_media_type_internal_serdes:
func->setup_physical_interface = e1000e_setup_fiber_serdes_link;
func->check_for_link = e1000e_check_for_serdes_link;
break;
default:
return -E1000_ERR_CONFIG;
break;
}
/* set lan id for port to determine which phy lock to use */
hw->mac.ops.set_lan_id(hw);
return 0;
}
static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
s32 rc;
rc = e1000_init_mac_params_80003es2lan(adapter);
if (rc)
return rc;
rc = e1000_init_nvm_params_80003es2lan(hw);
if (rc)
return rc;
rc = e1000_init_phy_params_80003es2lan(hw);
if (rc)
return rc;
return 0;
}
/**
* e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
* @hw: pointer to the HW structure
*
* A wrapper to acquire access rights to the correct PHY.
**/
static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
{
u16 mask;
mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
}
/**
* e1000_release_phy_80003es2lan - Release rights to access PHY
* @hw: pointer to the HW structure
*
* A wrapper to release access rights to the correct PHY.
**/
static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
{
u16 mask;
mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
e1000_release_swfw_sync_80003es2lan(hw, mask);
}
/**
* e1000_acquire_mac_csr_80003es2lan - Acquire rights to access Kumeran register
* @hw: pointer to the HW structure
*
* Acquire the semaphore to access the Kumeran interface.
*
**/
static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
{
u16 mask;
mask = E1000_SWFW_CSR_SM;
return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
}
/**
* e1000_release_mac_csr_80003es2lan - Release rights to access Kumeran Register
* @hw: pointer to the HW structure
*
* Release the semaphore used to access the Kumeran interface
**/
static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
{
u16 mask;
mask = E1000_SWFW_CSR_SM;
e1000_release_swfw_sync_80003es2lan(hw, mask);
}
/**
* e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
* @hw: pointer to the HW structure
*
* Acquire the semaphore to access the EEPROM.
**/
static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
{
s32 ret_val;
ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
if (ret_val)
return ret_val;
ret_val = e1000e_acquire_nvm(hw);
if (ret_val)
e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
return ret_val;
}
/**
* e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
* @hw: pointer to the HW structure
*
* Release the semaphore used to access the EEPROM.
**/
static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
{
e1000e_release_nvm(hw);
e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
}
/**
* e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
* @hw: pointer to the HW structure
* @mask: specifies which semaphore to acquire
*
* Acquire the SW/FW semaphore to access the PHY or NVM. The mask
* will also specify which port we're acquiring the lock for.
**/
static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
{
u32 swfw_sync;
u32 swmask = mask;
u32 fwmask = mask << 16;
s32 i = 0;
s32 timeout = 50;
while (i < timeout) {
if (e1000e_get_hw_semaphore(hw))
return -E1000_ERR_SWFW_SYNC;
swfw_sync = er32(SW_FW_SYNC);
if (!(swfw_sync & (fwmask | swmask)))
break;
/*
* Firmware currently using resource (fwmask)
* or other software thread using resource (swmask)
*/
e1000e_put_hw_semaphore(hw);
mdelay(5);
i++;
}
if (i == timeout) {
e_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
return -E1000_ERR_SWFW_SYNC;
}
swfw_sync |= swmask;
ew32(SW_FW_SYNC, swfw_sync);
e1000e_put_hw_semaphore(hw);
return 0;
}
/**
* e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
* @hw: pointer to the HW structure
* @mask: specifies which semaphore to acquire
*
* Release the SW/FW semaphore used to access the PHY or NVM. The mask
* will also specify which port we're releasing the lock for.
**/
static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
{
u32 swfw_sync;
while (e1000e_get_hw_semaphore(hw) != 0)
; /* Empty */
swfw_sync = er32(SW_FW_SYNC);
swfw_sync &= ~mask;
ew32(SW_FW_SYNC, swfw_sync);
e1000e_put_hw_semaphore(hw);
}
/**
* e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
* @hw: pointer to the HW structure
* @offset: offset of the register to read
* @data: pointer to the data returned from the operation
*
* Read the GG82563 PHY register.
**/
static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
u32 offset, u16 *data)
{
s32 ret_val;
u32 page_select;
u16 temp;
ret_val = e1000_acquire_phy_80003es2lan(hw);
if (ret_val)
return ret_val;
/* Select Configuration Page */
if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
page_select = GG82563_PHY_PAGE_SELECT;
} else {
/*
* Use Alternative Page Select register to access
* registers 30 and 31
*/
page_select = GG82563_PHY_PAGE_SELECT_ALT;
}
temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
if (ret_val) {
e1000_release_phy_80003es2lan(hw);
return ret_val;
}
if (hw->dev_spec.e80003es2lan.mdic_wa_enable == true) {
/*
* The "ready" bit in the MDIC register may be incorrectly set
* before the device has completed the "Page Select" MDI
* transaction. So we wait 200us after each MDI command...
*/
udelay(200);
/* ...and verify the command was successful. */
ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
ret_val = -E1000_ERR_PHY;
e1000_release_phy_80003es2lan(hw);
return ret_val;
}
udelay(200);
ret_val = e1000e_read_phy_reg_mdic(hw,
MAX_PHY_REG_ADDRESS & offset,
data);
udelay(200);
} else {
ret_val = e1000e_read_phy_reg_mdic(hw,
MAX_PHY_REG_ADDRESS & offset,
data);
}
e1000_release_phy_80003es2lan(hw);
return ret_val;
}
/**
* e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
* @hw: pointer to the HW structure
* @offset: offset of the register to read
* @data: value to write to the register
*
* Write to the GG82563 PHY register.
**/
static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
u32 offset, u16 data)
{
s32 ret_val;
u32 page_select;
u16 temp;
ret_val = e1000_acquire_phy_80003es2lan(hw);
if (ret_val)
return ret_val;
/* Select Configuration Page */
if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
page_select = GG82563_PHY_PAGE_SELECT;
} else {
/*
* Use Alternative Page Select register to access
* registers 30 and 31
*/
page_select = GG82563_PHY_PAGE_SELECT_ALT;
}
temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
if (ret_val) {
e1000_release_phy_80003es2lan(hw);
return ret_val;
}
if (hw->dev_spec.e80003es2lan.mdic_wa_enable == true) {
/*
* The "ready" bit in the MDIC register may be incorrectly set
* before the device has completed the "Page Select" MDI
* transaction. So we wait 200us after each MDI command...
*/
udelay(200);
/* ...and verify the command was successful. */
ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
e1000_release_phy_80003es2lan(hw);
return -E1000_ERR_PHY;
}
udelay(200);
ret_val = e1000e_write_phy_reg_mdic(hw,
MAX_PHY_REG_ADDRESS & offset,
data);
udelay(200);
} else {
ret_val = e1000e_write_phy_reg_mdic(hw,
MAX_PHY_REG_ADDRESS & offset,
data);
}
e1000_release_phy_80003es2lan(hw);
return ret_val;
}
/**
* e1000_write_nvm_80003es2lan - Write to ESB2 NVM
* @hw: pointer to the HW structure
* @offset: offset of the register to read
* @words: number of words to write
* @data: buffer of data to write to the NVM
*
* Write "words" of data to the ESB2 NVM.
**/
static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
u16 words, u16 *data)
{
return e1000e_write_nvm_spi(hw, offset, words, data);
}
/**
* e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
* @hw: pointer to the HW structure
*
* Wait a specific amount of time for manageability processes to complete.
* This is a function pointer entry point called by the phy module.
**/
static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
{
s32 timeout = PHY_CFG_TIMEOUT;
u32 mask = E1000_NVM_CFG_DONE_PORT_0;
if (hw->bus.func == 1)
mask = E1000_NVM_CFG_DONE_PORT_1;
while (timeout) {
if (er32(EEMNGCTL) & mask)
break;
usleep_range(1000, 2000);
timeout--;
}
if (!timeout) {
e_dbg("MNG configuration cycle has not completed.\n");
return -E1000_ERR_RESET;
}
return 0;
}
/**
* e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
* @hw: pointer to the HW structure
*
* Force the speed and duplex settings onto the PHY. This is a
* function pointer entry point called by the phy module.
**/
static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
{
s32 ret_val;
u16 phy_data;
bool link;
/*
* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
* forced whenever speed and duplex are forced.
*/
ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
if (ret_val)
return ret_val;
phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
if (ret_val)
return ret_val;
e_dbg("GG82563 PSCR: %X\n", phy_data);
ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
if (ret_val)
return ret_val;
e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
/* Reset the phy to commit changes. */
phy_data |= MII_CR_RESET;
ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
if (ret_val)
return ret_val;
udelay(1);
if (hw->phy.autoneg_wait_to_complete) {
e_dbg("Waiting for forced speed/duplex link "
"on GG82563 phy.\n");
ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
100000, &link);
if (ret_val)
return ret_val;
if (!link) {
/*
* We didn't get link.
* Reset the DSP and cross our fingers.
*/
ret_val = e1000e_phy_reset_dsp(hw);
if (ret_val)
return ret_val;
}
/* Try once more */
ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
100000, &link);
if (ret_val)
return ret_val;
}
ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
if (ret_val)
return ret_val;
/*
* Resetting the phy means we need to verify the TX_CLK corresponds
* to the link speed. 10Mbps -> 2.5MHz, else 25MHz.
*/
phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
else
phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
/*
* In addition, we must re-enable CRS on Tx for both half and full
* duplex.
*/
phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
return ret_val;
}
/**
* e1000_get_cable_length_80003es2lan - Set approximate cable length
* @hw: pointer to the HW structure
*
* Find the approximate cable length as measured by the GG82563 PHY.
* This is a function pointer entry point called by the phy module.
**/
static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val = 0;
u16 phy_data, index;
ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
if (ret_val)
goto out;
index = phy_data & GG82563_DSPD_CABLE_LENGTH;
if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5) {
ret_val = -E1000_ERR_PHY;
goto out;
}
phy->min_cable_length = e1000_gg82563_cable_length_table[index];
phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5];
phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
out:
return ret_val;
}
/**
* e1000_get_link_up_info_80003es2lan - Report speed and duplex
* @hw: pointer to the HW structure
* @speed: pointer to speed buffer
* @duplex: pointer to duplex buffer
*
* Retrieve the current speed and duplex configuration.
**/
static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
u16 *duplex)
{
s32 ret_val;
if (hw->phy.media_type == e1000_media_type_copper) {
ret_val = e1000e_get_speed_and_duplex_copper(hw,
speed,
duplex);
hw->phy.ops.cfg_on_link_up(hw);
} else {
ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
speed,
duplex);
}
return ret_val;
}
/**
* e1000_reset_hw_80003es2lan - Reset the ESB2 controller
* @hw: pointer to the HW structure
*
* Perform a global reset to the ESB2 controller.
**/
static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
{
u32 ctrl;
s32 ret_val;
/*
* Prevent the PCI-E bus from sticking if there is no TLP connection
* on the last TLP read/write transaction when MAC is reset.
*/
ret_val = e1000e_disable_pcie_master(hw);
if (ret_val)
e_dbg("PCI-E Master disable polling has failed.\n");
e_dbg("Masking off all interrupts\n");
ew32(IMC, 0xffffffff);
ew32(RCTL, 0);
ew32(TCTL, E1000_TCTL_PSP);
e1e_flush();
usleep_range(10000, 20000);
ctrl = er32(CTRL);
ret_val = e1000_acquire_phy_80003es2lan(hw);
e_dbg("Issuing a global reset to MAC\n");
ew32(CTRL, ctrl | E1000_CTRL_RST);
e1000_release_phy_80003es2lan(hw);
ret_val = e1000e_get_auto_rd_done(hw);
if (ret_val)
/* We don't want to continue accessing MAC registers. */
return ret_val;
/* Clear any pending interrupt events. */
ew32(IMC, 0xffffffff);
er32(ICR);
ret_val = e1000_check_alt_mac_addr_generic(hw);
return ret_val;
}
/**
* e1000_init_hw_80003es2lan - Initialize the ESB2 controller
* @hw: pointer to the HW structure
*
* Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
**/
static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
u32 reg_data;
s32 ret_val;
u16 kum_reg_data;
u16 i;
e1000_initialize_hw_bits_80003es2lan(hw);
/* Initialize identification LED */
ret_val = e1000e_id_led_init(hw);
if (ret_val)
e_dbg("Error initializing identification LED\n");
/* This is not fatal and we should not stop init due to this */
/* Disabling VLAN filtering */
e_dbg("Initializing the IEEE VLAN\n");
mac->ops.clear_vfta(hw);
/* Setup the receive address. */
e1000e_init_rx_addrs(hw, mac->rar_entry_count);
/* Zero out the Multicast HASH table */
e_dbg("Zeroing the MTA\n");
for (i = 0; i < mac->mta_reg_count; i++)
E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
/* Setup link and flow control */
ret_val = e1000e_setup_link(hw);
/* Disable IBIST slave mode (far-end loopback) */
e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
&kum_reg_data);
kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
kum_reg_data);
/* Set the transmit descriptor write-back policy */
reg_data = er32(TXDCTL(0));
reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
ew32(TXDCTL(0), reg_data);
/* ...for both queues. */
reg_data = er32(TXDCTL(1));
reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
ew32(TXDCTL(1), reg_data);
/* Enable retransmit on late collisions */
reg_data = er32(TCTL);
reg_data |= E1000_TCTL_RTLC;
ew32(TCTL, reg_data);
/* Configure Gigabit Carry Extend Padding */
reg_data = er32(TCTL_EXT);
reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
ew32(TCTL_EXT, reg_data);
/* Configure Transmit Inter-Packet Gap */
reg_data = er32(TIPG);
reg_data &= ~E1000_TIPG_IPGT_MASK;
reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
ew32(TIPG, reg_data);
reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
reg_data &= ~0x00100000;
E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
/* default to true to enable the MDIC W/A */
hw->dev_spec.e80003es2lan.mdic_wa_enable = true;
ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
E1000_KMRNCTRLSTA_OFFSET >>
E1000_KMRNCTRLSTA_OFFSET_SHIFT,
&i);
if (!ret_val) {
if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) ==
E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO)
hw->dev_spec.e80003es2lan.mdic_wa_enable = false;
}
/*
* Clear all of the statistics registers (clear on read). It is
* important that we do this after we have tried to establish link
* because the symbol error count will increment wildly if there
* is no link.
*/
e1000_clear_hw_cntrs_80003es2lan(hw);
return ret_val;
}
/**
* e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
* @hw: pointer to the HW structure
*
* Initializes required hardware-dependent bits needed for normal operation.
**/
static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
{
u32 reg;
/* Transmit Descriptor Control 0 */
reg = er32(TXDCTL(0));
reg |= (1 << 22);
ew32(TXDCTL(0), reg);
/* Transmit Descriptor Control 1 */
reg = er32(TXDCTL(1));
reg |= (1 << 22);
ew32(TXDCTL(1), reg);
/* Transmit Arbitration Control 0 */
reg = er32(TARC(0));
reg &= ~(0xF << 27); /* 30:27 */
if (hw->phy.media_type != e1000_media_type_copper)
reg &= ~(1 << 20);
ew32(TARC(0), reg);
/* Transmit Arbitration Control 1 */
reg = er32(TARC(1));
if (er32(TCTL) & E1000_TCTL_MULR)
reg &= ~(1 << 28);
else
reg |= (1 << 28);
ew32(TARC(1), reg);
}
/**
* e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
* @hw: pointer to the HW structure
*
* Setup some GG82563 PHY registers for obtaining link
**/
static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u32 ctrl_ext;
u16 data;
ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
if (ret_val)
return ret_val;
data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
/* Use 25MHz for both link down and 1000Base-T for Tx clock. */
data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
if (ret_val)
return ret_val;
/*
* Options:
* MDI/MDI-X = 0 (default)
* 0 - Auto for all speeds
* 1 - MDI mode
* 2 - MDI-X mode
* 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
*/
ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
if (ret_val)
return ret_val;
data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
switch (phy->mdix) {
case 1:
data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
break;
case 2:
data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
break;
case 0:
default:
data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
break;
}
/*
* Options:
* disable_polarity_correction = 0 (default)
* Automatic Correction for Reversed Cable Polarity
* 0 - Disabled
* 1 - Enabled
*/
data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
if (phy->disable_polarity_correction)
data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
if (ret_val)
return ret_val;
/* SW Reset the PHY so all changes take effect */
ret_val = e1000e_commit_phy(hw);
if (ret_val) {
e_dbg("Error Resetting the PHY\n");
return ret_val;
}
/* Bypass Rx and Tx FIFO's */
ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL,
E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
if (ret_val)
return ret_val;
ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
&data);
if (ret_val)
return ret_val;
data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
data);
if (ret_val)
return ret_val;
ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
if (ret_val)
return ret_val;
data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
if (ret_val)
return ret_val;
ctrl_ext = er32(CTRL_EXT);
ctrl_ext &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
ew32(CTRL_EXT, ctrl_ext);
ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
if (ret_val)
return ret_val;
/*
* Do not init these registers when the HW is in IAMT mode, since the
* firmware will have already initialized them. We only initialize
* them if the HW is not in IAMT mode.
*/
if (!e1000e_check_mng_mode(hw)) {
/* Enable Electrical Idle on the PHY */
data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
if (ret_val)
return ret_val;
ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
if (ret_val)
return ret_val;
data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
if (ret_val)
return ret_val;
}
/*
* Workaround: Disable padding in Kumeran interface in the MAC
* and in the PHY to avoid CRC errors.
*/
ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
if (ret_val)
return ret_val;
data |= GG82563_ICR_DIS_PADDING;
ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
if (ret_val)
return ret_val;
return 0;
}
/**
* e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
* @hw: pointer to the HW structure
*
* Essentially a wrapper for setting up all things "copper" related.
* This is a function pointer entry point called by the mac module.
**/
static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
{
u32 ctrl;
s32 ret_val;
u16 reg_data;
ctrl = er32(CTRL);
ctrl |= E1000_CTRL_SLU;
ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
ew32(CTRL, ctrl);
/*
* Set the mac to wait the maximum time between each
* iteration and increase the max iterations when
* polling the phy; this fixes erroneous timeouts at 10Mbps.
*/
ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4),
0xFFFF);
if (ret_val)
return ret_val;
ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
®_data);
if (ret_val)
return ret_val;
reg_data |= 0x3F;
ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
reg_data);
if (ret_val)
return ret_val;
ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
®_data);
if (ret_val)
return ret_val;
reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
reg_data);
if (ret_val)
return ret_val;
ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
if (ret_val)
return ret_val;
ret_val = e1000e_setup_copper_link(hw);
return 0;
}
/**
* e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
* @hw: pointer to the HW structure
* @duplex: current duplex setting
*
* Configure the KMRN interface by applying last minute quirks for
* 10/100 operation.
**/
static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
{
s32 ret_val = 0;
u16 speed;
u16 duplex;
if (hw->phy.media_type == e1000_media_type_copper) {
ret_val = e1000e_get_speed_and_duplex_copper(hw, &speed,
&duplex);
if (ret_val)
return ret_val;
if (speed == SPEED_1000)
ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
else
ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
}
return ret_val;
}
/**
* e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
* @hw: pointer to the HW structure
* @duplex: current duplex setting
*
* Configure the KMRN interface by applying last minute quirks for
* 10/100 operation.
**/
static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
{
s32 ret_val;
u32 tipg;
u32 i = 0;
u16 reg_data, reg_data2;
reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
reg_data);
if (ret_val)
return ret_val;
/* Configure Transmit Inter-Packet Gap */
tipg = er32(TIPG);
tipg &= ~E1000_TIPG_IPGT_MASK;
tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
ew32(TIPG, tipg);
do {
ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data);
if (ret_val)
return ret_val;
ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data2);
if (ret_val)
return ret_val;
i++;
} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
if (duplex == HALF_DUPLEX)
reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
else
reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
return 0;
}
/**
* e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
* @hw: pointer to the HW structure
*
* Configure the KMRN interface by applying last minute quirks for
* gigabit operation.
**/
static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
{
s32 ret_val;
u16 reg_data, reg_data2;
u32 tipg;
u32 i = 0;
reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
reg_data);
if (ret_val)
return ret_val;
/* Configure Transmit Inter-Packet Gap */
tipg = er32(TIPG);
tipg &= ~E1000_TIPG_IPGT_MASK;
tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
ew32(TIPG, tipg);
do {
ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data);
if (ret_val)
return ret_val;
ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data2);
if (ret_val)
return ret_val;
i++;
} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
return ret_val;
}
/**
* e1000_read_kmrn_reg_80003es2lan - Read kumeran register
* @hw: pointer to the HW structure
* @offset: register offset to be read
* @data: pointer to the read data
*
* Acquire semaphore, then read the PHY register at offset
* using the kumeran interface. The information retrieved is stored in data.
* Release the semaphore before exiting.
**/
static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
u16 *data)
{
u32 kmrnctrlsta;
s32 ret_val = 0;
ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
if (ret_val)
return ret_val;
kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
ew32(KMRNCTRLSTA, kmrnctrlsta);
e1e_flush();
udelay(2);
kmrnctrlsta = er32(KMRNCTRLSTA);
*data = (u16)kmrnctrlsta;
e1000_release_mac_csr_80003es2lan(hw);
return ret_val;
}
/**
* e1000_write_kmrn_reg_80003es2lan - Write kumeran register
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write at register offset
*
* Acquire semaphore, then write the data to PHY register
* at the offset using the kumeran interface. Release semaphore
* before exiting.
**/
static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
u16 data)
{
u32 kmrnctrlsta;
s32 ret_val = 0;
ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
if (ret_val)
return ret_val;
kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
E1000_KMRNCTRLSTA_OFFSET) | data;
ew32(KMRNCTRLSTA, kmrnctrlsta);
e1e_flush();
udelay(2);
e1000_release_mac_csr_80003es2lan(hw);
return ret_val;
}
/**
* e1000_read_mac_addr_80003es2lan - Read device MAC address
* @hw: pointer to the HW structure
**/
static s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw)
{
s32 ret_val = 0;
/*
* If there's an alternate MAC address place it in RAR0
* so that it will override the Si installed default perm
* address.
*/
ret_val = e1000_check_alt_mac_addr_generic(hw);
if (ret_val)
goto out;
ret_val = e1000_read_mac_addr_generic(hw);
out:
return ret_val;
}
/**
* e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down
* @hw: pointer to the HW structure
*
* In the case of a PHY power down to save power, or to turn off link during a
* driver unload, or wake on lan is not enabled, remove the link.
**/
static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw)
{
/* If the management interface is not enabled, then power down */
if (!(hw->mac.ops.check_mng_mode(hw) ||
hw->phy.ops.check_reset_block(hw)))
e1000_power_down_phy_copper(hw);
}
/**
* e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
* @hw: pointer to the HW structure
*
* Clears the hardware counters by reading the counter registers.
**/
static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
{
e1000e_clear_hw_cntrs_base(hw);
er32(PRC64);
er32(PRC127);
er32(PRC255);
er32(PRC511);
er32(PRC1023);
er32(PRC1522);
er32(PTC64);
er32(PTC127);
er32(PTC255);
er32(PTC511);
er32(PTC1023);
er32(PTC1522);
er32(ALGNERRC);
er32(RXERRC);
er32(TNCRS);
er32(CEXTERR);
er32(TSCTC);
er32(TSCTFC);
er32(MGTPRC);
er32(MGTPDC);
er32(MGTPTC);
er32(IAC);
er32(ICRXOC);
er32(ICRXPTC);
er32(ICRXATC);
er32(ICTXPTC);
er32(ICTXATC);
er32(ICTXQEC);
er32(ICTXQMTC);
er32(ICRXDMTC);
}
static const struct e1000_mac_operations es2_mac_ops = {
.read_mac_addr = e1000_read_mac_addr_80003es2lan,
.id_led_init = e1000e_id_led_init,
.blink_led = e1000e_blink_led_generic,
.check_mng_mode = e1000e_check_mng_mode_generic,
/* check_for_link dependent on media type */
.cleanup_led = e1000e_cleanup_led_generic,
.clear_hw_cntrs = e1000_clear_hw_cntrs_80003es2lan,
.get_bus_info = e1000e_get_bus_info_pcie,
.set_lan_id = e1000_set_lan_id_multi_port_pcie,
.get_link_up_info = e1000_get_link_up_info_80003es2lan,
.led_on = e1000e_led_on_generic,
.led_off = e1000e_led_off_generic,
.update_mc_addr_list = e1000e_update_mc_addr_list_generic,
.write_vfta = e1000_write_vfta_generic,
.clear_vfta = e1000_clear_vfta_generic,
.reset_hw = e1000_reset_hw_80003es2lan,
.init_hw = e1000_init_hw_80003es2lan,
.setup_link = e1000e_setup_link,
/* setup_physical_interface dependent on media type */
.setup_led = e1000e_setup_led_generic,
};
static const struct e1000_phy_operations es2_phy_ops = {
.acquire = e1000_acquire_phy_80003es2lan,
.check_polarity = e1000_check_polarity_m88,
.check_reset_block = e1000e_check_reset_block_generic,
.commit = e1000e_phy_sw_reset,
.force_speed_duplex = e1000_phy_force_speed_duplex_80003es2lan,
.get_cfg_done = e1000_get_cfg_done_80003es2lan,
.get_cable_length = e1000_get_cable_length_80003es2lan,
.get_info = e1000e_get_phy_info_m88,
.read_reg = e1000_read_phy_reg_gg82563_80003es2lan,
.release = e1000_release_phy_80003es2lan,
.reset = e1000e_phy_hw_reset_generic,
.set_d0_lplu_state = NULL,
.set_d3_lplu_state = e1000e_set_d3_lplu_state,
.write_reg = e1000_write_phy_reg_gg82563_80003es2lan,
.cfg_on_link_up = e1000_cfg_on_link_up_80003es2lan,
};
static const struct e1000_nvm_operations es2_nvm_ops = {
.acquire = e1000_acquire_nvm_80003es2lan,
.read = e1000e_read_nvm_eerd,
.release = e1000_release_nvm_80003es2lan,
.update = e1000e_update_nvm_checksum_generic,
.valid_led_default = e1000e_valid_led_default,
.validate = e1000e_validate_nvm_checksum_generic,
.write = e1000_write_nvm_80003es2lan,
};
const struct e1000_info e1000_es2_info = {
.mac = e1000_80003es2lan,
.flags = FLAG_HAS_HW_VLAN_FILTER
| FLAG_HAS_JUMBO_FRAMES
| FLAG_HAS_WOL
| FLAG_APME_IN_CTRL3
| FLAG_HAS_CTRLEXT_ON_LOAD
| FLAG_RX_NEEDS_RESTART /* errata */
| FLAG_TARC_SET_BIT_ZERO /* errata */
| FLAG_APME_CHECK_PORT_B
| FLAG_DISABLE_FC_PAUSE_TIME /* errata */
| FLAG_TIPG_MEDIUM_FOR_80003ESLAN,
.flags2 = FLAG2_DMA_BURST,
.pba = 38,
.max_hw_frame_size = DEFAULT_JUMBO,
.get_variants = e1000_get_variants_80003es2lan,
.mac_ops = &es2_mac_ops,
.phy_ops = &es2_phy_ops,
.nvm_ops = &es2_nvm_ops,
};
-------------- n?chster Teil --------------
Ein Dateianhang mit Bin?rdaten wurde abgetrennt...
Dateiname : kunz.vcf
Dateityp : text/x-vcard
Dateigr??e : 464 bytes
Beschreibung: nicht verf?gbar
URL : <http://lists.etherlab.org/pipermail/etherlab-dev/attachments/20120524/16ee87ff/attachment-0001.vcf>
More information about the etherlab-dev
mailing list